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1. Introduction

Parametric curves/surfaces and implicit curves/surfaces are two important topics in
computer-aided geometry design and geometric modelling. With the parametric form, it
is easy to generate points on a general curve/surface and plot it. On the other hand, it is
convenient to determine whether a point is on, inside, or outside a given solid with the
implicit treatments.

For any rational parametric curve/surface, we can convert it into implicit form.
However, for a general parametric curve/surface, we usually cannot compute its exact
implicit form. Even though its exact implicit form can be computed, the curve/surface
implicitization always involves relatively complicated computation and the degree of the
implicit curves/surfaces is high. Another difficulty is that implicit curves/surfaces may have
unexpected components and self-intersections which lead to computational instability and
topological inconsistency in geometric modeling. All these unsatisfied properties limit the
applications of the exact implicitization (especially surface implicitization) in practical fields.

Due to these reasons, finding approximate implicitization of parametric
curves/surfaces has some practical significance. In recent years, many researches have
proposed several approaches to solve this problem [1–10]. The earlier work on approximate
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implicitization was done by Velho and Gomes [1], who presented an approximate
implicitization scheme from parametric surfaces to implicit surfaces based on wavelet
analysis. In 1999, Sederberg et al. [2] proposed an approach to solve approximate
implicitization problem by using monoid curves and surfaces. The method used by
Sederberg was made more available in Dokken’s work [3, 4]. In 2004, Chen and Deng
[6] presented the concept of interval implicitization of rational curves and developed
the corresponding effective algorithm. In 2006, Li et al. [7] considered the approximate
implicitization of planar parametric curves by using the piecewise quadratic Bézier
spline curves with G1 continuity. In 2007, Wang and wu [8] discussed the approximate
implicitization of general parametric curves based on radial basis function networks
and multiquadric (MQ) quasi-interpolation. Very recently, Wu et al. [9, 10] discussed
the approximate implicitization of parametric surfaces with the introduction of normal
constraint points based on multivariate interpolation by using compactly supported radial
basis functions, and approximate implicitization of parametric curves by using quadratic
algebraic splines.

In this paper, an algorithm is proposed to solve the approximate implicitization of
planar parametric curves using cubic Bernstein-Bézier implicit curves. Our piecewise cubic
curves are used to give a global G2 continuity approximation, because they keep the same
endpoints, the corresponding tangent directions, and curvatures at the separated points with
the approximated segments. Approximation error on rational curves is also given.

2. Cubic Bernstein-Bézier Implicit Curve

In this section, some concepts and results on Bernstein-Bézier implicit curve are presented.
For more details, the readers may refer to [11–13] and references therein.

By T := [p1p2v12] we denote a triangle with vertices p1 = (x1, y1), p2 = (x2, y2), and
v12 = (x12, y12), and by [p1p2] we denote the line passing through the points p1 and p2. If
we denote area ([v1v2v3]) as the area of triangle [v1v2v3], then the barycentric coordinates
(u, v,w) of any point p = (x, y) with respect to T are defined by

u =
area

(
p, v2, p12

)

area
(
v1, v2, p12

) , v =
area

(
v1, p, p12

)

area
(
v1, v2, p12

) , w =
area

(
v1, v2, p

)

area
(
v1, v2, p12

) . (2.1)

Thus, any point p = (x, y) with respect to T can be described as

p = up1 + vp2 +wv12, u + v +w = 1. (2.2)

The Bernstein polynomials are shown as follows:

B3
ijk(u, v,w) =

3!
i!j!k!

uivjwk, i + j + k = 3. (2.3)

When any of the following is true: i, j, k < 0 and i, j, k > 3, the Bernstein polynomial
B3
ijk
(u, v,w) is set to zero.
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Figure 1: The control points of a Bézier triangle patch of degree three.

Therefore, the Bézier triangle patch of degree three in Bernstein form is

f(u, v,w) =
∑

i+j+k=3

bijkB
3
ijk(u, v,w), (2.4)

where all bijk are called Bézier control points (see Figure 1).

Definition 2.1. Let f(u, v,w) be defined as (2.4), the cubic Bernstein-Bézier implicit curve C
on the triangle T := [p1p2v12] is defined to be the zero contour of f(u, v,w), that is,

C :=
{
(u, v,w) | f(u, v,w) = 0

}
. (2.5)

Theorem 2.2 (see [12]). The directional derivative of Bézier triangle patch at the point p = (u, v,w)
with respect to the direction α = (α1, α2, α3) is given by

Dαf(u, v,w) = 3
∑

i+j+k=2

[
α1bi+1jk + α2bij+1k + α3bijk+1

]
B2
ijk(u, v,w). (2.6)

Lemma 2.3. For the triangle T := [p1p2v12] and f(u, v,w) defined as in (2.4), if b300 = b201 = 0,
then the curve C passes through p1 and is tangent with the line [p1v12] at p1. Similarly, if b030 =
b021 = 0, then C passes through p2 and is tangent with the line [p2v12] at p2.

Proof. Since the barycentric coordinate of p1 and direction [p1v12] with respect to the triangle
T := [p1p2v12] is (1, 0, 0) and (1, 0,−1), respectively. Then the curve C passes through p1 and
is tangent with the line [p1v12] at p1 if and only if f(1, 0, 0) = 0 and D(1,0,−1)f(1, 0, 0) = 0. Thus,
we get b300 = b201 = 0 with Theorem 2.2. The later of this lemma can be proved similarly.

Lemma 2.4. Let f(u, v,w) be defined as (2.4). Its curvature of C at p1 is given by

κ1 =
∣∣∣∣
b102

b210

∣∣∣∣μ1, where μ1 = 2

∣∣(x2 − x1)
(
y12 − y1

) − (
y2 − y1

)
(x12 − x1)

∣∣
(
(x12 − x1)2 +

(
y12 − y1

)2
)3/2

. (2.7)
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Similarly, its curvature of C at p2 is given by

κ2 =
∣
∣
∣
∣
b012

b120

∣
∣
∣
∣μ2, where μ2 = 2

∣
∣(x1 − x2)

(
y12 − y2

) − (
y1 − y2

)
(x12 − x2)

∣
∣

(
(x12 − x2)2 +

(
y12 − y2

)2
)3/2

. (2.8)

Proof. It can be derived from the curvature formula [14] of implicit curves:

κ = −

(−fy, fx
)
(

fxx fxy

fyx fyy

)( −fy
fx

)

(
f2
x + f2

y

)3/2
, (2.9)

where fx = (∂f/∂u)(∂u/∂x)+(∂f/∂v)(∂v/∂x)+(∂f/∂w)(∂w/∂x) and the other expressions
can be understood similarly.

If the equation of cubic Bézier curve f(u, v,w) in the triangle T := [p1p2v12] is
expressed in the form of

f(u, v,w) = b2103u2v + b1203uv2 + b1116uvw − κ1

μ1
b2103uw2 − κ2

μ2
b1203vw2 −w3, (2.10)

with the restrictions of b210 > 0 and b120 > 0, then from Lemmas 2.1 and 2.2, we can easily
have the following.

Proposition 2.5. For the triangle T := [p1p2v12] and f(u, v,w) is defined as (2.10), then the curve
C := {(u, v,w) | f(u, v,w) = 0} has the following properties:

(i) C passes through the points p1 and p2.,

(ii) C is tangent with line [p1v12] at p1, and tangent with line [p2v12] at p2, respectively,

(iii) the curvatures of C at the points p1 and p2 are κ1 and κ2, respectively.

The following result is due to Xu et al. [13].

Proposition 2.6. For the triangle T := [p1p2v12] and let f(u, v,w) be defined as in (2.10), then
the curve C is D1([p1p2v12], v12, p1p2)-regular, that is, the straight lines that passes through v12 and
the point on the line [p1p2] intersecting the curve C exactly once in the interior of the triangle T .
Moreover, C has an arc from p1 to p2, no inflection point or singular point in the interior of T , and
convex inside the triangle.

It is noted out that our constructed cubic algebraic curve (2.10) is coincided with the
reduced form in [15, 16], where they use them to construct a family of G1 and G2 continuous
algebraic splines.

3. Approximate Implicitization of Parametric Curves

Given a planar parametric curve C(t) = (x(t), y(t)), t ∈ [0, 1], where x(t) and y(t) are
arbitrary functions, such as trigonometric and exponential functions.
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3.1. Curve Segments

In order to solve the approximate implicitization problem using cubic algebraic splines, a
basic problem is how to divide the planar parametric curves into several segments. Some
concepts and definitions are reviewed. For more details, the readers may refer to [7].

A natural idea is to divide the parametric curve into several curve segments possessing
relatively good shape, separated by the following three types of critical points.

(i) A point C(t0) is called a cusp point of parametric curve C(t) if x′(t0) = y′(t0) = 0.

(ii) A point C(t0) is called an inflection point of C(t) if x′(t0)y′′(t0)−x′′(t0)y′(t0) = 0 and
x′(t0)/= 0.

(iii) A point C(t0) is called a vertical point of C(t) if x′(t0) = 0 and y′(t0)/= 0.

A parametric curve C(t) is called normal if it has a finite number of critical points and
at each critical point the tangent direction can be defined as follows.

(1) If C(t0) is not a cusp point, then the tangent direction is (x′(t0), y′(t0)).

(2) If C(t0) is a cusp point, we assume that s− = limt→ t0−y
′(t)/x′(t) and s+ =

limt→ t0+y
′(t)/x′(t). If s−(s+) is a finite number, we define T− = (1, s−)(T+ = (1, s+)).

If s−(s+) approaches to infinity, we define T− = (0, 1)(T+ = (0, 1)), where T− and T+
are called the left and right tangent directions of point C(t0).

Let p0 be a cusp point, and let T− and T+ be the left and right tangent directions. Then
the lines passing through p0 and with directions T− and T+ are called the left tangent line and
right tangent line of C(t) at the point p0, respectively.

A curve segment C(t) = (x(t), y(t)), t ∈ [t1, t2] is said to be triangle convex if the
left tangent line and right tangent line meet at v12 and the line segment p1p2 and the curve
segment C(t), t ∈ [t1, t2] form a convex region inside the triangle [p1p2v12].

For any parametric curve C(t), its curvature formula at any regular point C(t) is given
by

κ(t) =

∣∣x′(t)y′′(t) − x′′(t)y′(t)
∣∣

(
x′(t)2 + y′(t)2

)3/2
. (3.1)

The curvature at each critical point can be defined as follows.

(1) If p0 = C(t0) is a vertical point, then its curvature is κ(t0).

(2) If p0 = C(t0) is a cusp point, we assume κ− = limt→ t0−0κ(t) and κ+ = limt→ t0+0κ(t),
where κ− and κ+ are called the left and right curvatures of the curve C(t) at the
point p0.

(3) If p0 = C(t0) is an inflection point, then its curvature is zero.

Throughout this paper, we directly adopt the dividing algorithm in [7] to divide the
input normal parametric curve into several triangle convex segments, separated by the above
three types of critical points.
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Figure 2: Curve segment C(t), t ∈ [ti, ti+1] is approximated by using Ci

3.2. Segments Approximation

Let ti, i = 0, 1, . . . , n be the parametric values corresponding to the separated points and two
endpoints. For each i, i = 0, 1, . . . , n − 1, let vi,i+1 = (xi,i+1, yi,i+1) be the intersection point of the
right tangent line at pi = (x(ti), y(ti)) and the left tangent line at pi+1 = (x(ti+1), y(ti+1)). Here,
all the triangles [pipi+1vi,i+1], i = 0, 1, . . . , n − 1, are called the control triangles of C(t).

Next, we show how to approximate each curve segment C(t), t ∈ [ti, ti+1] in its control
triangle [pipi+1vi,i+1] by using a cubic Bernstein-Bézier implicit curve Ci = {(ui, vi,wi) |
f(ui, vi,wi) = 0} (see Figure 2). Here, f(ui, vi,wi) is assumed to be

f(ui, vi,wi) = b
(i)
2103u2

i vi + b
(i)
1203uiv2

i + b
(i)
1116uiviwi − κ1

μ1
b
(i)
2103uiw2

i −
κ2

μ2
b
(i)
1203viw2

i −w3
i ,

(3.2)

where (ui, vi,wi) are the barycentric coordinates with respect to the triangle [pipi+1vi,i+1].
The remaining three free parameters b(i)210, b

(i)
120, and b

(i)
111 in (3.2) can be determined by

the following optimization problem:

minH
(
b
(i)
210, b

(i)
120, b

(i)
111

)
, where H

(
b
(i)
210, b

(i)
120, b

(i)
111

)
=
∫ ti+1

ti

(
f(ui(t), vi(t), wi(t))

)2
dt,

(3.3)

under the constraints b(i)210 > 0 and b
(i)
120 > 0.

Here, (ui(t), vi(t), wi(t)) are the barycentric coordinates of the point p = (x(t), y(t))
with respect to the triangle [pipi+1vi,i+1], they are univariate functions in variable t. So, by
Gi(t), we denote Gi(t) = f(ui(t), vi(t), wi(t)).

The integral involves complicated computations and can be evaluated by numerical
method such as Gaussian quadrature [17].

Proposition 3.1 (see [17]). Let xk, k = 1, 2, . . . , n be the zeros of the orthogonal polynomial Legendre
Pn(x) = (1/znn!)(dn/dxn)(x2 − 1)n and let Ak = 2/((1 − x2

k)[P
′
n(xk)]

2), k = 1, 2, . . . , n, be the
corresponding weights related to Ln(x). Then the quadrature formula

∫1

−1
f(x)dx =

n∑

k=1

Akf(xk) (3.4)

of this type has algebraic accuracy 2n + 1.
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Any other interval [ti, ti+1] of integration must be transformed into the standard
interval [−1, 1]. From now on, we let y = (1/2)[(ti+1 − ti)x + (ti + ti+1)] and x ∈ [−1, 1] is
transformed into y ∈ [ti, ti+1]. Therefore, the numerical integration that we wish to minimize
in (3.3) can be reduced:

H
(
b
(i)
210, b

(i)
120, b

(i)
111

)
=
∫ ti+1

ti

Gi(t)2dt =
ti+1 − ti

2

N∑

k=1

AkGi

(
yk

)2
, (3.5)

where yk = (1/2)[(ti+1 − ti)xk + (ti + ti+1)], k = 1, 2, . . . , n.

3.3. Approximation Error

Given the rational parametric curve segment,

C(t) =
(
x(t)
w(t)

,
y(t)
w(t)

)
, t ∈ [ti, ti+1], (3.6)

where x(t), y(t), w(t) are polynomials.
Suppose its approximated curve in the interior of its control triangle [pipi+1v12] is

Ci = {(u, v,w) | si(u, v,w) = 0}. (3.7)

In this section, we will discuss the approximation error between C(t), t ∈ [ti, ti+1] and Ci.
Let (ui(t), vi(t), wi(t)) be the barycentric coordinates of the point p = (x(t)/w(t),

y(t)/w(t)) with respect to the triangle [pipi+1vi,i+1]. The approximation error is defined by

E(si) = max
ti<t<ti+1

|Ei(t)|, Ei(t) = si(ui(t), vi(t), wi(t)). (3.8)

Here |si(ui(t), vi(t), wi(t))| denotes the algebraic distance between the point p =
C(t), t ∈ (ti, ti+1) and its approximated curve Ci.

Theorem 3.2. With the above notations,

E(si) ≤Mh4
i , hi = ti+1 − ti, (3.9)

whereM is a positive number.

Proof. Obviously, we have

Ei(t) = si(ui(t), vi(t), wi(t)) =
Gi(t)

w(t)3
, t ∈ [ti, ti+1]. (3.10)
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Since Ci interpolates the two endpoints pi = C(ti) and pi+1 = C(ti+1), and keeps tangent
directions at them, then it follows easily that

Ei(ti) = Ei(ti+1) = 0, E′
i(ti) = E

′
i(ti+1) = 0. (3.11)

This fact is equal to Gi(ti) = Gi(ti+1) = 0 and G′
i(ti) = G

′
i(ti+1) = 0. It yields

Gi(t) = (t − ti)2(t − ti+1)2ri(t). (3.12)

If we let hi = ti+1 − ti, then maxti<t<ti+1(t − ti)2(t − ti+1)
2 = h4

i /4 from simple computation.
Thus, if we set

max
ti≤t≤ti+1

ri(t)

w(t)3
= 4M, (3.13)

then E(si) = maxti<t<ti+1 |Ei(t)| ≤Mh4
i . This completes the proof.

Theorem 3.3. With the above proposed method, one obtains a piecewiseG2 continuous cubic algebraic
curve which keeps the convexity of the original normal curve.

Proof. TheG2 continuity of the piecewise cubic approximate splines is a direct consequence of
the fact that the cubic algebraic curves have the same tangent directions and curvature with
the original curve. Furthermore, the curve is divided into triangle convex segments and the
cubic curve segments are convex with no inflection points, which also keep the convexity of
the curve.

3.4. Main algorithm

The algorithm of approximate implicitization for planar parametric curves using a cubic
algebraic spline is outlined in what follows.

Algorithm 3.4. Approximate implicitization using cubic algrbraic spline.

Input: A normal parametric curve C(t) = (x(t), y(t)), t ∈ [0, 1], and a sufficiently small
positive number ε.

Output: A cubic algebraic spline C = {(u, v,w) | s(u, v,w) = 0} satisfying each E(si) < ε.

Step 1: Divide the normal parametric curve into several triangle convex segments using the
dividing algorithm [7]. Let ti, i = 0, 1, . . . , n be the parametric values corresponding
to the critical points and two endpoints. For each i = 0, 1, . . . , n, compute the left
and right directions Ti− and Ti+, left and right curvatures κi− and κi+ at C(ti).

Step 2: On each interval [ti, ti+1], i = 0, 1, . . . , n − 1, perform the optimization problem (3.3)
to compute the cubic curve segment Ci = {(ui, vi,wi) | si(ui, vi,wi) = 0}.

Step 3: If E(si) > ε, then we subdivide the interval [ti, ti+1] and repeat Step 2 on each
subinterval.
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(a) (b)

Figure 3: C1(t) and its approximate cubic algebraic splines.

Table 1: Approximation error of curve C1(t).

s1 s2 s11 s12 s21 s22

t (−1, 0) (0, 1) (−1,−0.5) (−0.5, 0) (0,0.5) (0.5,1)
Error 0.041 0.023 0.009 0.016 0.014 0.004

4. Numerical Examples

In this section, some numerical examples are provided to illustrate that the proposed
approximate implicitization method is flexible and effective.

Example 4.1. Consider the following curves from [6, 7]:

C1(t) =
(

5t3 + 2t2, t4 − 3t3 + 2t2
)
,

C2(t) =

(
−5t − 100t2 + 250t3 − 240t4 + 87t5

−1 − 30t2 + 80t3 − 75t4 + 25t5
,
−5t − 60t2 + 150t3 − 120t4 + 35t5

−1 − 30t2 + 80t3 − 75t4 + 25t5

)

,

C3(t) =
(

sin(2t) + ln
(

5t4 + 2
)
+ 3t2, 3et

2−1 + cos
(
t

5

)
+ 2t7

)
.

(4.1)

The parameters for curves of C1(t), C2(t), and C3(t) take values in [−1, 1], [0, 1], and [−1, 1].
Their approximate cubic algebraic splines are shown in Figures 3, 4, and 5 and their
approximation errors are listed in Tables 1, 2, and 3.

In the following figures, we simultaneously give the original parametric curves, the
cubic algebraic splines, and the separated points, denoted by black line, red line, and black
dots, respectively. By s1 and s2, we denote the two segments in the left picture of Figure 3.
By s11 and s12, we denote the two segments of which s1 is subdivided in Figure 3(b). Other
notations can be understood similarly.
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(a) (b)

Figure 4: C2(t) and its approximate cubic algebraic splines.

Table 2: Approximation error of curve C2(t).

s1 s2 s3 s11 s12

t (0,0.6) (0.6,0.8) (0.8,1) (0,0.3) (0.3,0.6)
Error 0.047 0.004 0.039 0.006 0.018

Table 3: Approximation error of curve C3(t).

s1 s2 s3 s4 s21 s22 s31 s32

t (−1,−0.8) (−0.8,−0.26) (−0.26, 0.7) (0.7, 1) (−0.8,−0.6) (−0.6,−0.26) (−0.26, 0.4) (0.4,0.7)
Error 0.035 0.043 0.034 0.073 0.008 0.012 0.013 0.009

We list the exact implicit form of the first two curves with Gröbner bases method as
gi(x, y) = 0, i = 1, 2. Whereas, curve C3(t) does not have an exact implicit form.

g1
(
x, y

)
= 336x2 − 55x3 + x4 − 672xy − 683x2y + 336y2 − 1325xy2 − 625y3,

g2
(
x, y

)
= 608755200000x − 3333251200000x2 + 1480428000000x3 − 249967600000x4

+ 14475896875x5 − 608755200000y + 9279481600000xy − 2693703200000x2y

+ 373486700000x3y − 18653234375x4y − 6920238720000y2 − 1644719360000xy2

+ 108348060000x2y2 + 6461128750x3y2 + 3839471936000y3 + 507225156000xy3

− 55873524750x2y3 − 1083739330400y4 + 6038594775xy4 + 87948048293y5.

(4.2)

With comparison to the expressions of exact implicitization, we also list the implicit
forms of the two approximate segments for C1(t) in Figure 3(a) as follows:

s1
(
x, y

)
= −1.001x + 0.321x2 − 0.211x3 + 1.001y − 2.676xy + 0.284x2y

− 1.891y2 + 0.939xy2 + 0.409y3,

s2
(
x, y

)
= 0.464x − 0.101x2 + 0.005x3 − 0.464y + 0.252xy − 0.111x2y

− 2.118y2 − 4.625xy2 − 12.972y3.

(4.3)
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(a) (b)

Figure 5: C3(t) and its approximate cubic algebraic splines.

5. Conclusion

We have described an algorithm to solve approximate implicitization of planar parametric
curves using piecewise cubic algebraic splines. With the proposed algorithm, we obtain a
global G2 continuous cubic algebraic spline which keeps the direction, the curvature, and the
convexity of the original normal parametric curve with simple computation. The proposed
method is flexible and effective from the numerical examples.

However, the proposed algorithm is hard to be generalized to solve approximate
implicitization of parametric surfaces directly. Therefore, the problem on approximate
implicitization of parametric surfaces by algebraic spline surfaces remains to be our future
work.
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