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The spatial transport process in fractal media is generally anomalous. The space-fractional
advection-diffusion equation can be used to characterize such a process. In this paper, a fully
discrete scheme is given for a type of nonlinear space-fractional anomalous advection-diffusion
equation. In the spatial direction, we use the finite element method, and in the temporal direction,
we use the modified Crank-Nicolson approximation. Here the fractional derivative indicates the
Caputo derivative. The error estimate for the fully discrete scheme is derived. And the numerical
examples are also included which are in line with the theoretical analysis.

1. Introduction

The normal diffusive motion is modeled to describe the standard Brownian motion. The
relation between the flow and the divergence of the particle displacement represents

J(x,t) = —ag—; + bc, (1.1)

where | is the diffusive flow. Inserting the above equation into the equation of mass
conservation

o] oc
Fyaly (1.2)
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we obtain the standard convection-diffusion equation. From the viewpoint of physics, it
means that during the method of time random walkers, the overall particle displacement
up to time t can be represented as a sum of independent random steps, in the case that both
the mean-squared displacement per step and the mean time needed to perform a step are
finite. The measured variance growth in the direction of flow of tracer plumes is typically at
a Fickian rate, ((c —¢)%) ~ .

The transport process in fractal media cannot be described with the normal diffusion.
The process is nonlocal and it does not follow the classical Fickian law. It depicts a particle
in spreading tracer cloud which has a standard deviation, and which grows like #>* for some
0 < a <1, excluding the Fickian case a = 1/2. The description of anomalous diffusion means
that the measure variance growth in the direction of flow has a deviation from the Fickian
case, it follows the super-Fickian rate ((c - 2)%) ~ 22 when a > 1/2, or does the subdiffusion
rate ((c—©)%) ~ 24 if 0 < a < 1/2. With the help of the continuous time random walk and the
Fourier transform, the governing equation with space fractional derivative can be derived as
follows

%—‘t‘ - D<a(u)aD§u> +bw)Du+ f(x,tu), 0<p<l, (1.3)
where D denotes integer derivative respect to x, and DF is fractional derivative. There are
some authors studying the spacial anomalous diffusion equation in theoretical analysis and
numerical simulations [1-10]. Now the fractional anomalous diffusion becomes a hot topic
because of its widely applications in the evolution of various dynamical systems under
the influence of stochastic forces. For example, it is a well-suited tool for the description
of anomalous transport processes in both absence and presence of external velocities or
force fields. Since the groundwater velocities span many orders of magnitude and give rise
to diffusion-like dispersion (a term that combines molecular diffusion and hydrodynamic
dispersion), the fractional diffusion is an important process in hydrogeology. It can be used
to describe the systems with reactions and diffusions across a wide range of applications
including nerve cell signaling, animal coat patterns, population dispersal, and chemical
waves. In general, fractional anomalous diffusions have numerous applications in statistical
physics, biophysics, chemistry, hydrogeology, and biology [4, 11-20].

In this paper, we mainly study one kind of typical nonlinear space-fractional partial
differential equations by using the finite element method, which reads in the following form:

%—”t‘ - D(a(u)aD,‘iu) +b(u)Du + f(x,t,u), x€Q, te(0,T],

ulo=0px), x€Q, (1.4)

ule =g te (0,117,

where Q is a spacial domain with boundary 9Q, DF is the fth (0 < < 1) order fractional
derivative with respect to the space variable x in the Caputo sense (which will be introduced
later on), a, b, f are functions of x, t, u, ¢ and g are known functions which satisfy the
conditions requested by the theorem of error estimations.

The rest of this paper is constructed as follows. In Section 2 the fractional integral,
fractional derivative, and the fractional derivative spaces are introduced. The error estimates
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of the finite element approximation for (1.4) are studied in Section 3, and in Section 4,
numerical examples are taken to verify the theoretical results derived in Section 3.

2. Fractional Derivative Space

In this section, we firstly introduce the fractional integral (or Riemann-Liouville integral), the
Caputo fractional derivative, and their corresponding fractional derivative space.

Definition 2.1. The ath order left and right Riemann-Liouville integrals of function u(x) are
defined as follows

alfu(x) = % L (x —s)* 'u(s)ds,
(2.1)
a 1 ’ a-1
Jpyu(x) = W L (s =x)"u(s)ds,
where a > 0, and I'(+) is the Gamma function.
Definition 2.2. The ath order Caputo derivative of function u(x) is defined as,
n
an;u(x)=uI;§’“w, n-l<a<neZzt,
dxm
(2.2)
d"u(x)

«Dju(x) = (-1)" I™* n-l<a<neZ.

dxm ’

The ath order Riemann-Liouville derivative of function u(x) is defined by changing the order
of integration and differentiation.

Lemma 2.3 (see [8]). Ifu(0) = #/'(0) = --- = u""V(0) = 0, then the Caputo fractional derivative is
equal to the Riemann-Liouville derivative.

Definition 2.4. The fractional derivative space J*(£2) is defined as follows:
JNQ) = {ueLz(Q): «D%u € LA(Q), n—1§a<n}, (2.3)
endowed with the seminorm
[ulje = [l aD5ull 12(c2)- (2.4)

and the norm

1/2
[l o = <|u|§a £y ||Dku||2> . (2.5)

k<[a]
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Let J§ () denote the closure of C§°(€2) with respect to the above norm and seminorm.

Definition 2.5. Define the seminorm

|u|H“ = ”|iw|aF(u)”L2(Q)r

1/2
2
lallge = ( el + 3 |05 )
k<[a]

and the norm

(2.6)

2.7)

where i is the imaginary unit, and F is the Fourier transform, and which can define another

fractional derivative space H*(Q2).

Let Hj(Q2) denote the closure of Ci°(£2) with respect to the norm and seminorm.

Definition 2.6. The fractional space J7 () is defined below
JH(Q) = {u €1*(Q) : JDuel*(Q), Diucl’Q), n-1<a< n},

endowed with the seminorm

( aD;ul xDZu) 2

|u|]? = LZ(Q),

and the norm

1/2
2
k 2
el o = Z||Du||+|u|]g .
k<[a]

Theorem 2.7 (see [3, 6]). JZ, J*, and H* are equal with equivalent seminorm and norm.

The following are some useful results.

Lemma 2.8 (see [3]). Foru € J§(Q),0 < f < a, then

Du(x) = .D5 "

Dhu.
Lemma 2.9 (see [2]). For u € H{(£2), one has
llull 20y < clul e

ForO<p<a,

|u|Hg(Q) < Clung'

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)
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Since J§, J%, and H* are equal with equivalent seminorm and norm, the norms with
each space which will be used following are without distinction, and the notations are used
seminorm | - |, and norm || - ||4.

3. Finite Element Approximation

Let Q = [a,b], and 0 < B < 1. Define a = (1 + p)/2. In this section, we will formulate a fully
discrete Galerkin finite element method for a type of nonlinear anomalous diffusion equation
as follows.

Problem 1 (Nonlinear spacial anomalous diffusion equation). We consider equations of the
form

g—? = D<a(u)aD§u> +bu)Du+ f(x,t,u), (x,t)€Qx(0,T],
u(x,t) = p(x,t), x€0Qx(0,T], (3.1)

u(x,0)=g(x), xe€ Q.

We always assume that

O<m<a(u)<M, O<m<bu)<M, O0<m< f(u)<M. (3.2)

The algorithm and analysis in this paper are applicable for a large class of linear and
nonlinear functions (including polynomials and exponentials) in the unknown variables.
Throughout the paper, we assume the following mild Lipschitz continuity conditions
on a, b, and f: there exist positive constants L and ¢ such that for x € Q,t € (0,T], and
s,t €R,

la(x,t,s) —a(x,t,r)| < L|s—r|, (3.3)
|b(x,t,5) —b(x,t,r)| < L|s—r], (3.4)
|f(x,t,8) = f(x,t,7)| < L|s—1]. (3.5)

In order to derive a variational form of Problem 1, we suppose that u is a sufficiently
smooth solution of Problem 1. Multiplying an arbitrary v € H{ () in both sides yields

. E;—Ltlv dx = Lz D(a(u)aD£u>v dx + fg b(u)Duv dx + fg f(x, t,u)vdx. (3.6)

Rewriting the above expression yields

f a—uv dx + f a(u)aDguDv dx - J b(u)Duv dx = f f(x,t,u)vdx. (3.7)
o Ot Q o Q
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We define the associated bilinear form A : J§(€2) x J§(€2) — Ras

A, v) = (a(u)aDZu, Dv) — (b(u)Du,v), (3.8)

where (-,-) denotes the inner product on L*(Q2) and J5(€2).
For given f € J7*(Q), we define the associated function F : J§(Q2) — Ras

F(v) = (f,v). (3.9)

Definition 3.1. A function u € J§(£2) is a variational solution of Problem 1 provided that

(%,v) +A(u,v) =F(v), VYove]Ji(Q). (3.10)

Now we are ready to describe a fully discrete Galerkin finite element method to solve
nonlinear Problem 1. In our new scheme, the finite element trial and test spaces for Problem
1 are chosen to be same.

For a positive integer N, let [T = {t,}", be a uniform partition of the time interval
(0,T] such that t, = nt, where T = T/N, and let t,,_1/, = t, — 7/2. Throughout the paper, we
use the following notation for a function ¢:

(‘bn _ (;bn—l, 5" _ (;b" + (,b"_ll - _ 3¢n—1 _ ¢n—2

P" = P(ta), 0" = - 5 ¢ = (3.11)

Let K, = {K} be a partition of spatial domain Q. Define hy as the diameter of the
element K and h = maxgex,hx. And let Sy, be a finite element space

Sp={v e H(Q) : v|g € P.-1(K),K € K1}, (3.12)

where P,_; (K) is the set of polynomials of degree r—1 on a given domain K. And the functions
in Sy, are continuous on Q. Our fully discrete quadrature scheme to solve Problem 1 is to find
uy: for v € Sy, such that

(8ua,0) + (a(ity) Dl Do) - (b(i) D, v) = (f (i), 0). (3.13)
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The linear systems in the above equation requires selecting the value of 4! and u;.
Given u) depending on the initial data g(x), we select u; by solving the following predictor-
corrector linear systems:

0 0 10, 0 10, 0
U, — U 0 pUy Uy 3 o\ Yn TH, _ 0
(505 0) (o) 025775 00) - (w(at) 00 = ((01) )
ul — Y w0 + 10 ul + 1 w410 ul +ud
h h h h p%n h h h h h
_— D - D
< - ,o )+ a > oD’ 5 v b 5 > ,0
0. 0
w” +u

Lemma 3.2. For u,v,w € ]g,o(Q)r 0<m<a(u) <M, a=(1+p)/2, there exist constants y1, y»
such that

(3.14)

(a(w),Dfu, Do) <yillull, - ol (a(w),Dkv, Do) > pjo|2. (315)
Proof. With the assumption of a(u) in (3.3) and the property of dual space

(a(w)uDgu, Dv) < “a(w)uDgu

|, - IDol_g)

< Mel[ulli—gip - [10l--g)e1 < Millsella - l10llar

(3.16)
<a(w)aD§v, Dv) = —<Da(w)uD£v, v>
=~ (uD8Pa(w), Db, D00 > mloy > pllolR. -
Lemma 3.3 (see [2]). For Q C R",a>n/4, v,w € Hj(Q),e > 0, one has
(qg)_p/q p 2 2
(vb(w), Vo) < co———|[Vb(w)||" - [|o]|" + £][v]l, (3.17)

wherep = 4a/(4a —n),q = 4a/n.

Theorem 3.4. Let uj, be bounded, then for a sufficiently small step T, there exists a unique solution
uy € Sy, satisfying scheme (3.13).
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Proof. As scheme represents a finite system of problem, the continuity and coercivity
of (uy,wy)/7T + A(uy,wy) is the sufficient and essential condition for the existence and
uniqueness of u}l. Let v = u;,, w = w}, then

(v,v) + A(v,v) = (U;-U) 4 <a(w)aD£U/D"0> - (b(w)Dv,v)
> I8 L ol - ol Db )P ol — ellol?
> « a (3.18)

= (2= )lloll + (7" = ol Db(@) ) o

2
2 cl|olfz-

For the chosen sufficiently small 7, the above inequality holds.

(v, w)

+ A(v,w) = (”T—w) + (a(w),Div, Dw) + (Db(u)v, Dw)

[[1]] - |lo
< ——— tnlolldwlls + ol - D @)w)]
T (3.19)
[[l] - llzol| [o]] - llzoll
< ——— tnlldwll, + M——
< cllvllallzolla-
Hence, the scheme (3.13) is uniquely solvable for u].
Let p" = Pyu" —u", and 0" = u} — P,u", then
up —u" =uy — Pyu" + Ppu" —u" = 0" + p", (3.20)
where P,u" is a Rits-Galerkin projection operator defined as follows:
(a(w) Dﬁ(u" - Ppu ) =
D% wu'),Dv) =0,
(3.21)
(a(uo)aDg(u" - Phu"),Dv> =0. -

Lemma 3.5. Let a(u), b(u) be smooth functions on Q, 0 < m < a(u), b(u) < M, and P,u" is
defined as above, then

| aD% (" = Ppu™)|| < ch**|[ully5,
(3.22)

I(Pre” = u™) | < h** [l
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Proof. Using the definition of P,u", one gets

|| aDE(Ppu™ — u™)|* = |(aD%(Pyu” = u), oD(Pyud — u))|

(3.23)
<cll D5 (Pt )| - [ DS (x = ) ||,
where y € S,. Utilizing the interpolation of I;u" leads to
laDS(Phu” = u)[| < inf el - ull, < cllTne" - u"ll, < B Jullg- (3.24)
X€on

Next we estimate || P,u" — u"||. For all ¢ € L*(Q), w is the solution of the following equation:

- D% = $, weQ,
(3.25)
w=0, weo.

So we have
l120]]26 < y3|p]I- (3.26)

For all y € Sp,, with the help of approximation properties of S, and the weak form, we can
obtain

(Ppu" —u", ) = —<Phu" -u", aDi"‘w> = —(xDj (Pyu" —u"), sD5w)

= = (<D (Puu" = u"), oD% (w = X)) < [IPutt” = "]l - x|,

< 1Pwd” =" inf [l - x|,

(3.27)
< ch™|ul|, h*||wlly, = ch”|ull, ||$]],
P, — u",
IPad — | = sup P —u,$) ch |lull,.
oxgerz@) |9l -

Lemma 3.6 (see [21]). Let T, 0 < h < 1, denote a quasiuniform family of subdivisions of a
polyhedral domain Q C RA. Let (K, P,N) be a reference finite element such that P ¢ W' (K') n
Wm™A4(K'") is a finite-dimensional space of functions on K', N is a basis for P', where 1 < p < 00,1 <
p <oo,and 0 <m < I For K € Ty, let (K, Px, Nx) be the affine equivalent element, and V, = v : v
is measurable and v|x € Px, for all K € Ty. Then there exists a constant C = C(l, p, q) such that

1/p 1/q
[Z ||v||12,v,,p(K>] < Clym-l+min(0d/p-d/q) . [Z ”v”?/vqu(K)] ] (3.28)

keTy keTy

The following Gronwall’s lemma is useful for the error analysis later on.
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Lemma 3.7 (see [2]). Let At,H and a,, bn, cy, yn (for integer n > 0) be nonnegative numbers
such that

N N N
an + At> by < AtY yua, + At c, + H, (3.29)
n=0 n=0 n=0

for N > 0. Suppose that Aty, <1, for all n, and set 6, = (1 — Aty,)™". Then

N N N
an + Athn < exp<AtZonYn> {Athn + H}, (3.30)

n=0 n=0 n=0

for N > 0.
The following norms are also used in the analysis:

_ n
ol = max 0"

(3.31)

N 1/2
2
olllox = [ZTIIU"IIk] :
n=0

Theorem 3.8. Assume that Problem 1 has a solution u satisfying uy, uw € L?(0,T,L*(Q)) with
u,uy € L2(0, T, H**Y). If At < ch, then the finite element approximation is convergent to the solution
of Problem 1 on the interval (0,T], as At,h — 0. The approximation uy, also satisfies the following
error estimates

k+1 k+1- 2
4 = nllo < C(HE el s + B Nl g + 7l
(3.32)

AT gl gy + 7 il ),
k+1 k+1- 2
= w0 < C (R el e + Bl s + 72t

(3.33)
k+1- 2 k+1 2
AT gl + Tl + e ).

Proof. Fort =t, —7/2=t,1/2,n=0,1,...,N, find "~/ such that

(atun—l/Zl v) + <a<un—1/2> anun—l/Z/D,U> _ <b<u”‘1/2>Du"‘1/2,v> _ <f<un—1/2>,,v>‘
(3.34)
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Subtracting the above equation from the fully discrete scheme (3.13), and substituting u} —
u" = (u} — Pyu") + (Pyu" - u™") = 0" + p" into it, we obtain the following error formulation
relating to 0" and p™:

(36",0) + (a(ity) D58, Do) - (b(iE;) DO",v)
= (a(i}) JDAT", Do) + (b(ii}) DT 0) + (872, 0) = (3L, )
+ (a(w7?) D2, Do) - (b(wV2) D2, 0) + (f (i), 0) - (£ (w/2),0)
= ~(a(i#) «D%p", Do) + { (a(w'?) JDku"2 - a(ity) JDkuw", Do) |
+ (b(iip)Dp", ) + { (b (i) D" - (b(w/*) Du"/2, Do) |

H{(ra) - £(w7),0) b+ { (3072 - By, v) |

= R1(v) + Ry(v) + R3(v) + R4(v) + R5(v) + Rg(v).

(3.35)
Setting v = 6", we obtain
<5t9",e_n) + (a(ﬁ")aD,‘ié",Dé") - (b(a")Dé",é") -
R <§") +R, (6”) +R; (é") +Ry (6") +Rs (5") +Re (5").
Note that
<5t6n@> _ <en ‘TGH, 6" +29n1> ) % (HGn”z ~ e ”2>, (3.37)
According to (3.2) and Lemma 3.2, we have
(a(i), 058", DE") > m|§”|i > c<|9"|§ +|om 2) (3.38)
From Lemma 3.3, the following inequality can be derived:
<b(ﬁ")5n,D§n> < co;!|| Db (") || §”||2 +s3||§" 2
- coey” Db | L N [ o 2 (339)

en—l en—l

a
2 7112
+caes( 11077 +

t ~n CZ n
< 35| Db (| (ne 2+

b
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Substituting (3.37)-(3.39) into (3.36) then multiplying (3.36) by 27, summing from
n=1to N, we have

012 o2 . 2 ik
o1 - ||| +TZ(2mC—2C4£3)<||9"||a+ 0" )
n=1
J -1 ~ 2 1n12 n-1 2
SZTZC3£2 IDe || (116" + ||0 (3.40)

+2TZ [Ri1(8") + Ra(8") + Rs(8") + Ra(8") + Rs (8") + Rs (€") .
We now estimate R; to R in the right hand of (3.40),

Ry (6") = (DY (a(iiy) «Dp"), «D5O")

< M(uD2p", D20 ) < M|l D%P" ||| D" |
—n2 CE o
<esfo| + 2o, 17"l (3.41)
2
_ & 5 lgn 4+ 1P
B a+ 1654 0"+ 0 a

Gn—l

< s4c6(||9"||a v

2 c7 n||2 n—-1 2
D+ Z (e e ]7)-

Secondly, we deduce the estimation of Rj,
R, (§n> = <—a(ﬁ2) aniﬁ”,Dé") + (a(u”‘1/2> aDZu""l/z,D§n>

- <<a<un_l/2> - a(ﬁZ)> D", Dé”) + <a<u"—1/2> ( aD;ﬂcu”_m—aDﬁH")),Dé")

= Ry1 + Roy,
(3.42)

where

Ry = <[a<un_1/2> - a(ﬁn)] aDgﬁ">,D§n>

< ge o) - ata ]l

1-a
< c9||a(un—1/2> _ a(ﬁn)

+es|
5 a-1

—n112

2
Dl 0

+ €
1-a 5

a

—nn2
— ~
n-1/2 un 9

< coL||lu + €5

a
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Ro = <a<un—1/2> < aDgun—l/Z_aD£En> , D§n>

< 2]|a(uw2) [opfart2- Dl

+€6|

1-a —l+a
2 2 —ny2
B P e
2||, n-1/2 _ —n||? 2 A?
<cpoM||u" e =ut|| +esc( 1075 + (|0 .
a a
(3.43)
The estimations of ||7i" — w*'/?|| and || — #"'/?||, can be derived as follows:
n-1/2
g 12 O w12 T '~ 12, U T\?2 3
- = H [ (Y o)
1/2 2
Ll w12 3T pap2 Uy 3T 3 n-1/2
—z[u 2ut + T > +O<T> -u
ty
< C11T2||utt(tn—1/2)|| < Clszf [lus (-, s)llds,
tnfl
tn tn-1/2
i —u"-1/2|| = |l f (s—tn)zutt(s)ds+f (s — 1)ty (s)ds (3.44)
tu-1/2 b1 a
tn
< cpT J‘ uy(s)ds
tn—l a
tn
<cur [ (o)l s
tn—l
tn
< cppTh* e [l16¢ ()|l 41 s
tn—]
Thirdly, it is turn to consider R3,
—Nn —~ - —n —~ —
Ry(8") = (b(i)Dp",0") <
C13 N 12 (1= ]2 1|2
< 26, PGNP s + &7 |07 (3.45)

Cl4 7
< 2 (I, + o o

: |2
+e7c1s( 107l +
1-a

b
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Next,

Ry(8") = (b(iy)Du",8") - (b(w/)Dur/2,8")

= ((v(pyDu" - b (w2 D), 0") + (b (w2 (Du" - Du"/2),8")

= Ry1 + Ry,
(3.46)
where
C16 —~ ~1/2 _n 2 —n 2
R <—“{bu —b<u” )}Du + (|0
o= 4eg ( h) 1-a 8 a
cieL || ~ “172]1% 1 p=n 12 rdl
S ey I~ | IlDw" |1, + | .
cieL |~ ~ _ . 2 _ —n2
= —412 iy — "+t - u" 1/2” ||Du"||ia + 50"
a
8 (3.47)
2 —np2
< Cl7”ﬁZ - ﬁnHZ + C17 u" - un_1/2|| + €3 971
a
~ 2 2 —np2
< c17||0" +ﬁn|| + c17||u" - u"’1/2” + €3 6”
a
~ 112 2 —n2
< C18<||9"|| + ”ﬁn”2> + 7 |[u” —u"*1/2|| + €3 6
a
Rewriting Ry, by the aid of (3.20), we have
C . B 2 —nn2
Ry < || - w1 2||" + &[0 (348)
4&'9 a
The estimation of Rs is deduced as follows:
Rs(97) < £ - £ (w2) 0"
< Llla - n-1/2 5"
< Lijuy —u
LCzo - 2 —n 2
< —= u"—u”fl/zn + £10]|0
= 4eqg 10 (3.49)
~ 2 2 —nyp2
< LC21< 0" +ﬁn“ + [|u" - u"‘1/2|| > + €10 Gn
~ 12 2 —np2
< C22<||9n|| + ”ﬁn”2> + Loy ||u" _un—1/2|| + €10 Qn
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Last, we estimate Ry,

R(8") = (0072,8") - (B, ")

= <atu"*1/2 - 5u",§n> + <5tu” - aphu",é")

3 3 3 B (3.50)
= (82 =3, 8") + (3,p",8")
< ||/ = 3 16 + || | 1671,
where
_ tn tn-1/2
Hatuml/z - ou" ” = (271) ep f (s — tn) um(s)ds + f (5 = tno1) U (s)ds
tho1/2 (]
tn
< 3T f uy(s)ds
[
ty
< C23TJ [lus: (s)llds,
b (3.51)

pn _ pn—l
T

<7t

3" f: pi(s)ds

ty tn tn
<7t f llue(s)||ds < ! J 1dsf llus(s)||ds
t,,,1 tn—l tn—l

[ ty
=jnmmzwﬁ 4e(8) a .
fn,1 tnfl

The ||6?|| should be estimated with (3.14). Let n = 1 then subtracting (3.34) from the
two equations of (3.14), respectively, one gets

(36", 0) + <a<u2> ani@l'o,Dv> - b((ug)Dél’O,v>
= —(a<u2> ani/_yl’O, Dv) - {<a<u1/2> aDéiul/2 - a(ug) aDgﬁl’O, Dv) }
+ (b(ug)Dﬁl’o,v> + { (b <ug>Dﬁ1’0 - b(u1/2>Du1/2, Dv) }

[(68) 1)) (-5

= R1(v) + Ry(v) + R3(v) + Ra(v) + R5(v) + Re(v),
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0 1,0 0 1,0
_ Uy T U, p—1 3 12\ P12 Yn T p—1
= <a< > >anp ,Dv> {<a<u )a YU a > oDy, Do

10+ u? w0+ ul?

n —1 Uy —1 1/2 1/2
b< > >Dp,v>+{<b< 5 >Du <b<u >Du ,Dv)}

10 +u? _
f<_h - ) . f<um>,v>} +{ (02 - Bl o)

= R1(v) + Ry(v) + R3(v) + Ry(v) + R5(v) + Re(v).

+

(3.52)

Setting v = ﬁ, and using the similar estimation (see (3.40)), one has

2 h "
(ca sC{rz f ||uﬁ<s>||ids+h2<’<“-“>||u||i+1+rzf e () s
to to

(3.53)
t
+Ch2(k+1)f ||ut(s)||i+1ds}.

to

Letting v = o1, applying the above result of 0, and using the similar estimation (see
(3.53)), we get

2 2 .
o' SC{T2 [ o) ds + Bl 72 [ )Pt
to fo

(3.54)
1
+Ch2(k+1)f ||ut(5)||i+1ds}-
to
Using T = N7 and Gronwall’s lemma, we get
2 > 2
1161115, = > 7l16llz- (3.55)
n=0
Hence, using the interpolation property and
11 = unlllo,q < MOMllo.q + I[P llo, (3.56)

the estimate (3.32) holds.
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Also using the interpolation property, Gronwall’s lemma, and the approximation
properties, we get

11 = tnllls0 < 1€Moo + 2]l 0

(3.57)

< max |||0"[||> + K2 |[|ul||
< max 167117 + w2,

which is just the estimate (3.33). O

4. Numerical Examples

In this section, we present the numerical results which confirm the theoretical analysis in
Section 3.

Let K denote a uniform partition on [0, a], and Sj, the space of continuous piecewise
linear functions on K, that is, k = 1.. In order to implement the Galerkin finite element
approximation, we adapt finite element discrete along the space axis, and finite difference
scheme along the time axis. We associate shape function of space X, with the standard basis of
hat functions on the uniform grid of size h = 1/n. We have the predicted rates of convergence
if the condition At = ch of

= s ~ O(H**),

(4.1)
= tnllopp ~ O(H*),
provided that the initial value ¢(x) is smooth enough.
Example 4.1. The following equation
ou 2515 x0.5
— =D(u?oD%u(x,t)) - 2x(x -1 - 2 Du - t
pn (u oDy u(x, )> x(x )<l"(2.5) F(1.5)>e u—u(x,t)
2505 405
et o - <x< <t<
we <r(1.5) r(0.5) > Osx<1 0sisl (4.2)

u(x,0)=x(x-1), 0<x<1,

u(0,t) =u(1,t) =0, 0<t<1,

has a unique solution u(x,t) = e”'x(x - 1).
If we select At = ch and note that the initial value u° is smooth enough, then we have

llu = unllo 75 ~ O<h1'25>/
(4.3)

= tnlopp ~ O(H').
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Table 1: Numerical error result for Example 4.1.

h 1 = unlo0 cvge. rate |l = uplloors cvge. rate
1/5 2.2216E-003 — 1.0213E-003 —
1/10 1.3551E-003 0.7132 6.0779E-004 0.74875
1/20 5.5865E-004 1.2784 2.3188E-004 1.3901
1/40 3.0515E-004 0.8724 1.0545E-004 1.1367
1/80 1.2423E-004 1.2964 3.9883E-005 1.4027
1/160 5.1033E-005 1.2835 2.1310E-005 0.9042

Table 1 includes numerical calculations over a regular partition of [0,1]. We can
observe the experimental rates of convergence agree with the theoretical rates for the
numerical solution.

Example 4.2. The function u(x, t) = cos(#)x?(2 - x)? solves the equation in the following form:

%—? = oD u(x,t) + b(u)Du — u[4(1 - x) + tant] + f(x,t), x€(0,2),tel0,1),
u(x,0) =x*2-x)°>, 0<x<2, (44)
u(0,6) =0, u(2,t)=0, 0<t<1,
where
Vi
b(u) = ,
) vcost
ost |24 (x2'3 +(2- x)2'3> 24<x1-3 +(2- x)1'3> 8<x0-3 +(2- x)°-3)
Fot) = s 085m) T(33) - r(23) - T(13)
(4.5)
If we select At = ch, then
[l = unllooss ~ O<h1‘15>,

(4.6)

4 = uslloop ~ O (K.

Table 2 shows the error results at different size of space grid. We can observe that the
experimental rates of convergence still support the theoretical rates.
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Table 2: Numerical error result for Example 4.2.

h 1 = unlo0 cvge. rate |l = upllooss cvge. rate
1/5 1.3010E-001 — 3.2223E-002 —
1/10 4.6402E-002 1.4878 1.4133E-002 1.1890
1/20 1.6843E-002 1.4620 6.2946E-003 1.1669
1/40 6.6019E-003 1.6843 2.8571E-003 1.1395
1/80 2.7979E-003 1.2386 1.3137E-003 1.1209
1/160 1.2665E-003 1.1434 6.0848E-004 1.1103

Table 3: Numerical error result for Example 4.3.

h llu = uplloo0 cvge. rate ||z = uplloo.ss cvge. rate
1/5 8.3052E-002 — 2.8009E-002 —
1/10 3.6038E-002 1.2045 1.0086E-002 1.4735
1/20 1.3839E-002 1.3807 3.2327E-003 1.6414
1/40 5.0631E-003 1.4507 1.1789E-003 1.4554
1/80 1.8920E-003 1.4201 5.9555E-004 0.9851
1/160 9.9899E-004 0.9214 3.0034E-004 0.9876

Example 4.3. Consider the following space-fractional differential equation with the nonhomo-
geneous boundary conditions,

ou 17 3 (* 2x03 -t
~ V It__ d = TR /q AN 7 OS Slrostslr
ot~ oDx U ) x_[O” T Tl x
u(x,0)=x% 0<x<1, (4.7)
u(0,t) =0, wu(l,t)=e", 0<t<1,
whose exact solution is u(x,t) = e~'x.
We still choose At = ch, then get the convergence rates
[l — unllooss ~ O<h1'15>/
(4.8)

= tnlopp ~ O(H7).

The numerical results are presented in Table 3 which are in line with the theoretical analysis.

5. Conclusion

In this paper, we propose a fully discrete Galerkin finite element method to solve a type
of fractional advection-diffusion equation numerically. In the temporal direction we use the
modified Crank-Nicolson method, and in the spatial direction we use the finite element
method. The error analysis is derived on the basis of fractional derivative space. The
numerical results agree with the theoretical error estimates, demonstrating that our algorithm
is feasible.
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