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We present a novel variation of the vehicle routing problem (VRP). Single commodity cargo
with pickup and delivery service is considered. Customers are labeled as either cargo sink or
cargo source, depending on their pickup or delivery demand. This problem is called a single
commodity vehicle routing problem with pickup and delivery service (1-VRPPD). 1-VRPPD deals
with multiple vehicles and is the same as the single-commodity traveling salesman problem (1-
PDTSP) when the number of vehicles is equal to 1. Since 1-VRPPD specializes VRP, it isNP hard
in the strong sense. Iterative modified simulated annealing (IMSA) is presented along with greedy
random-based initial solution algorithm. IMSA provides a good approximation to the global
optimum in a large search space. Experiment is done for the instances with different number of
customers and their demands. With respect to average values of IMSA execution times, proposed
method is appropriate for practical applications.
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1. Introduction

In this paper, we consider a real-world problem with a loaded vehicle (the term capacitated
vehicle is also used in the literature). The vehicle is available for pickup and delivery service.
Single-commodity cargo, that is, same cargo type, is present at the customer sites. The vehicle
is able to carry out a Pickup and delivery service of such cargo among the customers.
By starting and ending at the origin depot, the vehicle follows a route without having a
predefined sequence of Pickup and delivery services. This problem is called a one-commodity
vehicle routing problem (1-VRPPD). The main feature of 1-VRPPD is that delivery customers
can be served with a cargo gathered from Pickup customers. This problem was first defined
in [1] as a one-commodity Pickup and delivery traveling salesman problem (1-PDTSP), which is the
same as 1-VRPPD, when the number of vehicles is equal to 1. Although, 1-VRPPD deals with
multiple vehicles, in this paper we consider a single vehicle. In order to solve this problem,
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the main task of our route planner is to calculate a single suboptimal vehicle route, which
starts and ends at the origin depot and satisfies capacity constraints, minimizing the travel
distance at the same time. For the first time iterative modified simulated annealing (IMSA)
is used to solve this combinatorial optimization problem. In general, the VRP problem and
its variations are NP hard. 1-VRPPD is NP hard problem in the strong sense since it
specializes VRP. The main VRP feature that differs from traveling salesman problem (TSP)
is vehicle capacity constraint. Experimental results given by IMSA confirm that complexity
of VRP depends on the vehicle capacity. When the capacity tends to infinity, VRP tends to
TSP.

The organization of this paper is as follows. In Section 2, we discuss several variations
of VPR: the open VRP (OVRP), the distance-constrained capacitated VRP (DCVRP), the VRP
with backhauling (VRPB), the VRP with simultaneous Pickup and delivery (VRPSPD),
and several Hybrid variations of VRP, since they are most similar to 1-VRPPD. Section 3
deals with problem and model definition. Solution to the problem and its implementation
are provided in Section 4. In Section 5 we describe our simulation environment, as well
as its input and output parameters. Solution performance is illustrated in Section 6 with
experimental results.

2. Related work

According to [2], over the last 30 years, less than 10% of the VRP research was devoted to
problems where vehicles have two stages, that is, where vehicles are able to Pickup and
deliver. The vehicle routing problem with Pickup and delivery is not explored nearly as much
as the other variants of the vehicle routing problem.

Recently, [3] described a practical example of heuristics applied on VRP resulting in
the transport network operational cost savings of 10% for Melbourne mail distribution at
Australia Post. A hybrid genetic algorithm was used to solve VRP in [4] providing better
solutions than those obtained using other genetic algorithms.

The vehicle routing problem with backhauling (VRPB) considers a vehicle servicing all
delivery (Linehaul) customers with cargo loaded at the depot, followed by Pickup (Backhaul)
customer services. Practical applications of this VRP variation are found in grocery industry.
A memetic algorithm was used in [5] to solve VRPB. In [6], the authors present a new tabu
search algorithm that starts from pseudo-lower bounds and is able to match almost all the
best published solutions and find many new solutions.

The vehicle routing problem with simultaneous Pickup and delivery (VRPSPD) was
introduced in 1989 by Min [7]. It considers both Pickup and delivery service at each customer,
while each collected cargo must be returned to the origin depot. This problem is present in
milk bottles transporting while empty ones must be returned to the origin depot. A tabu
search algorithm, with and without maximum distance constraints, was recently developed
in [8] to solve VRP-SPD.

The main difference between VRPB, VRPSPD, and 1-VRPPD is that in 1-VRPPD cargo
picked up from Pickup customers can be delivered to delivery customers. In 1-VRPPD, the
predefined sequence of servicing customers is not a constraint.

The distance-constrained capacitated vehicle routing problem (DCVRP) with a flexible
assignment of start and end depots is proposed in [9] and solved by means of a heuristic
algorithm on the network model.

The open vehicle routing problem (OVRP) considers solving a problem similar to VRP.
The difference is that the OVRP route ends when the last customer is served, that is,
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after servicing customers the vehicle does not return to the depot. An overview of OVRP
algorithms is provided in [10]. A heuristic algorithm applied in [11] is comparable in terms
of solution quality to the best performing published heuristics. Practical applications of OVRP
are in home delivery of packages and newspapers with third-party contractors who use their
own vehicles and do not return to the depot.

Hybrid variations of VRP with Pickup and delivery service have also been present
in literature. A hybrid variation of VRP is considered in [12] and it is used for blood
transportation in health care, where the vehicle route consists of the following sequence:
delivery only, simultaneous Pickup and delivery, Pickup only. The proposed genetic algorithm
(GA) called CLOVES solves the problem in four steps.

The 1-PDTSP, defined in [1, 13], is solved with a branch-and-cut algorithm. A special
case of the 1-PDTSP, when vehicle capacity is either 1 or∞ and customers’ demands are either
+1 or –1, was defined in [14] and solved for a path and a tree graph topology.

Practical applications of 1-VRPPD are found in the transport of material of the same
type where delivery customers correspond to cargo sinks and Pickup customers correspond
to cargo sources. That is the case in transportation of gas, earth, sand, eggs, money, and so
forth. In such a way, some customers produce goods while others demand those goods.

In this paper, we present a scenario with an employee utilizing our VRP application. In
order to find a feasible suboptimal vehicle route, the user imports customer’s coordinates and
demands, and runs the IMSA algorithm. Via graphical user interface, described in Section 4,
the user can select one part of the resulting route in order to find a shorter route.

In this paper, we explore the benefits of solving 1-VRPPD with simulated annealing
and its variations.

3. Problem and model definition

Let G be a complete graph, V = {v0, . . . , vn} a vertex set, E = {{vi, vj} : vi, vj ∈ V }
an edge set, A = {(vi, vj) : vi, vj ∈ V } an arc set. G has dual, directed and undirected,
representations, as Figure 1 illustrates. Vertices vi, i ∈ {1, . . . , n} correspond to the customers
and vertex v0 corresponds to the depot vertex. Arc a ∈ A with start in vi and end in vj is
denoted by (vi, vj). Non-negative cost cij is associated with each edge e = {vi, vj} ∈ E that
corresponds to the travel distance between two vertices vi and vj . Also, a binary number
xe ∈ { 0, 1 } is assigned to e, where 1 represent visited edge and 0 represents unvisited
edge. Thus, cost matrix c is symmetric, having the same cost in both directions, that is,
cij = cji ∀vi, vj ∈ V . The use of loop edges is not allowed, that is, cii = +∞ ∀vi ∈
V .

Customer demand qi > 0 indicates cargo that needs to be delivered, that is, the
customer requires delivery service. Customer demand qi ≤ 0 indicates cargo that needs to
be collected, that is, the customer requires a Pickup service. When qi = 0, Pickup service is
considered in order to visit the costumer.

For a given vertex set S ⊆ V , let q(S) =
∑

i∈Sqi denote the total demand of the set.
Let δ(S) and E(S) denote the set of edges e ∈ E that have only one or both endpoints in S
respectively.

Let δ+(S) := {(vi, vj) ∈ A : vi ∈ S, vj /∈S}, ∀S ⊂ V , denote the set of vertices j directly
reachable from vertex i. Let δ−(S) := {(vi, vj) ∈ A : vi /∈S, vj ∈ S}, ∀S ⊂ V , denote the set of
vertices j from which vertex i is directly reachable. Let δ(S) := {{vi, vj} ∈ E : vi ∈ S, vj /∈S},
∀S ⊂ V , denote the set of vertices j directly reachable from vertex i. δ+(S) and δ−(S) are given
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with respect to A, while δ(S) is given with respect to E. To ensure cargo conservation let the
depot cargo

q0 = −
i=n∑

i=1

qi, (3.1)

and let

K =
∑

∀vi∈V :qi>0

qi = −
∑

∀vi∈V :qi≤ 0

qi. (3.2)

A vehicle with a fixed positive vehicle capacity Q is available at the depot. To ensure
feasibility, it is assumed that vehicle cargo qi ∈ [0, Q] is a positive whole number and never
exceeds its maximal value. An example of this model is illustrated in Figure 2.

Bearing in mind the aforementioned, a mathematical formulation of 1-VRPPD can be
defined as

Minimize
∑

e∈E
cexe (3.3)

subject to
∑

e∈δ(vi)
xe = 2 ∀vi ∈ V, (3.4)

∑

e∈δ(S)
xe ≥ 2 ∀S ⊆ V \ {v0}, (3.5)

∑

e∈δ(v0)

xe ≤ 2M, (3.6)
∑

a∈δ+(vi)
ga −

∑

a∈δ−(vi)
ga = qi ∀vi ∈ V, (3.7)

0 ≤ ga ≤
Q

2
xe ∀a ∈ A, ∀e ∈ E, (3.8)

xe ∈ {0, 1} ∀e ∈ E. (3.9)

Equation (3.4) ensures that Hamiltonian cycle exists. With (3.5) a vehicle is forced to visit
and leave all customers along the route. (3.6) ensures that at least one of M vehicles visits
and leaves depot vertex. (3.7) describes the flow of Pickup and delivery commodities,
respectively. It ensures that cargo demands are appropriately cared for, that is, the cargo is
gathered or delivered in its entirety. (3.8) ensures that vehicle capacity value is never less
than zero and that it never exceeds its maximal value. It defines a feasible 1-VRPPD route,
where ga is a continuous variable that has mathematical meaning of a vehicle load going
through an arc a. (3.9) represents xe as a binary type variable assigned to e whose value is 1
if e is visited and 0 otherwise.

In this section, the 1-VRPPD model is presented as a combination of a generic VRP
model described in [15] and added vehicle capacity constraints. References [1, 5, 13] describe
similar VRP models with Pickup and delivery services.
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Figure 1: Dual, directed and undirected, graph representation.

Origin depot

Pick-up customer

Delivery customer

Vehicle route

Figure 2: Vehicle routes of the one-commodity vehicle routing problem with Pickup and delivery (1-
VRPPD).

4. Proposed solution and implementation

Iterative modified simulated annealing (IMSA) algorithm is a heuristic algorithm with
iterative approach strategy used for solving combinatorial optimization problems. IMSA and
exact permutation algorithm (EPA) are used to solve the 1-VRPPDNP hard problem.

In this section, we describe the implementation of IMSA algorithm. The number of
nodes, that is, customers, is denoted by n. The number of vehicles M is 1.

4.1. Exact permutation algorithm (EPA)

For the purpose of improving the optimal route length for small graph instances in which
the number of nodes is n ≤ 15, we use Exact Permutation Algorithm (EPA). Instances with
graphs, which have more than 15 nodes, are not practical and solving EPA for an arbitrary
n is impossible. Its computational complexity is O(n!), therefore, it cannot be enumerated
in polynomial time. EPA represents the Exeter’s permutation algorithm described in [16].
EPA is used for improving existing solution via interactive graphical user interface (GUI).
Implementation of EPA is depicted at the end of Section 5.

4.2. Simulated annealing (SA)

Simulated annealing (SA) was first described in [17]. SA is a heuristic algorithm used
for solving global optimization problems [13, 15]. In the beginning of the algorithm, at
high temperature T, SA acts as a random algorithm. Subsequently, the current feasible
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1. lnitialize(nCountsmax, nChangesmax, Tstart, Tend, B, L, α)
2. x = lnitialSolution( );
3. while (Feasible(x) == FALSE )
4. x = InitialSoiution( );
5. minDist = Dist(x);
6. for (nCounts = nCountsmax; nCounts > 0; nCounts ··)
7. for (nChanges = nChangesmax; nChanges > 0; nChanges ··)
8. for ( k = 0,T = Tstart; ((k < B)&& (T > Tend)); k ++, T = T/α)
9. for (z = 0; z < L; z ++)
10. y = RandomNeighborSequence(x, nChanges);
11. if (Feasible(y)== TRUE)
12. Δ = minDist − Dist(y);
13. if ((p = exp(Δ/T)) > 1.0)
14. p = 1.0;
15. if (RandomNumber([0,1]) <= p)
16. if (Δ > 0)
17. x = y;
18. minDist = Dist(x);

Algorithm 1: (IMSA) algorithm.

solution X changes to another feasible neighbor solution Y in a very random way. In our
implementation, neighbor feasible solution Y is created with nSAChanges random feasible
substitutions made on current feasible solution X. In this work, we consider nSAChanges =
2
√
n. As system anneals proportionally with the number of iteration ϑ, the algorithm becomes

more deterministic. Criterion, which increases algorithm determinism, as ϑ growths and
T falls, is the main part of the SA algorithm and is defined with temperature-probability
function f(Δ) (4.1).

f(Δ) =

{
1, if Δ ≥ 0,
eΔ/Tϑ , if Δ < 0,

(4.1)

where Δ = RouteLength(X)-RouteLength(Y ) is the amplitude defined with the difference
between route lengths of X and Y. Notation Tϑ ∈ [Tstart, Tend] represents the current
temperature at iteration ϑ. Temperature Tϑ falls linearly from Tstart to Tend as ϑ growths.
Temperature-probability function f(Δ) results with continuous probability [0, 1] for rejecting
new solutions. When Δ ≥ 0, the current feasible solution X is replaced with better feasible
solution Y. Otherwise, random number r ∈ [0, 1] is generated and compared with f(Δ). If
r ≥ f(Δ), new feasible solution Y is rejected and the current solution X remains unchanged.
If r < f(Δ), then the current feasible solution X with shorter route length is replaced with
feasible solution Y with longer route length. Occasional acceptance of a solution that leads to
a longer route prevents the algorithm from becoming stuck in a local minimum.

4.3. Modified simulated annealing (MSA)

Modified simulated annealing (MSA) algorithm inherits features of SA algorithm with a
difference in creating neighbor solutions Y. MSA deals with multiple feasible neighbor
solutions Y made from the current feasible solution X. Neighbor solutions Y are created
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Table 1: Parameters of implemented algorithms.

Method SA MSA IMSA
nSAChanges 2

√
n — —

nChangesmax — 2
√
n 2

√
n

nCountsmax 1 1 100

in MSA nChangesmax inner iterations, at the same temperature Tϑ, by making nChangesmax
random substitutions on X. At the current temperature Tϑ, the first inner iteration provides
Y made with 1 random substitution over X. The second inner iteration provides another Y
made with 2 substitutions over X. The last, nChangesmax iteration provides another Y created
from X by making nChangesmax substitutions over X. In accordance with SA algorithm, at the
same temperature more neighbor solutions Y are created with MSA algorithm. The current
solution X is changed accordingly with the SA algorithm, for all Y solutions.

4.4. Iterated modified simulated annealing (IMSA)

(IMSA) is a heuristic algorithm. IMSA algorithm inherits features of MSA algorithm. In order
to find better solution, IMSA algorithm has outer loop in which MSA repeats nCountsmax

times. Chances for finding a better optimum are higher when the execution time needed
for finding suboptimal solution is longer or the number of iterations is greater. Algorithm 1
illustrates IMSA algorithm.

Functions used in IMSA algorithm, shown in Algorithm 1, are:

Initialize: sets parameters to their default user defined values.

InitialSolution: returns an initial feasible route.

Feasible: returns TRUE if the route is feasible, otherwise returns FALSE.

Dist: returns route length.

RandomNeighborSequence: returns neighbor sequence Y that differs from the current
sequence X on nChanges made.

RandomNumber: returns a real number for a given interval.

InitialSolution is based on Greedy-random sequence (GRS) algorithm. In order to create an
initial solution, GRS starts from the start node, also denoted as current node. From current
node, all unvisited neighbor nodes, denoted as next node, are considered with respect to their
vehicle capacity Q constraint and the route length d. The feasible neighbors, which satisfy
vehicle capacity constraint, are sorted with respect to travel length from the current node
to the next node. The neighbour with the shortest path would be selected with pure greedy
algorithm. However, GRS algorithm calculates initial solution from the graph. Starting with
the current node, GRS selects feasible neighbor nodes with respect to vehicle cargo. Again,
the nearest feasible neighbor would be selected with the pure greedy algorithm. But GRS
selects the nearest feasible neighbor solution with 80% probability and the second feasible
solution with 20% probability. This way, the greedy algorithm becomes random.

The values of parameters are the same for all variations of SA algorithm. Starting
temperature Tstart has value 1000, from which the system anneals until the temperature
reaches final temperature Tend = 10. Constant L with default value 100 represents the number
of neighbor solutions Y considers at the same temperature T. A bounded number of iterations
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B is set to be 1000 in order to prevent a long execution time if the input temperature interval
[Tstart, Tend] is too wide. Temperature reducing factor α equals 1.1 in order to decrease the
temperature value by 10% in the next iteration, and is usually set to be a bit greater than 1.

In order to get the basic SA algorithm, the following changes need to be implemented
in the algorithm from Algorithm 1. Line 6 does not exist in the SA algorithm, and it should be
removed. Accordingly, parameter Changesmax in line 10 should be replaced with nSAChanges.
Parameter Countsmax, in line 7, should be set to value 1 or the line 7 should be removed,
respectively. The MSA algorithm can be extracted from IMSA illustrated in Algorithm 1, by
removing the line 6 of the proposed algorithm. Thus, implementation of the SA algorithm is
simpler. It uses a fixed number of random substitutions nSAChanges, while MSA and IMSA
have an iteratively changeable number of changes from 1 to nChangesmax. MSA differs from
IMSA in the number of Countsmax used to repeat the MSA algorithm. Finally, a small solution
space is explored with SA, more is explored with MSA, and even more with IMSA algorithm.
Parameters that are different for different methods are illustrated in Table 1.

5. Simulation environment

For the purpose of experimental analysis, we developed a simulation environment using
MSVisual C++ 6.0. Figure 3 depicts functional components and the usage of the simulation
environment. During the initialization phase in step 1, the graph with or without cargo, vehicle
capacity Q, and common simulation parameters are defined. In order to search for an optimal
solution, the methods discussed in the previous section are available in the search method
phase, simulation step 2. When a suboptimal solution is found, output parameters, route
length d and execution time t, are evaluated in simulation step 3.

A solution improvement method can be applied by using an interactive GUI. An
interactive GUI enables a user to improve the route performances in simulation step 4
(Figure 3). By selecting a subset of vertices M ⊆ V on a route, the search improvement
method provides some local improvements of selected subroutes. For example, let M =
{a, b, c, d, e, f, g} be a set of user-selected vertices. Such set M represents an input parameter
for the solution improvement method that combines selected vertices in the resulting route.
In that way, neighbor solutions Y differ from solution X only by vertices from set M, as
illustrated in Figure 4.

In this paper, EPA that is defined in Section 4, is used to enumerate the routes with
improved performance, if such routes exist. After the suboptimal solution phase in simulation
step 3 (Figure 3), a suboptimal route can be improved by selecting vertex set M and starting
the next simulation phase. Vertices v ∈ M from the suboptimal route are then permuted in
the solution improvement method phase in step 5 (Figure 3). If the new route is feasible and
shorter than the previous one, then it is set to be the route with improved performance.

6. Experimental results

We experimented with the simulation environment on a PC with Intel T7200 processor under
Windows XP. We chose several instances from [13] with positive demand at the depot. In
this way, we considered real world problems with the vehicle starting loaded or empty at the
depot. We compare the results with those from [13].

Figures 5–7 illustrate results for the graph instance with 25 vertices and vehicle
capacities 10, 15, and 20. Circles represent vertices, and arrows represent the route. Numbers
in vertices represent the amount of product qi > 0 that needs to be delivered, and qi ≤ 0
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Simulation environment

1 Initialization

Graph

With cargo Without cargo
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Q
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Searching optimal solution

2 Search method

SA MSA IMSA
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3 4Suboptimal solution
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d t

Figure 3: Simulation environment.
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Search improvement method

a b c d e f g

d a c f b g e

Route

Route
with improved
performances

Figure 4: Route improvement method based on an interactive GUI.

indicates that the product needs to be collected. Shaded circle with demand 0 is the depot
vertex and corresponds to the vehicle start and end positions. Figure 5 illustrates an optimal
route for the smallest vehicle capacity value Q = 10. Figures 6 and 7 represent the resulting
routes for Q = 15 and Q = 20, respectively. The longest route length corresponds to the
smallest vehicle capacity. Larger vehicle capacity results in a shorter route.

Possible practical application of such a graph representation is when there are several
places with same sort of material storage and other places that demand such material.
For instance, the 1-VRPPD application may be used in newspaper redelivery service. A
newspaper company puts a newspaper in circulation, that is, they produce certain amount
of newspapers and deliver them to the newspaper stands. In the morning, shops receive
newspapers and sell them during the day with different quantities. In the end of the day,
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Figure 5: IMSA route when Q = 10.
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Figure 6: IMSA route when Q = 15.

newspapers are not appropriate for tomorrow sales. In order to reduce company losses, shops
that posses lesser newspaper quantities require newspapers from shops that posses more
newspapers in stock. A small vehicle with capacity Q, has a task to redeliver newspapers
among newspaper stands.

The heuristic algorithm presented in Algorithm 1 is appropriate for solving combi-
natorial optimization problems, which may beNP-hard. Besides 1-VRPPD, other problems
can be solved with proposed algorithm. Such problems should have feasible initial solution,
which is later improved when solution space is more explored. Inputs to the algorithm
are: the algorithm parameters, a graph with vertexes which represents customers and their
demands, and finally a depot vertex which represents start and goal position. As a result, the
proposed algorithm always returns a Hamiltonian cycle with a suboptimal distance between
vertexes.

Another practical application is in urgent medicament transport, when several
hospitals have more medicaments of one type than the others do. Practical transportation
of H5N1 medicament is feasible in an unpredictable epidemical contamination. Another
practical application is in concrete industry where customers are served with a truck which
can load concrete at several secondary depots, that is, at Pickup customers, and unload it
according to customer demands. Another practical application is a sensor network, where
sensors need to be transported in order to improve network efficiency. This is the case in
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Figure 7: IMSA route when Q = 20.

military and meteorology applications. Due to some natural forces, a sensor network may be
interrupted. Thus, our algorithm may reduce network sensor transportation expenses.

When vehicle capacity Q tends to infinity, 1-VRPPD requires less computational power
than in cases where vehicle capacity Q is small. According to SA execution times shown in
Table 2, feasible solutions are found quicker when vehicle capacity Q is larger. Thus for the
same graph, when SA is used, execution times are highest when capacity constraints are
stringent, when Q is smaller (Figure 5). As mentioned before, MSA has larger neighborhood
space to explore than SA. With the number of customers n > 50, the average route length and
execution time is smaller when vehicle capacity is larger. Consequently, IMSA average route
length d is the smallest for largest Q. According to Table 2, the time needed for enumeration
of the optimal feasible route is proportional to the size of explored neighborhood space.

Table 2 presents our experimental results, where graph instance features are denoted
as follows. n is the number of vertices, K is quantity of products that needs to be collected
and picked-up (3.2), Q is vehicle capacity, d∗ is best solution found, rsd is the route length’s
relative standard deviation and d and t are average route length and average execution time.
Vehicle capacity Q has an experimental variable in range [10, 30] in steps of 5. Proposed
algorithm is random based and average values obtained from 100 experiments.

Route calculations with the IMSA last longer than with the MSA. Thus, using IMSA
is more appropriate in the case when the user working with our application has customer
demands several days before a vehicle starts with Pickup and delivery services. Then the
user can setup even a daylong search strategy in order to get shorter routes. The number
nCountsmax(Algorithm 1), different in MSA and IMSA, needs to be set appropriately in order
to satisfy user needs. If the route length is more important than the execution time, nCountsmax

must be set to a relatively large value. Otherwise, if the execution time is preferable,
nCountsmax must be set to a relatively small value.

In this paper, the IMSA is demonstrated as the algorithm resulting in short routes, and
the MSA as the algorithm with the short execution time.

In Table 3, dependencies between the number of customers and average length and
execution times for EPA, SA, MSA, and IMSA are proposed. For instances, with 15 customers,
EPA execution time is about 3 hours long, making EPA impractical for larger instances.

Table 3 illustrates the characteristics of methods analyzed in this paper, average values
of route lengths and execution times gathered in Table 2. In this way, IMSA is presented as the
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Table 2: Experimental results.

n K Q
SA MSA IMSA

d∗ d rsd (%) t (ms) d∗ d rsd (%) t (ms) d∗ d rsd (%) t (ms)

15 31 10 2669 3274 8.19 3 2582 2878 5.44 10 2571 2739 4.28 833
15 31 15 2456 2924 9.65 2 2329 2648 7.60 11 2329 2555 6.30 938
15 31 20 2443 2903 7.99 3 2329 2635 6.34 12 2329 2490 5.42 1081
15 31 25 2443 2857 8.25 2 2329 2581 6.67 12 2273 2489 5.43 1158
15 31 30 2421 2840 9.30 3 2273 2588 6.40 13 2273 2495 4.56 1175

25 45 10 4254 5001 9.92 4 3926 4565 8.20 23 3734 4258 6.02 1888
25 45 15 3921 4611 7.04 4 3568 4201 6.47 23 3541 3995 6.51 2088
25 45 20 3352 4545 9.69 5 3270 3920 8.09 24 3332 3882 7.46 2313
25 45 25 3273 4449 11.75 4 3418 4008 7.05 27 3397 3907 6.49 2562
25 45 30 3892 4592 10.32 4 3203 3923 8.56 28 3270 3863 7.14 2637

40 66 10 5954 7042 7.31 3 5433 6282 6.07 31 5639 6072 4.78 2782
40 66 15 5460 6551 8.62 5 5128 5850 5.94 33 5120 5650 5.38 2983
40 66 20 5259 6383 7.58 4 4977 5685 6.59 36 4953 5466 5.45 3251
40 66 25 5273 6429 7.55 5 4660 5496 5.86 38 4582 5396 6.01 3753
40 66 30 5206 6405 9.46 5 4618 5480 6.83 41 4738 5296 5.81 3934

55 84 10 7662 8691 6.06 5 6944 7944 6.57 44 6695 7501 5.94 3897
55 84 15 6406 7733 8.42 6 6192 7216 6.11 46 6097 6776 5.34 4173
55 84 20 6379 7564 7.51 6 5787 6777 6.31 50 5689 6615 5.88 4365
55 84 25 6563 7433 7.00 6 5691 6463 6.47 55 5786 6353 5.06 5392
55 84 30 5980 7228 7.98 6 5799 6557 6.09 58 5502 6262 5.91 5951

70 113 10 8477 9792 6.69 7 8423 9630 7.61 69 7899 8882 6.48 5240
70 113 15 8042 9116 7.23 7 7421 8528 6.18 61 6867 8226 7.61 5479
70 113 20 7887 9150 6.83 7 7256 8371 5.62 64 7136 8026 5.32 5778
70 113 25 7600 8762 6.12 7 7189 8182 5.48 69 7064 7783 5.45 6473
70 113 30 7578 8828 7.58 9 7004 8048 6.38 75 6787 7865 6.07 6988

Average values 5234 6204 8.16 5 4870 5618 6.60 38 4784 5394 5.84 3484

Table 3: Average route lengths and execution times based on 100 experiments.

n d∗ d t (ms)
EPA SA MSA IMSA EPA SA MSA IMSA EPA SA MSA IMSA

15 2273 2486 2368 2355 2273 2960 2666 2554 1·107 3 12 1037
25 — 3738 3477 3455 — 4640 4123 3981 — 4 25 2298
40 — 5430 4963 5006 — 6562 5759 5576 — 4 36 3341
55 — 6598 6083 5954 — 7730 6991 6701 — 6 51 4756
70 — 7917 7459 7151 — 9130 8552 8156 — 7 68 5992

algorithm that has the shortest route length and the longest execution time. The SA algorithm
is the algorithm with the shortest execution time and the longest route length.

Dependency between average route length d and vehicle capacity is proposed in
Figure 8. Figure 8 represents dependencies between average execution time t and vehicle
capacity Q. Figures 9(a) and 9(b) illustrate the values of average lengths and execution times
with respect of the number of customers.
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Figure 8: Continued.
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Figure 8: Average route length d (pixels) and average execution time t (ms) output parameters for various
graph instances with variable vehicle capacity Q values.

The chart in Figures 8(a), 8(c), 8(e), 8(g), 8(i) illustrate how a change in vehicle
capacity affects average route length d. The legend in Figure 8 illustrates which method is
used and how many customers are involved in a single route. The smallest instance with 15
customers is marked as SA 15, MSA 15 and IMSA 15, respectively. Other instances with a
different number of customers are marked accordingly. In the charts Figures 8(a), 8(c), 8(e),
8(g), 8(i), we see that the route length becomes shorter as the vehicle capacity growths. This
is the case for all methods applied. Figure 9(a) illustrates the average route length values
shown in Table 3. It shows that the average route length depends linearly on a number of
customers that needs to be served. Route lengths are highest in case of SA, than there comes
MSA, and finally the smallest is for IMSA. This means that SA provides suboptimal routes
that are on average the longest suboptimal routes. IMSA routes are on average the shortest
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Figure 9: Best found route length d∗ (pixels), average route length d (pixels) and average execution time t
(ms) output parameters for various graph instances with variable n number of customers.

Table 4: IMSA algorithm output parameters compared with heuristic algorithm [13].

Name n K Q H MSA IMSA
d t (ms) d∗ d t (ms) d∗ d t (ms)

n30q20B 30 62 20 5109 90 5883 6714 25 5778 6368 2158
n30q20E 30 66 20 4916 60 6545 7641 23 6473 7047 2101
n40q20B 40 85 20 5334 110 6031 6928 33 5914 6817 2993
n40q20I 40 90 20 5262 140 7299 8160 33 6274 7927 2922
n50q20A 50 99 20 5908 180 7128 8211 45 7046 7985 4158
n50q20C 50 112 20 6962 460 8616 9984 42 8575 9477 3857
n60q20A 60 126 20 6696 430 8059 9321 45 7763 8889 4136
n60q20B 60 146 20 6730 410 8663 9641 44 7959 9349 4012
n30q40B 30 62 40 4529 50 5421 6359 30 5130 6038 2751
n30q40E 30 66 40 4822 50 5530 6299 30 5451 6111 2795
n40q40B 40 85 40 5315 90 6028 6697 40 5802 6719 3987
n40q40I 40 90 40 4967 90 6026 7476 41 5865 7125 3791
n50q40A 50 99 40 5816 140 6867 8069 58 6849 7691 5671
n50q40C 50 112 40 6284 190 7400 8711 48 7359 8589 4493
n60q40A 60 126 40 6156 240 6839 8394 61 6729 8072 5699
n60q40B 60 146 40 6524 230 7643 8959 54 7328 8607 5199

Average values . . . 5708 185 6874 7973 41 6643 7676 3795

ones. Resulting MSA routes are on average little longer than the IMSAs, while they are much
shorter than the SAs suboptimal routes.

The charts in Figures 8(b), 8(d), 8(f), 8(h), 8(j) illustrate how vehicle capacity affects
execution time t. Since IMSAs execution lasts much longer than SA and MSA, the execution
time for IMSA is not displayed in Figures 8 and 9. As illustrated in Figure 9(b), the execution
time of SA is little shorter than of MSAs. The shortest execution times are on average for the



16 Mathematical Problems in Engineering

SA search method. MSAs execution times are little longer than SA’s, and much shorter than
IMSA’s, (see Table 3).

Results proposed in Table 4 compare our route length results with heuristic algorithm
used in [13]. H represents heuristic algorithm proposed in [13], d∗ is the shortest route length,
d is an average route length, and t is the average execution time. Used graph instances with
Pickup and delivery demands are available at [18]. We chose instances with positive vehicle
capacity at the depot. These instances are presented in Table 4. Among tested instances, MSA
and IMSA algorithms have longer route lengths, while execution times are shorter with MSA
algorithm for several instances. As the number of customer increases, compared results have
proportional growth of average execution time.

As illustrated in Table 4, IMSA heuristics is the algorithm that can solve 1-VRPPD and
is comparable with heuristic H presented in [13]. MSA has 450% shorter execution time than
H, while H provides 35% shorter route length. IMSA repeats MSA for 100 times. Thus, IMSA
execution time is approximately 100 times longer than MSA.

7. Conclusion

In this paper, we have presented the (IMSA) algorithm. IMSA is an iterative approach
heuristic algorithm used for solving the combinatorial optimization problem of 1-VRPPD.
Both MSA and IMSA inherit features of the simulated annealing (SA) algorithm with
different calculation of neighbor solutions.

After the suboptimal route is calculated, several local improvements along the route
are possible. By using an interactive graphical user interface, a user has the ability to select
a sub graph on which solution improvement method is applied. The exact permutation
algorithm (EPA) was used as a solution improvement method. In order to have the results
in reasonable time interval, selected sub graph should have less than 15 nodes, due to the
time complexity of EPA. Such improvements are useful because of large search space of 1-
VRPPD, since 1-VRPPD generalize VRP, which is already NP hard. As the experimental
results substantiates, when the execution time is long enough or if the number of iterations is
large enough, MSA and IMSA provide a good approximation to the global optimum in large
search space.
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