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By integrating the electric field integral equation and the transmission line equation, an iterative
solution for the electromagnetic field coupling to buried wires is obtained. At first we establish the
integral equationwhich the difference between solutions of the integral equation and the telegraph
equation satisfies. Then the solution of the telegraph equation is used to approximate the solution
of this integral equation. Every following step of iteration is an improvement on the transmission
line solution, and with several iterations, a well approximation to the solution of electric field
integral equation can be obtained.

1. Introduction

The electromagnetic field coupling to buried wires plays an important role in many
engineering applications, such as geophysical probes, power or communications cables, and
grounding systems (see [1–7]). The integral equation approach or transmission line (TL)
model (see [1–6]) can be used to resolve this problem. Actually the transmission line model is
an approximation of the integral equation approach. This method is very efficient for infinite
or at least very long buried wires, but if the line is of finite length, this method cannot give
an accurate solution (see [1–3]). So if the buried wires of the finite length are of interest, the
integral equation approach has to be used. However, the integral equation usually should be
resolved by numerical methods, such asmethod of moment (MoM) (see [1, 8]) and boundary
element method (BEM) (see [2–6]), which may cost much computation time for long lines.

This paper presents an iterative solution for the electromagnetic field coupling to
buried wires. At first we establish the integral equation which the difference between
solutions of the electric field integral equation and the telegraph equation satisfies. Then
the solution of the telegraph equation is used to approximate the solution of this integral
equation. By this way, the iterative solution is obtained. Taking the solution of the telegraph
equation as initial value, a satisfying result can be obtained just after several iterations.
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Figure 1: Thin wire buried in a lossy ground.

Finally, several numerical examples are presented, which indicates that the results obtained
only after several steps iteration are in good agreement with the results obtained by MoM.

Actually, the iterative method is a semianalytic method, which requires only one
integration along the line length for every space point in every step of iteration; so compared
with numerical methods, such asMoM or BEM, this method is easier to implement numerical
computation.

2. Integral Equation and Telegraph Equation of Buried Wires

Figure 1 illustrates a finite wire of length L and radius a, buried in a lossy ground at depth
d, illuminated by a plane-wave from above ground. The upper half space is free-space, the
lower half space is lossy ground, and the interface is at z = 0.

2.1. Electric Field Integral Equation

Taking into account the influence of interface via the plane-wave Fresnel reflection coefficient,
we obtained the following integral equation for the unknown current distribution induced
along the buried wire:

Eexc
x = − 1

jωε

(
d2

dx2 − γ2
)∫L

0
I
(
x′)g(x, x′)dx′, (2.1)

where ω is angular frequency of incidence plane-wave, and j is imaginary unit. ε is the
complex permittivity of the lossy ground:

ε = εrε0 − j
σ

ω
. (2.2)

εr and σ are relative permittivity and conductivity of the ground. According to the image
theory, the Green function g(x, x′) is given in [9] as

g
(
x, x′) =

e−γR1

4πR1
− Γref

e−γR2

4πR2
, (2.3)
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where γ is propagation constant of the ground:

γ =
√
jωμσ −ω2με, (2.4)

and R1, R2 are given by

R1 =
√
(x − x′)2 + a2 R2 =

√
(x − x′)2 + 4d2. (2.5)

Γref is Fresnel reflection coefficient (see [3]):

Γref =
1/n0 cos θ −

√
1/n0 − sin2θ

1/n0 cos θ +
√
1/n0 − sin2θ

,

θ = arctan
|x − x′|
2d

, n0 =
ε

ε0
.

(2.6)

The excitation electric field on the wire for normal incidence plane-wave can be expressed as
follows (see [7]):

Eexc
x = E0ΓTMe−γd, (2.7)

where ΓTM denotes Fresnel transmission coefficient at the interface (see [7]):

ΓTM =
2

1 +
√
n0

. (2.8)

2.2. Transmission Line Telegraph Equation

The transmission line telegraph equation of electromagnetic field coupling to buried wire can
be expressed as follows:

dV (x)
dx

+ZI(x) = Eexc
x ,

dI(x)
dx

+ YV (x) = 0,

(2.9)

where V (x) and I(x) are line voltage and current, andZ and Y are impedance and admittance
of the ground, respectively (see [10]),

Z =
jωμ0

2π

[
ln
(1 + γa

γa

)
+

2e−2d |γ |

4 + γ2a2

]
,

Y =
γ2

Z
.

(2.10)
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Eliminating V (x) from (2.9), we have

d2I(x)
dx2 − γ2I(x) + YEexc

x = 0. (2.11)

Actually the solution of (2.11) is an approximation of (2.1). The transmission line
telegraph equation can be resolved analytically (see [1]).

3. The Iterative Solution of Integral Equation

A simple iterative approach to correct the results obtained using TL approximation for an
overhead line of finite length is proposed in [11, 12], where two additional source terms
representing the correction to the TL approximation are added to the classical transmission
line telegrapher’s equations. Resorting to the integral equation and transmission line
telegraph equation, we will present a similar approach to obtain the iterative solution of (2.1).

Suggesting that I(x) and I0(x) are solutions of (2.1) and (2.11), and I ′(x) = I(x)−I0(x),
the integral equation which I ′(x) satisfies can be derived from (2.1) and (2.11):

Y

jωε

(
d2

dx2 − γ2
)∫L

0
I ′
(
x′)g(x, x′)dx′ =

(
d2

dx2 − γ2
)[

I0(x) − Y

jωε

∫L

0
I0
(
x′)g(x, x′)dx′

]
.

(3.1)

We can get an approximate solution of this equation as before:

(
d2

dx2 − γ2
)
I1(x) =

(
d2

dx2 − γ2
)[

I0(x) − Y

jωε

∫L

0
I0
(
x′)g(x, x′)dx′

]
. (3.2)

Repeating this process, an iterative solution can be established:

I(x) = I0(x) + I1(x) + · · ·, (3.3)

(
d2

dx2 − γ2
)
In(x) =

(
d2

dx2 − γ2
)(

In−1(x) − Y

jωε

∫L

0
In−1

(
x′)g(x, x′)dx′

)
. (3.4)

Denoting

F(x) = In−1(x) − Y

jωε

∫L

0
In−1

(
x′)g(x, x′)dx′, (3.5)

(3.4) is equivalent to

(
d2

dx2 − γ2
)
(In(x) − F(x)) = 0. (3.6)
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Figure 2: Induced current distribution along the thin wire (L = 5m). (a) Real part. (b) Image part.

The solution of this equation with boundary condition In(0) = In(L) = 0 is given by
[11]

In(x) =
F(0)e−2γL − F(L)e−γL

1 − e−2γL
eγx +

F(L)e−γL − F(0)
1 − e−2γL

e−γx + F(x). (3.7)

The convergence of the iterative solution is discussed in [13]. Since the solution of
(2.11) is an approximation of (2.1), an excellent approximation to the solution of (2.1) can be
obtained only after several iterations.

4. Numerical Results

The parameters of our example are as follows: conductor radius a = 1 cm, depth d = 2.5m, the
excitation field is a normally incident plane wave with a frequency of 50M and magnitude
E0 = 1V/m, the relative dielectric constant of the ground is εr = 10, and the ground
conductivity is σ = 0.01 S/m.

Figures 2, 3, and 4 show the real and imaginary parts of the current distribution
induced along a wire with different lengths L = 5m, L = 15m, ��� L = 25m. The results
obtained byMoM, TL, and two steps iteration are given in these figures. Evidently the results
obtained using the TL approximation are sufficient for longer wire, but it fails to give an
accurate current distribution for relatively shorter wire lengths. However the results obtained
after two-steps iteration are in good agreement with the results obtained by MoM.

Keeping other parameters as forenamed, Figure 5 shows the influence of the buried
depths to the induced current distribution for L = 5m; Figure 6 shows the influence of
the ground conductivities to the induced current distribution for L = 5m and d = 0.5m.
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Figure 3: Induced current distribution along the thin wire (L = 15m). (a) Real part. (b) Image part.
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Figure 4: Induced current distribution along the thin wire (L = 25m). (a) Real part. (b) Image part.

Obviously, induced current distribution magnitude decreases as the conductivity or buried
depth increases, which is due to the increasing of the loss.

5. Conclusion

The problem of electromagnetic coupling on the buried thin wires is analyzed with the
iterative method; the solution of the telegraph equation is used to approximate the solution
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Figure 5: Induced current distribution magnitude along the thin wire for different depths.
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Figure 6: Induced current distribution magnitude along the thin wire for different conductivities.

of the integral equation in every step of iteration. And we can usually get satisfying result by
just several iterations while taking the solution of the telegraph equation as initial value. This
method may be applied to the multiple buried thin wires.
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