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We study the following nonlinear equation dx(t)/dt = x(t)[a(t) — b(t)x*(t) — f(t,x(£))] + g(t),
by using fixed point theorem, the sufficient conditions of the existence of a unique positive
almost periodic solution for above system are obtained, by using the theories of stability, the
sufficient conditions which guarantee the stability of the unique positive almost periodic solution
are derived.

1. Introduction

Let us consider the following Logistic-type equation

% = a(t)x(t) = b(t)x*(t) + e(t). (1.1)
When the external perturbation e(t) = 0 and a(t), b(t) are positive constants, (1.1) is the
typical Logistic equation. It was firstly introduced as a mathematical model for studying
population dynamics and has become a classic topic in the textbooks on ordinary differential
equations and its quality theory (see [1, 2]). By using the method of separation of variables
and integration by partial fractions, we can get explicitly all the solutions of the typical
Logistic equation and completely analyze the behavior of all the solutions. But when a(t), b(t)
are no longer constants and there exists some perturbation, the problem is not so simple as
no explicit solutions can be found in general. In [2-6], the time-periodic case was considered.
In [7], the existence of positive almost periodic solutions was considered when a(t), b(t)
are almost periodic and there is no perturbation. When a(t), b(t) satisfy the assumption
a < a(t) < A p <b(t) < B, and there is no external perturbation (e(t) = 0), but there
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is a nonlinear perturbation g(t, x)x, Nkashama [8] obtained the existence of bounded and
positive almost periodic solutions. In [9], Zhu et al. considered the case that a(t), b(t) satisfy
the assumption a < a(t) < A, p < b(t) < B and there exists an external perturbation e(t),
and they got the existence and uniqueness of positive periodic solutions and almost periodic
solutions of (1.1).

In this paper, we consider the following more complex system:

dx(t)
dr

x(t) [a(t) = b(t)x*(t) — f(t, x(t)] + g(t), (1.2)

where a > 0, t € R, a(t), b(t), g(t) are all continuous almost periodic functions, and f (¢, x) is
almost periodic in ¢ and uniformly with respect to x € R.

In this paper, we use the fixed point theorem and get the existence and uniqueness of
positive almost periodic solution for (1.2), the stability of the unique positive almost periodic
solution of (1.2) is also discussed, and some new results are obtained.

2. The Existence and Uniqueness of Positive Almost Periodic Solution

Before we start with our main results, for the sake of convenience, suppose that f is a continu-
ous bounded function, and we denote fy; = sup, . f (t) and f; = inficg f (t); first, we introduce
some lemmas.

Lemma 2.1 (see [10]). Consider the following equation:

% = a(t)x(t) + b(t), (2.1)

where a(t), b(t) are continuous almost periodic functions; if Rem(a(t)) #0, then (2.1) exists a unique
almost periodic solution 1(t), and 1 (t) can be written as follows:

el a®drp(s)ds, Rem(a(t)) <0,
n=1"" 22
_ f el a®dtp(s)ds, Rem(a(t)) >0,

t

where m(a(t)) = limr_, 1, (1/T) fOT a(t)dt,Rem(a(t)) is the real part of m(a(t)).

Lemma 2.2. Consider (1.2); if g(t) > 0; then the domain R, = {x | x > 0} is a positive invariant
with respect to (1.2).

Proof. Since g(t) > 0, it follows that

B~ ety ate) ~b2=(t) - £ x(0)] +3(0) (23)

> x(b)[a(t) = b(t)x"(t) - f(t,x(1))],
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thus we have
t
x(t) > x(kp) exp{ft [a(s) — b(s)x"(s) —f(s,x(s))]ds}, (2.4)

the assertion is valid for all x(ty) > 0. The proof is completed. O

Theorem 2.3. Consider (1.2); ais a constant and 0 < a < by /(bpm—br), a(t), b(t), g(t) are continu-
ous almost periodic functions, f(t, x) is a continuous almost periodic function in t € R and uniformly
with respect to x € R, f(t,0) = 0, if the following conditions hold:

(1) aL >0, br >0, gLZO,
(2) |f(t,x) = f(t,y)| < Llx —yl|, forall t,x,y € R, where L is a positive number,

(3) Ly/aar 9/« + L/ ar p* + guy"/*(1+a) /aar <1, where p = ((1+a)by—abpr)/((1+
a)(ap +aar) +a’ay), y=(1+a)[bm(am+aar) +aarbr])/(ar[(1+a)(apm + aar) +
a’ar]),

then (1.2) exists a unique positive almost periodic solution ¢*(t), and 1/yY/* < ¢*(t) < 1/pY=.

Proof. Let u(t) = 1/x%(t), since we only consider positive solutions of (1.2), by Lemma 2.2, it
follows that x(t) = u~/*(t), then (1.2) can be written as follows:

% = —aa(t)yu(t) + ab(t) + au(t) f<t, u’”“(t)) — a0/ (£ g (1) (2.5)

Define
B = {¢p(t);p(t) € AP(R), < o(t) <y }, (2.6)

where AP(R) denotes the set of almost periodic functions in R, the norm is defined as ||¢|| =
sup,glo(t)|, thus (B, || - ||) is a Banach space, given any ¢(t) € B, consider the following
equation:

du -1/a +a)/a

= = —eau(®) + ab(t) +ap®)f (¢ /*(1)) — ap (g (1), (2.7)
since ar > 0, it follows that m(a(t)) > 0, thus m[-aa(t)] < 0, from (2.7), by virtue of
Lemma 2.1, we can know that (2.7) has a unique almost periodic solution #(t), it can be
written as follows:

i =a f e 50 [b(s) + p(s)f (5,47/%(5)) - 1"V *(5)g(s)]ds.  (28)

(o]
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Now, define an operator T as follows:
t t
Ty(t) = af e 1D [b(s) + p(s) £ (5,977%(5) ) - 91 X(5)g(s)|ds,  (29)

note that
¢

To(t) < af ear(t=s) [b(s) + go(s)f(s, (p‘””‘(S))]ds

{ee]

IN
R

J-f o-aaL(t=s) [|b(5)| + |(p(S)||f<S, (‘0—1/u(s)> _f(s,O)”dS
- (2.10)

IN
R

J-t aar(i-s) [lb(5)| + L|(p(s)||(P’1/a(S)|]ds

—00

< aiL(bM yLEe).

Since the condition Ly /aar %/ + L/ar V% + gpy/*(1 + a)/aar < 1 holds, it follows that
Ly < aa; p1+®/%; thus, we have

To(t) < aiL(bM +aarf) =y. (2.11)

Also
t

Ty(t) =a f e 1909 [p(s) + p(s) f (5,47/%(5) ) - /% (5)g(5)] ds

[*e]

t (2.12)
> af efaaM(tfs) [bL _ YLﬁfl/a _ Y(1+a)/ag(s)]ds'

Since Ly/aar p*®/*+ L/ ap p/%+ gmy'/*(1+a) /aar, < 1, it follows that g(f) < aar/(1+a)y'/%;
thus, we have

t
T(p(t) > af e—th(t—s) [bL _ YLﬁ—l/u _ Y(1+u)/ug(s)]ds
e (2.13)

1 aaryy
> a(bL—aﬂaL— 1+D(> —ﬂ.
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Hence T(t) € B; therefore, T : B — B. For any ¢(t), ¢(t) € B, it follows that

t t
T - Ty ()] = afﬁ e L@ () f (5,97%(9)) — 9/ (5)g(5)

() (5,47/%(9)) + ¢ (5)g(s) ] ds

ajt el () f (5,97%(5)) — () f (5, 47/%(s))

+ g f (s,47s)) —g()f (5,977%(s))

+g(5) (¢1%(5) - 149/%(s) ) | ds

< aft e‘tlf;a(T)dT“(p(s)”f(sl (P—l/u(s)> _ f<S, (F—l/u(s)>|
+lo) =) |f(s.477®)]
+|g(s)] |q)“+“>/“(s) _ (Pum)/a(s)”ds
< tXJ‘i e—tmL(t—S) [Ll(p(s)||q)—l/u(s) _ (P.—l/u(s)| n L|([f_1/u(5)||(p(s) _ ([I(S)|

+|g(9)] [ () - ¢ T (5) | ds.

(2.14)

According to mean value theorem, we can get

t
—aay (t-s 1 -1/a)- -1/a
|To(t) - Ty ()] < af emro () [Llso(S)I —EO M o(s) ~ ()] +LIg ™ g(s) ~ g (5)]
1+a,,
86| |[——=¢""|lp(s) - ¢ (s)] | ds,

(2.15)

where ¢(s) < ¢, ¢ < ¢(s) or ¢(s) < & ¢ < ¢(s). Notice that [lp(t)|| < y, 5% < yV/*,
g/l < p/e, J1g= /1 < pr/71 it follows that

1 1, /- 1/ 1+a 4,
1T90) - Ty @) < o (Lrb o= gl + L™l =gl + gl = o]
1/ 1, ajm e lva 4,
— (L L g - .

(2.16)
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Note that Ly /aay 3/ + L/ay Y% + guy/*(1 + ) /aar, < 1, and L is a positive number; it
follows that

1/ 1 1
0<— (Ly—ﬂ’(l/“)’l F LV 4 gy “y””) <1, (2.17)
ar, a a

therefore, T is a contraction mapping on B, that is to say, T has a unique fixed point on B,
the unique fixed point is the unique positive almost periodic solution ¢(t) of (2.5), and f <
¢(t) < y. Notice that u(t) = 1/x*(t), and, by Lemma 2.2, (1.2) has a unique positive almost
periodic solution ¢*(t) = [¢(t)] /%, and 1/y/* < ¢*(t) < 1/p'/*. This completes the proof of
Theorem 2.3. O

3. The Uniqueness of the Solution with Initial Value Problem

Consider (2.5); if given initial value u(ty) = ug, and p < ug < vy, then we have the following
theorem.

Theorem 3.1. Consider (2.5); ais a constant and 0 < a < by, /(bpr—by), a(t), b(t), g(t) are continu-
ous functions, f(t, x) is a continuous function in t € R and uniformly with respect tox € R, f(t,0) =
0; if the following conditions hold:

(1) ar>0,b. >0, gr >0,
(2) |f(t,x) = f(t,y)| < Llx —yl|, forall t,x,y € R, where L is a positive number,

(3) Ly/aar M0/« + L/a Y + gy *(1 + a) /aar, < 1, where p = (1 + a)by —abp /(1 +
a)(am +aar) +a*ar, y = (1+a)[bpm(am + aar) +aarbr])/(ap[(1+ a)(ap + aar) +
a’ar)),

then (2.5) exists a unique continuous solution u(t) with initial value u(ty) = up and p <u(t) <yt >
to).

Proof. The initial value problem of (2.5) is equivalent to the solution of the following integral
equation:

t t t
u(t) = el (aa(@)dr,, =+ af e~alsa(n)dr [b(s) +u(s)f (s, uil/”‘(s)> - u<1+"‘)/“(s)g(s)]ds.
to
3.1)

Define an operator T as follows:

¢
t

Tu(t) = eho® a0y af

to

e—uj'; a(r)dr [b(s) i u(S)f(S, u‘”“(g)) - u(1+“)/“(s)g(s)]ds.
(3.2)

The following proof is similar as the proof of Theorem 2.3, so we omit it here. O
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4. The Stability of the Positive Almost Periodic Solution

Theorem 4.1. Consider (1.2); ais a constant and 0 < a < by /(bpm —br),a(t), b(t), g(t) are continu-
ous almost periodic functions, f(t, x) is a continuous almost periodic function in t € R and uniformly
with respect to x € R; if the following conditions hold:

(I)ar>0,b. >0, g >0,
(2) |f(t,x) = f(t,y)| < Llx —yl|, forall t,x,y € R, where L is a positive number,

(3) Ly/aar 9/« + L/ ar p* + guy"/*(1+a) /aar <1, where p = ((1+a)by—abpr)/((1+
a)(ap +aar) +a’ar), y=(1+a)[bm(am+aar) +aarbr])/(ar[(1+a)(apm +aar) +
a’ar]),

then there exists a region Q = {(t, x); 1/)/1/”‘ <x< 1/[51/"‘, t > to}, and, in this region, the unique
positive almost periodic solution of (1.2) is uniformly asymptotically stable.

Proof. From Theorem 3.1, we know when f < uy < y, (2.5) exists a unique solution u(t) with

initial value u(tg) = up, and p < u(t) < y, since the transformation u(t) = 1/x*(t), it follows

that x(t) = 1/u'/%(t), so (1.2) exists a unique solution with initial value x(ty) = 1/ u(l]/ * and

1/y"* < x(t) < 1/BY*. 1t is easy to know that, the conditions of Theorem 4.1 are met with
Theorem 2.3, so (2.5) exists a unique positive almost periodic solution ¢(t); from (2.9), the
unique positive almost periodic solution ¢(t) of (2.5) can be expressed by integral equation
as follows:

() = a f e [u(s) + p(s)f (5, 67/7(6)) - $ 2 (5)g(9)] ds
= a f " e o o) + o) (5, 477(5)) ~ 02 (5)g(6)] ds
a f e b1 [(s) + p(s) f (5,47/%(5)) = $ /()3 (s)] ds

to

_ effn(—aa(‘r))dr(i)(to) . J‘t e,aﬁ a(t)dr [b(S) + ¢(5)f<51 ¢71/a(s)> _ ¢(1+a)/a(s)g(s)] ds.
to
(4.1)

The solution of (2.5) with initial value u(ty) = ug is given as follows:

t t t
u(t) = el (aa(@)dr,, =+ af e~ lsa(nydr [b(s) +u(s)f (s, uil/”‘(s)> - u(“"‘)/"‘(s)g(s)]ds,
to
(4.2)
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from (4.1) and (4.2), when t > to, we have

lu(t) - p(1)] = [P0 (u(ty) - (o))

+a ft galiamdr [f (s, uil/"‘(s)> (u(s) — ¢(s))
+&)|f (s u7%9) - f(s,67%(5))]

+g(s) (¢ (5) - u ' (5)) | ds

t
< el 1) — (1) |

! ! ~1/a
raf el | (s, u(e)fluce) - 9o

19| f(s97749) - f(s,u7/2(9))|
+|g()]| ¢ (5) — u*9/%(s)] | ds
< eho O |y 1) — p(ay)|

t
+ af e—uf; a(T)dT[
to

Lu/%(s)|[1u(s) = p(s)] + LI ()| [97/() ~ u/*(s)

+|g()] |1+ (5) = u 1/ (s)] | .
(4.3)

According to mean value theorem, we can get

Jut) - ()] < o D uu(tg) - ito) |

t
+ aJ. e j; a(t)dr [
to

Lu‘l/“(s)“u(s) _ ¢(s)| + le)(s)l _%é—(l/u)—l (¢(s) - u(S))

)| e (pis) ~u(s)

] ds,
(4.4)

where ¢(s) < & ¢ < u(s) or u(s) < & ¢ < ¢(s). Notice that || < y, [¢-0/®| < p1-0/a),
|t/ < g%, 16| < y!/% it follows that

|u(t) = $(1)] < 2o T u(ty) — pto)|

t
+ aJ‘ e—tmL(t—s) [
to

LBV u(s) - ¢(s)| + L)%ﬂ_(w)_l |u(s) =9 (s)]|
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l+a
g u(s) - )| s
< e,[fo( aa T))dTlu(tO) _ ¢(t0)|
t
+af et [Lﬂ Vo Ly O s gy — 2y u(s) - §(s)|ds
to
< e ulto) - p(to)|
¢
+ af E [Lp V4 Ly— ﬁ Vo014 gm W] u(s) - ¢(s)|ds.
to

(4.5)

Multiplying both sides of the above inequality by e**-¢-), we have

e |y () — p(t)| < |ulto) - (to) |

t
l+a
+ af eraL(s=h) [Lﬁ’l/”‘ +Ly= p Wl 4 gy v |u(s) - ¢(s)|ds.
to
(4.6)
According to Bellman’s inequality, we can obtain

10 | u(t) — (1)] < |ulto) — plto)|eolatd IV g tsantlis - (4.7)

Multiplied both sides of the above inequality by e~ (‘) we get
|(t) = (1) < [uto) = (ko) [l -arratP "+ g ey tto) (4.8)

Notice that u(t) = 1/x%(t), hence x(t) = u™/%(t), and ¢*(t) = ¢~/%(t) is the unique positive
almost periodic solution of (1.2), so we have

|x(t) = ¢*(1)] = [u/*()) - g7/ (1)]

1.1/
—|[& 7 Juw - 9] (4.9)

|u(t0) _ (I)(to)|e(—aaLJraLﬂ’l/“+Lyﬂ’(1/")’1+gM(1+a)y1/“)(t—t0)’

1
aﬁ(lﬂx)/a

where u(t) < &1 < ¢(t) or ¢p(t) < &1 < u(t), note that the condition (3) holds, it follows that

—aap +aLp TV + Lyp V9 4 g (1 + )y <0, (4.10)
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therefore, there must be a small positive constant 6 such that the following equality holds:
: 1 ~6(t-
|x(t) - (t)l < WW“O) - ¢(t0)|3 Olito), (411)

From (4.11), we know that the unique positive almost periodic solution ¢*(t) of (1.2) is uni-
formly asymptotically stable. O
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