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Considerable attention has been devoted to active vibration control using intelligent materials as
PZT actuators. This paper presents results on active control schemes for vibration suppression of
flexible steel cantilever beam with bonded piezoelectric actuators. The PZT patches are surface
bonded near the fixed end of flexible steel cantilever beam. The dynamic model of the flexible
steel cantilever beam is derived. Active vibration control methods: optimal PID control, strain
rate feedback control (SRF), and positive position feedback control (PPF) are investigated and
implemented using xPC Target real-time system. Experimental results demonstrate that the SRF
and PPF controls have better performance in suppressing the vibration of cantilever steel beam
than the optimal PID control.

1. Introduction

Actuators from piezoceramic materials have wide application ranging from active vibration
control to nanoscale positioning tasks. This is due to their high-frequency response behavior
and essentially infinite resolution. Because piezoelectric ceramic materials have mechanical
simplicity, small volume, light weight, large useful bandwidth, efficient conversion between
electrical energy and mechanical energy, and easy integration with various metallic and
composite structures, smart structures with surface-mounted or embedded piezoelectric
ceramic patches have received much attention in vibration control of structures in recent
years. Within the last two decades, much attention has been focused on active control of
structures to suppress their structural vibrations. Active control methods can be used to damp
out undesirable structural vibrations. Strain rate feedback (SRF) control is used for active
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damping of a flexible space structure by Newman [1]. Crawley and de Luis [2] proposed
piezoelectric materials to be built in laminated beams. Fanson and Caughey [3] carried out
feedback control to suppress structural vibration with segmented piezoelectric actuators
and sensors. Positive position feedback (PPF) [4–7] is applied by feeding the structural
position coordinate directly to the compensator, and the product of the compensator and
a scalar gain positively back to the structure. The model derivation for a vibrating beam is
described in many texts. Choi and Lee [8] presented the derivation for the modeling of a
beam with a piezoceramic actuator affixed near the base. Many approximate models have
been developed to predict the behavior of flexible beams incorporating PZT actuators [9–11].
Adaptive sliding model controller with sliding mode compensator has been developed in
[12]. Active vibration suppression of a flexible steel cantilever beam using smart materials
is proposed in [13]. Jiang et al. [14] designed a robust adaptive integral variable structure
attitude controller with application to flexible spacecraft. Qiu et al. [15] developed a discrete-
time sliding mode control to suppress vibration of the flexible plate.

In this paper, the dynamic modeling and the active vibration control scheme SRF
and PPF control for the vibration suppression of steel cantilever beam are investigated and
compared. The contribution of this paper is that the vibration control of flexible structure
using PPF and SRF are implemented with X-PC Target real-time control system. This paper
is organized as follows. In Section 2, the dynamical model of flexible structure using finite
element model is derived. In Section 3, vibration controls such as PPF and SRF-controllers
are described. Experiment results are given and analyzed in detail in Section 4. Conclusion is
summarized in Section 5.

2. Dynamical Model

The flexible beam is modeled using the finite element method. The structure is divided into
elements that are connected at a finite number of points, called nodes. The motion of the
points in the element is defined in terms of nodal displacement and interpolation functions.
Therefore, first the stiffness and mass matrices of the elements are analyzed. The elements
are assembled to determine the stiffness and mass matrices of the structure. The first three
modes might be enough to model the flexible beam if the bandwidth of the actuator is less
than the frequency of the third mode. Similarly, if the band width of the sensor is less than the
third modes, higher vibration modes will not be seen from the sensor output. In addition, a
low-pass filter or a spillover filter could be used to reduce the effect of the unmodeled modes
in the experiment and simulation. Therefore, no more than three lowest modes are significant
in the response of the appendage and thus would be considered in the simulations. In this
section, six elements were used to characterize the structure. The flexible arm was divided
into six elements and motion was considered to be inplane bending based on the cantilever
action. The system consists of 6 elements and 7 nodes (as shown in Figure 1). PZT sensors
and actuators are attached to the element 2 of the beam. The PZTs add to the beam’s stiffness
and hence increase the fundamental frequency.

The following are equations and procedure in finite element modeling. The general
relationship for the electromechanical coupling is given by

{
D3

S1

}
=

[
εT3 d31

d31 sE11

]{
E3

T1

}
, (2.1)
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Figure 1: Elemental model of the flexible beam.

where D is the displacement, S is the strain, E is the electric field, T is the stress, s is the
compliance and d is the piezoelectric constant. The subscripts are tensor notation where the
1- and 2-axes are arbitrary in the plane perpendicular to the 3-axis poling direction of the
piezoelectric material. Using the fact that the elastic constant for piezoceramic material, s, is
the inverse of its Young’s modulus Ep, (2.2) can be written as

{
D3

T1

}
=

[
εT3 − d2

31Ep d31Ep

−d31Ep Ep

]{
E3

S1

}
, (2.2)

where ε3 is the permittivity of piezoelectric material, Ep is the elastic modulus, d31 is the
piezoelectric charge coefficient, E3 is the applied field intensity.

The general form of the energy equation is

−U =
1
2
γe2 − qTBe − 1

2
qTKq, (2.3)

where

γ =
Wph

tp

(
εT3 − d2

31Ep

)
, e = tpE3,

BT =
[
b1 b2 b3 b4

]
, b1 = b3 = 0,

b2 = −b4 = −d31EpWp

(
ς +

tp

2

)
,

(2.4)

where K = kb + kp, kb is stiffness matrix for the structure, kp is stiffness matrix for the
piezoceramic, q is the generalized coordinate and B is the electromechanical coupling term
which represents the conversion of electrical voltage to mechanical displacement, Wp as
width of the piezoceramic wafer, tp is thickness of piezoceramic, ς is half of the thickness
of beam.

The total kinetic energy is given by

T =
1
2
q̇TMq̇, (2.5)

where M = Mb +Mp, and Mb is mass matrix for beam, Mp is mass matrix for PZT.
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Figure 2: Block diagram of SRF-controller.

The Lagrangian function L is

L = T −U =
1
2
q̇TMpq̇ +

1
2
γe2 − qTBe − 1

2
qTKq. (2.6)

The Lagrangian equation is

d

dt

(
∂L

∂q̇k

)
− ∂L

∂qk
= 0. (2.7)

The equation for the actuator is

Mq̈ +Kq = −Bea, (2.8)

where M = Mb +Mp and ea is applied voltage.
The piezoceramic sensor voltage output is γes = BTq. We have considered only an

element. The equation for the global form is determined by combining the equations. From
the FEMmodal analysis, there are variations of natural frequencies of beams with the bonded
actuators and sensor. Numerical results show that the bonded actuators and sensors lead to
increase in natural frequencies. The dynamic effects of mass and stiffness of the piezoelectric
patch are considered in the model procedure.

3. Vibration Control

For this research two vibration suppression methods are used, strain rate feedback control
and positive position feedback control.

3.1. Strain Rate Feedback (SRF) Control

Strain rate feedback (SRF) control is used for active damping of a flexible space structure.
Using SRF, the structural velocity coordinate is fed back to the compensator, and the
compensator position coordinate multiplied by a negative gain is fed back to the structure.
SRF has a wider active damping region and can stabilize more than one mode given a
sufficient bandwidth. In this research, the SRF is designed to control the vibration of the
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first mode. Experimental results demonstrate that the SRF method is effective in actively
increasing damping of the flexible beam with the PZT actuator. The SRF model can be
presented with the following equations:

ξ̈ + 2ζwξ̇ +w2ξ = −Gw2η, (3.1)

η̈ + 2ζCwCη̇ +wCη = w2
Cξ̇. (3.2)

Figure 2 shows SRF block diagram, where ξ is a modal coordinate of structure displacement,
ζ is the damping ratio of the structure, ω is the natural frequency of the structure, G is the
feedback gain, η is the compensator coordinate, ζc is the damping ratio of the compensator,
ωc is the natural frequency of the compensator. SRF control is implemented by feeding the
velocity coordinate to the compensator. The position coordinate of the compensator is then
fed back with a negative gain to the structure. To illustrate the operation of a SRF-controller,
assume a single degree-of-freedom vibration of the beam in the form of ξ(t) = αeiwt, and
output of compensator at steady state is

η(t) = βei(ωt+0.5π−φ), (3.3)

where phase angle φ is given by

φ = tan−1
(
2ζC

ω/ωC(
1 −ω2/ω2

C

)
)
, (3.4)

and the magnitude β is given by

β =
α√(

1 −ω2/ω2
C

)2 + (2ζC(ω/ωC))
2
. (3.5)

When the natural frequency of structure is much lower than the compensator natural
frequency the phase angle φ approaches zero.

Substituting (3.3) with φ = 0 into (3.1) results in

ξ̈ +
(
2ζw +Gβω

)
ξ̇ +w2ξ = 0. (3.6)

It is clear from (3.5) that the SRF compensator at this time results in an increase in the
damping ratio, which is called active damping. When the compensator and the structure
have the same natural frequency, the phase angle φ approaches π/2. After substituting (3.3)
with φ = π/2 into (3.1), the structural equation becomes

ξ̈ + 2ζwξ̇ +
(
w2 +Gβω2

)
ξ = 0. (3.7)

Equation (3.7) shows that the SRF compensator causes an increase in the stiffness term, which
is called active stiffness. When the compensator frequency is much lower than that of the
structure, the phase angle φ approaches π .
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Figure 3: Block diagram of PPF controller.

Substituting (3.3) with φ = π into (3.1) results in equation

ξ̈ +
(
2ζw −Gβω

)
ξ̇ +w2ξ = 0. (3.8)

It is clear from (3.8) that the effect of the SRF compensator is a decrease in the damping term,
which is referred to as active negative damping. Thus, in implementing SRF, the compensator
should be designed so the targeted frequencies are below the compensator frequencies. SRF
has a much wider active damping frequency region, which gives a designer some flexibility.
As long as the compensator frequency is greater than the structural frequency, a certain
amount of damping will be provided.

3.2. Positive Position Feedback Control

Positive Position Feedback (PPF) control was first proposed by Goh and Caughey for he
collocated sensors and actuators. Later on Fanson and Caughey demonstrated PPF control
in large space structures. The PPF control is applied by feeding the structural position
coordinate directly to the compensator and the product of the compensator and a scalar gain
positively back to the structure. PPF offers quick damping for a particular mode provided
that the modal characteristics are known. The scalar equations governing the vibration of the
structure in a single mode and the PPF controller are given as follows:

ξ̈ + 2δωζ̇ +ω2ζ = Gω2η,

η̈ + 2δcω2
cη̇ +ω2

c = ω2
cζ,

(3.9)

where ζ is a modal coordinate of structure displacement, δ is the damping ratio of the
structure, ω is the natural frequency of the structure, G is the feedback gain, η is the
compensator coordinate, δc is the damping ratio of the compensator, ωc is the natural
frequency of the compensator. The PPF control is illustrated in the block diagram as shown
in Figure 3. In PPF control, ωc should be closely matched to the natural frequency ω of the
structure in order to achieve maximum damping.
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Figure 4: Schematic diagram of real-time experimental setup for active control.

4. Experiment Results

4.1. Experiment Setup

The control objective is to show the effectiveness of various vibration suppression strategies
for a cantilever steel beam by using smart actuators. To achieve this control objective an
experiment is set up. The steel beam is cantilevered at one end and PZT actuators are bonded
to the surface of beam. One patch (model no PZTQP-20W) is bonded on one side of the beam
near the base. A strain gage (EA-φ5-125UN-350) is affixed to the beam as sensor. Figure 4
depicts the real situation experiment of a flexible cantilever steel beam. These PZT patches
are used as actuators to excite the beam and to enable active control of the beam vibration.
The strain gage is used to detect the sensor signal for the feedback of the signal in the active
control algorithms.

In general research, the control algorithm is designed in theMATLAB/SIMULINK and
then downloaded to the xPC Target digital signal processor for implementation. The xPC-
Target digital data acquisition system is used to capture the experimental data. The target
and host computer are used in the experiment. The input signals to the PZT actuators in the
experiment are amplified using voltage amplifier whose signals drive the PZT actuators and
are used to excite the beam. The sensor signals from the beam are captured using strain gage
and used for the feedback control.

In order to experimentally identify the dominant modes of the beam at which the
controller should target, open-loop testingwas performed The beamwas excited bymanually
tapping at its free end and the data was record in the xPC-target system. Because system
errors and environmental factors may influence the sensor measurements, the sensors
calibration is required before the experiment. The amplitude vibrates around −0.448 under
free conditions, so all the acquisition data should be compensated with −0.448 as the sensors
calibration. To determine the first natural frequency wn and the damping coefficient ζ, ten
pulses were selected. The damping coefficient is ζ = (1/2π(10)) ln(A1/A10) = 0.45%, where,
A1 and A10 are the amplitudes of the 1st peak and 10th peak respectively. It can be derived
that the tested frequency is about 11.1Hz and wn is about 69.78 rad/s.
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Figure 5: Effect of PID factors on control results.

4.2. PID Control

PID controller is the kind of controller of which proportional gain and derivative gain can
be determined based on desired specifications and dynamics of a plant. The optimized
parameter adjusted PID controller is widely used in vibration suppression. The turning
process can be obtained from an optimal PID control procedure. PID factors play important
roles in the control effect in this experiment setting. As shown in Figure 5(a), for a given
Kd = 0, the best Kp is 75. However, Kd also plays an important role. From Figure 5(b), once
Kd ≥ 0.02, the control effect becomes worse even theKp is taken as 75. Therefore, the optimal
combination of PID factors is required to obtain the best control result.

To determine the optimal factors combination, totally 36 different combinations of Kp

andKd were tested in the experiment, that is,Kp = 5, 15, 25, 35, 45, 55, 65, 75, and 100,Kd = 0,
0.02, 0.04 and 0.06. In all cases, the Ki is chosen as Ki = 8. To evaluate the control effect, the
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Figure 6: Vibration damping time associated withKp andKd combination. (a) vibration damping 90%; (b)
vibration damping 95%; (c) vibration damping 99%.

Table 1: Comparison of time for amplitude damping 99% between different Kp and Kd combinations.

Kd
Kp

5 15 25 35 45 55 65 75 100
0 4.952 2.483 1.560 1.151 1.001 0.857 0.799 0.681 4.936
0.02 4.972 2.427 1.509 1.181 1.006 0.829 0.766 4.999 4.704
0.04 4.988 2.404 1.485 1.573 4.994 4.965 4.608 4.294 4.999
0.06 4.998 4.953 4.846 4.999 4.998 4.999 4.998 4.999 4.999

time required for amplitude damping 99% is employed to compare control capability. Table 1
presents the control effect comparison between different Kp and Kd combinations.

The test results indicate, the best optimal combination of Kp and Kd depends on how
good we want the final vibration damping. Referring to Figure 6, apparently, if the threshold
of “vibration damping” is 10% or 5% of the initial maximum amplitude, the vibration
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Figure 7: Contour plots of vibration damping time associated withKp andKd. (a) vibration damping 90%;
(b) vibration damping 95%; (c) vibration damping 99%.

damping time decreases as increasing Kp and almost keep constant after Kp = 50 while the
influence of Kd is very tiny. However, if the threshold is 1%, Kd has some special influence.
For each value of Kd, PID control could reach 99% damping under some certain value of
Kp. For example, when Kd is 0.02, Kp is about 75. When Kd = 0.04, Kp is about 30. It can be
derived from Figure 6(c) that the value of optimalKp increases with respect to the decreasing
Kd.

To better give a look, several contour figures were presented in Figure 7. The contour
value is the time for vibration damping 90%, 95% and 99% respectively. Figure 7 obviously
indicates that, under this experimental settings, the best combination ofKp andKd locates at
0 ≤ Kd ≤ 0.02 (as shown in Figure 7(c)).

Kp and Kd are two major parameters to control the PID control mechanism. The test
results indicate, the best optimal combination of Kp and Kd depends on how good we want
the final vibration damping. Generally speaking, Kp has the dominant influence while Kd

has to be selected carefully.
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Figure 8: Experimental comparison of SRF control and PID control.
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Figure 9: Experimental comparison of PPF control and PID control.

4.3. SRF and PPF Control

The strain rate feedback control was implemented in real time on the beam using the xPC
Target system. The same low pass filter is used as in PID experiment. The mode targeted for
control was the dominant frequency of 11.1Hz. The SRF-controller-damping ratio ζc was set
at 0.5, controller frequency ωc was set at 11.1Hz which was set to the vibration frequency of
the normal specimen, and the effectiveness of the SRF-controller at various gains was tested.
The controller gain K was adjusted to be 1.1 for the consideration of maximum applicable
voltage and optimal vibration suppression result. The beam was excited by a sinusoidal
signal for 5 s in both the cases of uncontrolled and controlled vibrations. The SRF-controlled
time response compared with PID control is depicted in Figure 8. The PPF controlled
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Figure 10: Experimental comparison of SRF control and PPF control.

time response compared with PID control is depicted in Figure 9. The SRF-controlled time
response compared with PPF control is depicted in Figure 10. The experimental results
successfully demonstrated the vibration suppression of a steel cantilever steel beam using
SRF and PPF control. Moreover, SRF control is better than PPF control for this experiment.
Both SRF and PPF control have better vibration suppression result for the beam compared
with PID control. The PPF was by far the most effective control strategy; however, it is
accompanied with initial overshoot. SRF results were better than those with the PPF and
PID controllers, but the maximum damping was limited, as the system tends to be unstable
at higher gains. Design of the PPF and SRF-controller requires that the natural frequency of
the structure to be known exactly and not to vary with time, because the performance of the
PPF and SRF-controller will be adversely affected if it was different.

5. Conclusion

The optimal PID control, SRF and PPF controller are employed to actively suppress vibration
of a flexible steel cantilever beam. Suppression of the single dominant mode vibration is
carried out and the best result is obtained using SRF-controller. The optimal PID controller
and PPF controller are also effective in suppressing the vibration. Experimental results
successfully demonstrated the effectiveness of vibration suppression using the optimal PID
controller, SRF and PPF controllers.
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