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The paper suggests sufficient conditions for the existence of positive solutions to vector
boundary-value problems for second-order differential equations. For potential prob-
lems we develop the approach which combines the classical variational method with
methods of positive operators. The results are then applied to nonpotential problems
where the nonlinearities have potential minorants and majorants.
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1. INTRODUCTION

The paper deals with the two-point problem for systems of second-
order differential equations. The problem is reduced in the standard
way to an integral equation which can be written as

x(t) BFx(t).
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Here x(t), 0 < < 1, is a vector-valued function with the range Ru; F is
the superposition operator F" x(t) g(t,x(t)) generated by the non-
linear continuous function g(t,x); B is a linear integral operator with
a continuous kernel. The operator B is self-adjoint2 in L2 and posi-
tive definite.
The nonlinearity g(t, x) and the operator F are said to be potential

if g(t,x) is the gradient (w.r.t. the variable x) of some scalar func-
tion G(t,x), i.e., g(t,x)=VG(t,x). Equation (1) with the potential
operator F can be studied by variational methods (see, e.g. [1- 3]). A
general sufficient condition for the existence of a solution is that G(t, x)
satisfies the quadratic estimate 3

G(t.x) <_ lxl + b. (2)

for all x E Rv, E [0, 1] where IIBII._. < and b is arbitrary.
In this paper, we are interested in positive solutions of Eq. (1) (the

vector-valued function x(t) is called positive if all its components are
nonnegative functions). The problem considered leads to the equation
with the positive definite self-adjoint operator B that has additionally
the following property:

For every sufficiently large c the operator (I+cB)-1B is positive (in
the sense of Krein [6]) w.r.t, semiordering generated by the cone of
positive functions, i.e., this operator maps any positive function to a

positive function.
This property allows to combine the variational method with

methods of positive operators [7, 8] to obtain sufficient conditions for
the existence of positive solutions to the boundary-value problem.
The paper is organized as follows. In Sections 2 and 3 problems

with potential non-linearities g(t, x) xG(t, x) are considered; it is
supposed that G(t, x) satisfies (2). Section 2 presents the main result on
the existence of a positive solution. In Section 3 we suppose that
g(t, 0)-=0 (so the problem has the trivial zero solution) and suggest
sufficient conditions for the existence of a nontrivial positive solution.

The kernel of B is the Green matrix-valued function of the two-point problem.
Everywhere we use the spaces of vector-valued functions x(t) [0, 1] Rv.

3This result was originally proved by Golomb [4] and Hammerstein [5] for integral
equations.



TWO-POINT BOUNDARY VALUE PROBLEMS 601

In Section 4, we consider applications to problems with nonpoten-
tial nonlinearities which have potential minorants and majorants.
Sections 5 and 6 contain some remarks on the results obtained and the
proofs.
The approach developed here or appropriate modifications can be

used to prove the existence of positive solutions for problems on
nonlinear oscillations, boundary-value problems for PDE etc.

2. EXISTENCE OF POSITIVE SOLUTIONS

Consider the problem

-x" +A(t)x g(t,x), x(0) x(1) 0 (3)

where 4 x E RN, N > 1. Everywhere we suppose that the N x N real
matrix A(t) depends continuously on and its elements satisfy the
relations

ao.(t aji(t) <0 for all i#j, i,j 1,...,N; E [0, 1]. (4)

The function g(t, x)" [0, 1] x Rv Rv is continuous w.r.t, the set of its
arguments.

Define the differential operator

Ex(t) -x"(t) / A(t)x(t) with the boundary conditions

x(O) x(1) O;

now problem (3) can be written as Ex(t) g(t, x(t)). Since the matrix
A(t) is symmetric, E is a symmetric operator in L2. The spectrum or(E)
of E (see e.g. [9]) is an increasing sequence of real eigenvalues

In the following, we use the smallest eigenvalue Ao Ao(E).

(6)

4Throughout the paper the basis in Rv is fixed; a vector x E Rv is identified with its
coordinate column (xl ,Xv)r or row (xl Xv). The notations (.,.) and I’l are
used for the usual scalar product (x,y)= xlyl +’" +xvyv and the Eucledian norm
Ixl x/,x).
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Suppose that g(t,x) is a potential nonlinearity, i.e., its components
are defined by

0
(t,x xu)g(t, x x (7)

where x (xl,..., XN)r C: RN, E [0, 1]. Without loss of generality,
assume5 that G(t, 0)=_0. Therefore the function G(t,x) is continuous
w.r.t, the set of its arguments.
Denote by K+ the cone of the vectors x RN with nonnegative

components:

K+ (x (x,...,xu) Ru" x >_ 0, ,...,N}.

We write x > y if x-y K+ and x(t)>y(t) if x(t)> y(t) for every
[0, 1]. A function x(t) is positive if x(t)>0.

THEOREM Let (4) and (7) hold. Suppose that the function G(t,x)
satisfies estimate (2) with some t < A0(Z;)/2 for any x K+. Suppose

xi 0, x (xl,...,Xlv)r GK+ imply gi(t,x) >_ 0 (8)

for each i= 1,..., N, E [0, 1]. Then problem (3) has a classical positive
solution.

Consider problem (3) with the nonlinearity of the simple form

g(t,x) (gl(t, Xl),... ,glv(t,xv)) (9)

where the component gi(’, ") depends on the component xi of the
variable x and only.

This is a potential nonlinearity, the function G(t, x) is given by

G(t, x) Z gi(t,
i=1

Theorem implies the following statement.

Sir G(t,0) is not identical_ly zero, it can be replaced by the function (t,x)=
G_(t,x)- G(t,O). Obviously, G(t,0)=0 and (7) implies that g(t,x) is the gradient of
G(t,x) w.r.t.x.
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THEOREM 2 Suppose that relations (4) and (9) hold and the estimate

N1 xl gi(t,)d <_ e; x + b, x (Xl,... ,Xlv)r EK+ (10)
i=1 i=l

is valid with some < Ao (.)/2. Suppose that g(t, O) is a positive

function. Then problem (3) has a classical positive solution.

Nonlinearities of the form (9) are used below as minorants and
majorants in problems with the nonpotential nonlinear part.

3. NONZERO POSITIVE SOLUTIONS

In this section it is supposed that g(t, 0)= 0, so problem (3) has the
zero solution.
Assume that (7) holds. To be simple, assume also that the function

g(t, x) is continuously differentiable in x, i.e., the Jacobian matrix

J(t, x) [Ogi(t, X)/OXj]i,j= N

exists for all E [0, 1], xRv and depends continuously on its
arguments. Relation (7) implies J(t,x)= Jr(t,X).

Set D(t)= J(t, O) and consider the differential operator

A4x(t) =-x"(t) + [A(t)- D(t)]x(t) with the boundary conditions

x(0)-x(1)-0. (11)

Like (5), this is a symmetric operator6 and its spectrum is a sequence
of eigenvalues #0 < #1 _<" "#. _<" ", #. o.

THEOREU 3 Let all the conditions of Theorem be satisfied and
g(t, O)=_O. Let the smallest eigenvalue #o--#o(A4) of operator (11)
be negative. Then problem (3) has a classical nonzero positive solution
x*(t).

Suppose all the conditions of Theorem 3 are fulfilled. If estimate (2)
is valid for every xK+ U{-K+} (not only for xK+) and in

6The linearization of problem (3) at the origin leads to the problem A4x(t) O.
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addition to (8) the relation

xi O, x (x,...,x)r e {-K+} imply gi(t,x) <_ 0

holds, then problem (3) has at least three solutions. Indeed, in this
case the problem y(t)=-g(t,-y(t)), which is obtained from (3)
by the change of the variable y=-x, also satisfies the conditions
of Theorem 3, therefore it has a positive nonzero solution y*(t). Thus,
besides the positive solution x*(t)0 and the zero solution, problem
(3) has the negative solution -y*(t) O.

If the nonlinearity g(t,x) has the form (9), then the matrix D(t)
is diagonal, i.e., D(t) diag{d (t),..., dNN(t)} where dii(t) Ogi(t, xi)/

THEOREM 4 Let relations (4), (9), and g(t, 0)=_0 be valid. Suppose
Io < 0 and estimate ( O) holds for some < Ao/2 where Ao, #o are the
smallest eigenvalues of operators (5) and (11). Then problem (3) has a

classical nonzero positive solution.

Theorem 4 follows from Theorem 3.

4. NONPOTENTIAL PROBLEMS

In this section the nonlinearity in (3) is not supposed to be potential.
To stress this we use the new notation for the nonlinearity, so we
consider the problem

-x" +A(t)x =f(t,x), x(O) x(l) 0 (12)

where A(t) satisfies (4). The main assumption about the continuous
function f(t, x) is that the estimates

hi(t, xi) <_fi(t, Xl,... ,XN) <_ gi(t, xi), i= 1,... ,N (13)

are valid on some domains specified below. Here hi(t,), gi(t,O are
smooth functions of their arguments E [0, 1], ( E R.

Define the vector-valued functions

h(t,x)-- (hl(t, Xl),... ,hv(t,xv)),
g(t,x)-- (gl(t, Xl),...,glv(t,Xv))

(14)
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and consider the auxiliary problems

-x" + A(t)x h(t, x), -x" + A(t)x g(t, x), 0.

(15)

LEMIA Suppose that problems (15) have solutions x_ (t), x+ (t)
satisfying x_(t)<x+(t). Let estimates (13) be valid for every pair
{t,x} E[0, 1] x Rv such that x_(t) < x < x+(t). Then problem (12) has
a solution x*(t) satisfying

x_(t) < x*(t) < x+(t). (16)

We combine Lemma with Theorems 2 and 4 to obtain sufficient
conditions for the existence of positive solutions to the nonpotential
problem (12).

Let

A(t) diag{Al(t),... ,Ak(t)}; (17)

here Ai(t) is a symmetric square matrix of order Ni-Ni_l where 7

0 No < N1 <... < Nk N, < k < N. Denoteby ),0i the smallest
eigenvalue of the differential operator iz(t) -z"(t) + Ai(t)z(t) with
the boundary conditions z(0)= z(1)=0 which acts in the space of
vector functions z(t) "[0, 1] -, Rlv-n’-’

THEOREM 5 Let (4) and (17) be satisfied. Let

xj 0, x (Xl,..., Xiv)r K+ imply j)(t,x) >_ 0 (18)

and

j) (t, x1,.. xt) < g.i(t, xy) whenever x (xl,..., xv)r K+
for every <j < N. Suppose that for each i= 1,... ,k there are a

hi < A0i/2 and a bi > 0 such that the estimate

NI

xj
N

gj(t,)di x)+bi
j=Ni- + j=Ni_+

if xs,_+l 0,... ,xs, 0 (19)

holds. Then prob&m (12) has a classical positive solution.

7Evidently, each symmetric N x N matrix A(t) has the form (17) with k= 1.
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The minorant h(t,x) of the nonlinearity f(t,x) is not mentioned
in the formulation of Theorem 5, it is constructed in the proof.
Now consider problem (12) where fit, O)=_ O, i.e., the problem with

the zero solution. Suppose thatf(t, x) satisfies two-sided estimates (13)
for all x E K+ and set

t) 0),=- Di(t) diag(dti_,+l(t),... ,dNi(t)}.

Denote by #0i the smallest eigenvalue of the differential operator
.Miz(t) =-z"(t) +[Ai(t)-Di(t)]z(t) with the boundary conditions
z(0): 0.

THEOREM 6 Let (4) and (17) be satisfied. Suppose that estimates (13)
are valid for all x K+ and h(t, O) =_f(t, O) =_ O. Suppose estimate (19)
with hi < A0i/2 holds for each i= 1,..., k and

min{tzo, lZOk} < O. (20)

Then problem (12) has a classical nonzero positive solution.

5. REMARKS

(a) In the theorems above on the existence of positive solutions to
problem (3) it is supposed that the nonlinearity g(t, x) is defined for
all x. Naturally, one can consider the nonlinearities defined for
x E K+ only. For example, Theorem is true without any change
in formulation if the continuous function (7) is defined for x K+,
t[0, 1] (it is necessary just to remember that gi(t,x) is now the
one-sided derivative of G(t, x) whenever xi--0). This follows from
the proof presented in the next section.
This remark is applicable to Theorem 3 as well.

(b) We say that the function f(t, x)" [0, 1] x Rv Rv increases in the
off-diagonal variables if for every i--1,...,N the relations

(xl,..., xv)r= x > y (Yl,...,Yv) r, xi= Yi imply the estimate

f,. (t, x) >J (t, y), 0 < < 1. Suppose that the estimates

h(t,x) <f(t,x) < g(t,x)
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with smooth h(.,.), g(.,.) are valid for tE[0,1],x E Rv and
problems (15) have the solutions x_(t), x+(t) satisfying

x_(t) < x+(t) (21)

like in Lemma 1. We do not assume here that the functions h(t, x)
and g(t, x) have the form (14). Nevertheless, if either the function
f(t,x) or both the functions h(t,x), g(t,x) increase in the off-
diagonal variables, then the conclusion of Lemma is true, i.e.,
problem (12) has a solution satisfying (16). In this case, one can
use Theorems 1, 3 to obtain sufficient conditions for the existence
of positive solutions to problem (12) in the same way as Theorems
5, 6 are derived from Theorems 2, 4 and Lemma 1 (see the proofs
below).

(c) Consider the problem

-x" + A(t)x f(t, x, x’), x(0) x(1) 0 (22)

where A(t) satisfies (4) and f(t, x, y) [0, 1] x Rv x Rv Rv is a
continuous function. For this problem analogs of Lemma are
also valid. In particular, if

x_(t) <_ x <_ x+(t) imply hi(t, xi) <_3(t,x,y) <_ gi(t, xi)

for every [0, 1], y Rv, i= 1,..., N where x_(t), x+(t) are the
solutions (21) of problems (15), then problem (22) has a solution
satisfying (16) (see, also [10]). This leads to analogs of Theorems 5
and 6 for problem (22).

6. PROOF OF THEOREMS 1 AND 3

6.1. The Linear Operator

First we recall some well-known facts about the operator . Consider
the linear problem

c (t) + u(t). (23)

Suppose -A is not an eigenvalue of the operator , i.e., A -- A,
n-0, 1, 2, Then a unique solution of problem (23) is given by the
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formula (see, e.g. [9])

x(t) Bxu(t) Hx(t,s)u(s)ds

where the Green matrix-valued function Ha(t,s) is continuous w.r.t.
the set of its arguments 0 < s, < and satisfies

n(t,s) n(s, t), 0 < s, <_ 1. (24)
If u(t)E C then x(t)= Bau(t) is a classical solution of problem (23). By
continuity of HA(t, s), the solution x(t)= Bau(t) is continuous for every
u(t) L and moreover, the operator Ba is completely continuous from
L to C (also, it is continuous from C to C2).

Relation (24) implies that Bx =B*, i.e., Bx is a self-adjoint operator
in L2. Since Ba is the inverse of the operator + M, the spectrum of Ba
is the sequence

fin(A) (A -[- An) -1 n 0, 2,

If A > A0 then (A+A0)- fl0(A) > fl(A) > > /n(A) > > 0,
hence the operator Ba is positive definite and

0<_ <_ / ,Xo)- llwll2 =, 2 (25)
where (., ")L2 denotes the scalar product in L2. Therefore, for each
A >- Ao the self-adjoint positive definite square root B(/2) of the
operator Ba is defined.8 By splitting theorems (see, e.g. [11]), B(1/2) is a
completely continuous operator from L to L and from L2 to C.
Below we use the operators Ba and B(,x1/2) with various 3, > Ao. The

operators Ba satisfy the resolvent equation

Bu B ( lz)BuBa (26)

for every A,/z A., n O, 1, 2,

6.2. Equivalent Problem and Operator Equation

Define

ex + I,-.., + Ix,,l)

The square root B(x1/2) of Bx is not necessarily an integral operator.
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The operator P projects the space RN onto the cone K+ and satisfies
the estimates IPxl <_ [x and IPx-PYl <-Ix-yl for all x, y E gN. Take
an a > 0 and set

i(t,x; a) ( gi(t, Px)_2axi for xi > 0, (27)for xi < 0

for every x (xl,... ,Xv)rE Rv, i= 1,..., N. We replace problem (3)
by the problem

,x(t) (t,x(t); a); (28)

here the components of the function ,(t,x; a) [0, 1] x RN Rv are
defined by (27); a is a parameter. Since ,(t,x; a) g(t,x) for x K+,
the classical positive solutions of problems (3) and (28) coincide for
every a.
Note that the function (t, x; a) with a fixed is discontinuous in x,

its discontinuity points lie in the hyperplanes xi=0. The set of all
discontinuity points is

N

1-It U{x (x,... ,xv)r" x, O, gi(t, Px) :/: 0}. (29)
i=1

Define

(t,x; a) G(t, Px) alx Px[, x eR.
From (7) and (27) it follows that

0 ((t,x;a)x; i= 1,...,N (30)

for every x RV\IIt, [0, 1]. It is readily seen that

G(t,x + y; a) G(t,x; a) ((t,x + sy; a),y)ds, x,yRre. (31)

Let us rewrite (28) in the form

x(t) + Ax(t) (t,x(t); a)+ Ax(t), A> Ao (32)
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and pass from problem (32) to the equivalent integral equation

x(t) B[(t,x(t); ) + Ax(t)] (33)

with the two parameters a> 0 and A > -A0. We consider Eq. (33) in
the space C: by the inclusion x(t)E C implies g(t,x(t); ) L and
since B is a completely continuous operator from L to C, it follows
that the operator B[,(t,x(t);a)+ Ax(t)] on the right-hand side of
(33) is completely continuous in C. If x(t)>O then the function

,(t,x(t); a) + Ax(t) g(t,x(t)) + Ax(t)

is continuous, so the operator Ba maps it to Cz. Therefore every
positive solution of Eq. (33) is a classical positive solution of problems
(32) and (3). It is important to note that by construction, Eq. (33) with
a fixed a are equivalent 9 for all A > -A0.
Now, to prove Theorem it suffices to show that for some pair a, A

Eq. (33) has a solution x*(t) C, x*(t)>O. In Theorem 3 it is necessary
to show in addition that x*(t) is not the zero solution.

6.3. Main Steps of the Proof

We prove the existence of a positive solution to Eq. (33) n two steps,
using the two lemmas below; the proofs of the lemmas are given in the
next subsections. First, it is shown by the variational method that for
every a >0 Eq. (33) has a solution x(t) satisfying the uniform
estimate [[x(t)[[c <_ .Ro with the R0 independent of a. In the second
step, we prove that the solution x(t) is positive for every sufficiently
large a.

Take any a >_ 0 and fix it up to the end of the first step. Set v 2;
by assumption, v >-A0. Following the general variational scheme
(see, e.g. [1, 2]), consider the functional

v foV(w)=-(w,w)--(w,Bw):- (t,B(/)w(t);a)dt, wL2.

(34)

Also, one can see this from resolvent Eq. (26): applying the operator I / (A #)B, to
equality (33) one obtains x(t) + (A #)B,x(t) (Ba + ( #)B,Bx)((t,x(t); a) + Ax(t))
and (26) gives x(t)=B,((t,x(t);a)+ #x(t)).
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Since w(t).L2 implies B(ul/2)w(t).C and the function (t,x;a) is
continuous w.r.t, the set of its arguments t, x, the functional V(w) is
defined on the whole space L2.
Denote by g the set of the functions w E L2 satisfying

mes{t E [0, 1]" B(l/2)w(t) IIt} 0

where IIt is set (29). We claim that the functional V(w) is Frechet
differentiable at every point w and its derivative is given by

7Va(w) w(t) uBw(t) B(l/2)(t,B(l/2)w(t); w w(t) .
(35)

If w, is a critical point of the functional V(w), then (35) implies

(36)

therefore each critical point w, E determines a continuous solu-
tion x,(t)= B(l/2)w,(t) of Eq. (33) with A=v and hence with any
A> -A0.

Evidently, w-Bw is the Frechet derivative of the functional

1/2((w, w). (w,Bw)). So to prove relation (35), we need to show
that the functional

satisfies

.T’(w) := ((t,B(ul/2)w(t);a)dt, wL2 (37)

lim Ilhnllb ((w + h) ’(w) (hn,Bl/21,(’,nl/2)w(’); ))) 0

(38)

for every w and every vanishing sequence hn L2. Substituting
x(t) =B(I/2)w(t), y=B(/2)h(t) in (31) and integrating over the
segment [0, 1], we obtain

.T’a w + h .Ira w fo fo (B(u/2)h(t), (t, B(ul/2)w(t)

+ sB(l/2)h(t); a))ds dt. (39)
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Also note that B/2) (B/2)) implies

B(u1/2) o))dt,w(t);

therefore (38) is equivalent to

nlirn Ilh, llb (B(ul/2)hn(t),,(t,Bl/2)w(t) q- sBful/2)hn(t); 0)

(t,B(l/2)w(t); a)) ds dt O. (4o)

The inclusion w ’ means that for a.e. [0, 1] the point x0 xo(t)
B(l/2) w(t) is a continuity point of the function ,(t,x; a) (considered
as a function of x with the fixed t). From IIh=ll,= 0 it follows
I[n/Z)hnllc O, hence

lim I(t, xo(t) + sBhn(t);c) ,(t, xo(t);c)l 0 fora.e, t [0, 1]

(41)

and for each s [0, 1]. But the function (t,x;c) is locally bounded
and we have sup(llx0(t) / snL/=lh(t)llc s [0, 1],n 1,2,...} < ,
hence

sup sup I,(t, xo(t) + sBhn(t); t) ,(t, xo(t); a)l < c,
n O< t,s<

and by the Lesbegue theorem, (41) implies

lim f0 f0 I,(t,Bw(t) + sBuhn(t); oz) (t,Bw(t); a)l dsdt O.

Since IIn/2h.llcllh.llb IIn’/2111,=_c, this yields (40), thus (35)is
proved.
The following lemma guarantees the existence of a critical point

w* ’ for the functional V(w).

LEMMA 2 Let the assumptions of Theorem be satisfied. Then the

functional V(w) has a point w* ofglobal minimum. The function w*
w(t) satisfies wa and

IIw ll, = <_ (42)

where b comesfrom (2). If in addition all the assumptions of Theorem 3
hold, then the function w*(t) is not the zero solution.
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The lemma is proved in Subsection 6.5.
By Lemma 2, VV,(w)=0, wE, so the function x(t)=

B(l/2)w*(t) is a solution of Eq. (33) for every A>-A0. From (42)
the estimate IIx llc_< R0 follows with

(43)

which is independent of a. To complete the first step of the proof note
that the relation VV(w*) 0 can be written as

w*a(t B(vl/2)(,(t, xa(t); a)-F vxa(t)). (44)

If all the assumptions of Theorem 3 are valid, then
(t, 0; a)= g(t, 0)= 0, also by Lemma 2, w -0. Thus, (44) implies
that x(t) 0 under the assumptions of Theorem 3.
The second step of the proof of Theorems and 3 is based on the

following fact.

LEMMA 3 Relation (4) implies that for every sufficiently large A the
operator B is positive lO w.r.t, to the cone of positive functions in C,
i.e., x(t) > 0 implies Bx(t) > O.

Lemma 3 is proved in the next subsection.
Now, substitute the function x(t) in (33) with A a to obtain the

identity

x (t) + (45)

Suppose that either the function g(t,x) has continuous derivatives
Ogi(t,x)/Ox, i= 1,... ,N and satisfies (8) (like in Theorem 3) or the
relations

xi 0, x (Xl,...,xv)rEK+ imply gi(t,x) >_e (46)

are valid for all 1,..., N with some e > 0. It follows easily from the
definition of the function ,(t,x; a) that in both cases the estimate

,(t,x;c)+ax>_O, tG[0,1], Ixl
holds for every sufficiently large a. Since [[x[[c R0, the function

,(t,x,(t); a) + axe(t) (with a large enough) is positive, and by Lemma

10One can show that the operator Bx is positive for every , > 0, but we do not use
this fact here.
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3 the operator B maps it to the positive function (45). Thus, x,(t) is
a positive solution of Eq. (33) for every large a.

This completes the proof of Theorem 3. This also proves the
conclusion of Theorem if in its assumptions estimate (8) is replaced
by the stronger estimate (46).
We complete the proof of Theorem with the following limit

construction. Set i(t, x; e) := gi(t, x) + e, 1,..., N and consider the
problem

/2x(t) (t, x(t); e), e > 0. (47)

From (8) it follows that

xi O, x (x,..., xu)r K+ imply ,i(t, x; ) >_ (48)

for all i= 1,..., N, similar to (46). Furthermore, relations (7) and (2)
with < A0/2 imply the relations

0
,i(t,x;e) _’KSS_. (G(t,x) -+- e(Xl -k- x2 +"" + XN)),

tJxi
1,... ,N

and

G(t,x) + e(Xl + x: +... + xr) < (t +  0)lxl2 + (b + Neo) (49)

for all 0 < e < eo where we take Co> 0 sufficiently small so that
n +Co < Ao/2. Therefore problem (47) with e E (0,Co) satisfies all the
assumptions of Theorem and estimate (48) guarantees that prob-
lem (47) has a classical positive solution x(t) satisfying IIx(t)l[ _< R0,
where R is defined by formula (43) with b =b+Neo and ut=
-2(n+ Co) in place of b and u. Replacing problem (47) by the equiv-
alent integral equation x(t) B(,(t,x(t); e) + Ax(t)), we obtain

x(t) B,x((t, xe(t);e) + Axe(t)), O< e_<eo. (50)

But Ba"C C is a completely continuous operator, therefore the
estimates

IIxllR0, sup{l,(t,x;)l’t[O,l],O<o, Ixl
imply that the set of functions (50) is compact in C, hence this set has a
limit point x*(t) C. Finally, passing to the limit in (50) as e + 0, we



TWO-POINT BOUNDARY VALUE PROBLEMS 615

see that x*(t) satisfies the equation x(t)=B(g(t,x(t))+Ax(t)), i.e.,
x*(t) is a classical solution of problem (3). Since x(t)>O, 0 < e < Co,
it follows that x*(t)>O and Theorem is proved.

6.4. Proof of Lemma 3

Denote by Q, the operator that maps a function v(t) to a unique
solution x(t) Q,v(t) of the vector problem

-x" 4- #x v(t), x(0) x(1) 0 (51)

l!which is the system of the independent scalar problems -x 4- #xi
vi(t), x,(O) xi(1) 0. The integral operator Q can be written
explicitely, it is well-known that Q, is positive, i.e., v(t)>O implies
Q,v(t) > 0, for every # > -7r-2. The norm of Q, in L2 is

(52)

Set 9’:=max{lla(t)llc: i= 1,...,N} where au(t) is the diagonal
element of the matrix A(t). Take any u(t)E C and put (t)=B,_.u(t)
where # is sufficiently large. By definition, (t) is the classical solution
of the problem

-xn(t) + A(t)x(t) + (Iz 9")x(t) u(t), x(0) x(1) 0,

therefore 3c(t) is also the classical solution of problem (51) with
v(t) u(t)+9"x(t)-A(t)x(t), hence .(t) Q,(u(t) + 9’5c(t) a(t)Sc(t)).
Equivalently,

B,_.u(t) Q,([.E A(t)]B_.u(t)) Qu(t), u(t) C, (53)

where E is the N x N identity matrix. Denote by 9= 9(t) the norm
of the matrix 9"E-A(t) and by the operator ’v(t) [9"E-A(t)]
v(t). From (52) the estimate II,ll,=_,=_<llo(t)llc(/r-2)-follows. Therefore, for every sufficiently large # the operator I-
Q is invertible in L2 and the inverse is represented by Neumann
series

(I- #)-1 I + Qzgp +... + (Qzgp)n +...,
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SO applying this operator to (53), one obtains

n._u(t) u(t) + ..u(t) +... + .(.)"u(t) +..., u(t) c
(54)

where the series converges 11 in L2. Finally, relations (4) and the
estimate 7 _> ai,(t) imply that all the elements of the matrix 7E-A(t)
are nonnegative for each t, hence the operator ff is positive. From the
positivity of the operators Qu and I, it follows that operator (54) is
also positive in C for every sufficiently large #, which completes the
proof.

6.5. Proof of Lemma 2
wWe write wn w, for the weak convergence in L2.

First note that the completely continuous operator B/21 L2 C
w

maps any weakly converging sequence w,,EL2, Wn--’ w, to the
sequence B(/2)w,,EC that converges uniformly to the function
B(l/2)w,. Therefore functional (37) is weakly continuous, which means
that Wn w, implies .Tc’,(Wn).T’,l/,l. The same is true for the
quadratic functional (w,B,w)t2-11n wll-. At the same time, the
functional (w, w)L2 is weakly lower semicontinuous, i.e.,

w
wn w, implies lim inf(wn, Wn)L2 > (w,, w,)L2. (55)

n

Therefore the functional V,(w)= (1/2)(w,w)L-(u/2)(w,Bw)-
.T’(w) is also weakly lower semicontinuous"

Wn w, implies lim inf V(wn) >_ V(w,). (56)

By definition G(t,x,a)< G(t, Px) for all t, x. Since estimate (2)
holds for all xK+ and we have Iexl <_ Ixl and PxK+ for each
x RN, the relations

t(t, x, a) <_ G(t, Px) <_ ,lPxl2 + b _< lxl2 + b, x fly

1 In fact, the series also converges in C, because [[Q,IIL2c < o.
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are valid. Therefore

Hence, functional (34) satisfies the estimate

(w, w)t,2 b,v (w) >_ (57)

Consider a minimizing sequence wn for the functional (34):

lim V(Wn) inf V(w).
n w EL

The equality V(0)= 0 implies 0 >_ lim V(wn). But from (57) it follows
that V(w) > e2/2 whenever [[w[[ > x/ + e, therefore

lim sup Wn I1 ’- (58)

This implies sup{llw.llz n 1,2,...} < cx, hence the sequence Wn
is weakly compact and contains a weakly converging subsequence.
Without loss of generality, assume that the sequence w, weakly
converges itself and denote its limit by w. From (56) the relations

inf V(w) lim V(wn) > V(w*)
w L n

follow, so Va(w*)=infwe.2 V(w), i.e., w* is a point of global
minimum for the functional V(w). From (55) and (58) estimate
(42) follows. To prove the inclusion12 w E g, we use an idea close
to [131.

Fix any positive function y(t) C2 such that

y(0)=y(1)=0, yi(t)>O forall t(0,1),i=l,...,N (59)

12In fact, the inclusion w means that the function xa(t)= B(vl/2)w*a(t) is a so-
called proper solution ofproblem (28). The notion of a proper solution was introduced in
[121.
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and put h(t) := B(l/2)(-y"(t) +A(t)y(t) + vy(t)), then y(t) Bl/2)h(t).
Consider the function

(o) v(w; + oh) + Vo(w; Oh) 2V(w;), o [0, ].

Since w; is a minimum point for V(w), we have 9(0)> 0 for each
0 E [0, 1]. But (39) implies the equality

.T’(w* + Oh) + .T’(w* Oh) 2.T,(w;) Ob(O)

where

(y(t), (t, x(t) + Oy(t); )

(t, xa(t) Osy(t); a)) ds dt

and x(t) B(1/2)w(t). Hence,

I,(0) 02(h, (I- uB,)h)L2 0b(0),

and the estimate 9(0)> 0 implies the relation

lim sup b(0) < 0.
0-+0

Set

0[0, 1

ri {x (x,... ,x,)’. x o, g(t, ex) # o}.

(60)

(61)

By definition, the function i(t,X; o) is continuous in x at every point
x E RN \ HI, hence

lim (i(t,x + Oz; c) i(t x Oz; )) 0
0-->+0

o 0 and (27) impliesfor each x E RN \ YI, z Ru. If x E HI, then x

lim (i(t,x + Oz; c) i(t,x Oz; c)) signzi, gi(t, Px)
0+0

for each x 1-[i, z E Ru.
Thus, passing to the limit in (60) as 0 +0 and taking into account
that sy,(t) > 0 for every t, s (0, 1), we obtain

N

(+0) Zf yi(t)gi(t, Pxa(t))dt
i=1
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where fli "= {t E [0, 1]" x(t)E II}, so according to (61),

Z yi(t)gi(t, Pxa(t))dt <_ O.
i=1

(62)

But from (8) it follows that gi(t, Px)>O whenever xi=0, x=
(x,...,Xv)r, hence gi(t, Px)>O for each x El-I and therefore,
g(t, Px,(t)) >0 for all EFt, i= 1,...,N. Together with (59) and
(62), this implies mes fl=0, i= 1,...,N, which is equivalent to the
inclusion w .

It remains to show that under the conditions of Theorem 3 the
relation w 0 is valid, i.e., zero is not a global minimum point for the
functional V(w). We prove that zero is not even a local minimum
point. For this, an appropriate element hE L2 is introduced so that
V(Oh) < V(0) for each small 0 0.
Denote by Tu, # -#,,, n 0, 1,2,..., the operator that maps any

function u(t) C to the unique solution x(t)= Tuu(t) C2 of the
problem A/Ix(t) + #x(t) u(t) where .M is operator (11). Since
g(t, 0)=_ 0, it follows from (8) that

Og---i (t,O) >0 C j, tE [0, 1],Ox
hence the off-diagonal elements of the symmetric matrix A(t)-D(t)
satisfy the estimate

aij(t) dij(t) <_ 0 for all j, i,j 1,... ,N; E [0, 1],

similar to (4). By Lemma 3, this estimate implies that for every
sufficiently large # > #0 the operator Tu C-+ C is positive w.r.t, the
cone of positive functions. Also, Tu is completely continuous, so,
according to the general theorems on positive operators [8], there is a
positive eigenvector y0= yO(t) >0 such that Tuy= r(Tu)y where r(Tu )
is the spectral radius of the operator Tu. For large # we have
r(Tu) (#+#0)- , therefore y(t) is a classical nonzero positive
solution of the problem .My(t) + #y(t) (# + #o)y(t), i.e., the identity
(A4 #oI)y(t) 0 holds.

Set

vO(t) (u + #o)yO(t) + D(t)yO(t), h(t) Buv(t).
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Adding the function v(t) to the identity (.M- #ol)y(t)= 0, we get
( + vl)y(t) v(t), therefore y(t)= Bvv(t) and y(t) Bl/2)h(t).
Consider the function X(0):= V(Oh). Since (t,x;a)= G(t,x) for
each x > 0 and y0 (t) B(1/2)h0 (t) > 0, we have

V(Oh) -- (h, h)L2 ---(h,Bh)L2 G(t, Oy(t))dt.

Our assumptions on the smoothness of function (7) imply the
representation

G(t,x) G(t,O) + (g(t,O),x) + (x,D(t)x)/2 + qo(t,x)

where

lim Ix1-2 max 199(t, x)l 0.
x-0 I0,11

But G(t, O) =_ g(t, 0) _= 0, so G(t, x) (x, D(t) x)/2 +p(t, x) and therefore

02(Va(Oh) -- (h,h)2 u(h,Buh)z (y(t),D(t)y(t))t.2 + 0(02),

00o

Now note that (h, B,h)L2 (yO, yO) and

(h,h)/2 --(vO,BuvO)t2 (v0,y0)/:
((u + #o)yO(t) + D(t)y(t),y(t))2,

hence V(Oh) #o02(y,y)a_/2 +0(02). By assumption, #o<0, so

V(Oh) < 0= V(0) for all small 0 0, i.e., zero is not a minimum
point for the functional V(w) and the proof of Lemma 2 is complete.

7. PROOF OF THEOREMS 5 AND 6

7.1. Proof of Lemma 1

Define the nonlinear operator

U,x(t) B,(f(t,x(t)) + Ax(t)), x(t)ec
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with AAn, n=0,1,2,... Now problem (12) is equivalent to the
equation x(t)= Ux(t). We need to show that this equation has a
solution in the set3

(x_, x+) {x(t) E C x_(t) < x(t) < x+(t)}

where x_(t) and x+(t) are solutions of problems (15), i.e., they satisfy
the relations

x_(t) B(h(t,x_(t)) + Ax_(t)), x+(t) B(g(t,x+(t)) + Ax+(t)).

Since U is a completely continuous operator in C, it suffices to prove
U maps the convex closed set (x_, x+) into itself, then the existence
of a solution x* x*(t) to equation x Uax follows from the Schauder
principle.

Suppose x(t) (x_, x+); then by assumption,

h(t,x(t)) <f(t,x(t)) < g(t,x(t)). (63)

Since the components hi(t, xi), gi(t, xi) of the functions h(t,x) and
g(t, x) are smooth, for every r > 0 there is a A(r) such that the func-
tions hi(t, xi)+ Axi and gi(t, xi)+ Axi increase w.r.t, xi in the segment
-r_<xi_<r for every A_>A(r) and every rE[0,1], i=l,...,N.
Therefore,

h(t,x_(t)) + Ax_(t) _< h(t,x(t)) + Ax(t)
g(t, x(t)) q- Ax(t) _< g(t, x+ (t)) -+- Ax+ (t)

whenever x(t) (x_, x+) and A >_ A(r0) with r0 := max{[Ix_
x+ l[ + }. Combined with (63), this implies the estimates

h(t,x_(t)) + Ax_(t)<f(t,x(t))+ Ax(t)< g(t,x+(t))+ Ax+(t). (64)

If A is sufficiently large, then by Lemma 3 the operator B is positive,
so applying this operator to (64), one obtains

BA(h(t,x_(t)) + Ax_(t))< Ux(t) <_ B(g(t,x+(t)) + Ax+(t))

or, which is the same, x_ (t) < x(t) <x+ (t). That is, x(t)
implies Ux(t) (x_, x+) and the proof is complete.

3This set is the so-called cone interval with the vertexes x_, x+.
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7.2. Proof of Theorems 5 and 6

Suppose the conditions of Theorem 5 hold. Set g(t,x)=(gl(t,x),
,g(t,Xv))r and consider the problem

-x" + A(t)x g(t, x), x(0) x(1) 0. (65)

Relation (17) implies that problem (65) is equivalent to the k
independent two-point problems in the subspaces R-’-’ 1,..., k
of Ru. Evidently, each of the smaller problems satisfies all the
assumptions of Theorem 2, hence there is a positive solution z. (t)"
[0, 1] Ru’-u’-’ to each smaller problem, so the direct sum of these
solutions is a positive solution x+(t)" [0, 1]--. Ru of problem (65).
Assume that in place of (18) the stronger estimate

f.(t, x) > e whenever xj 0, x K+ (66)

holds with some e > 0 for each j= 1,..., N. In this case, we can find a
large -), such that

-Tx <_fj(t,x) for all 0 < x,... ,x < R "= []x+(t)llc (67)

and all [0, 1],j= 1,... ,N. Now, if we take h(t,x)= -7x, x_(t)=O,
then all the conditions of Lemma are satisfied, hence problem (12)
has a solution 0< x*(t)< x+(t). Thus, the conclusion of Theorem 5 is
true if additional assumption (66) holds.
To complete the proof, one can first replace the functions fit, x) and

g(t,x) in (12) and (65) by the functions

f(t,x;e) := 0el (t, x) + e,... ,fv(t,x) + e)r,
g(t,x;e) "= (gl(t, Xl) + e,... ,gu(t, Xu) + e)r

and prove just as above the existence of a positive solution x(t) to the
problem

-x" + A(t)x f(t, x; e), x(O) x(1) O.

Then the same limit construction as used in the proof of Theorem
can be applied to obtain a positive solution of problem (12) (we omit
the further details).

Finally, let us prove Theorem 6. By assumption (20), at least one of
the numbers #0 is negative, without loss of generality suppose that
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#01 < O. Consider the problem

-z" +Al(t)z h(t,z), z(0) z(1) 0 (68)

where zERiv1, (t,z)=(hl(t,z),...,hN,(t, zl,))r. Since hj(t,)<
gj(t,) for all > 0, j= 1,... ,N, estimate (19) implies that

N

f0zj ZI,... ,ZN O.

Therefore problem (68) satisfies all the conditions of Theorem 4, so it
has a nonzero solution z*(t)>O and hence the function x_(t)=
(z(t),... ,zTv (t), 0,..., 0)r is a nonzero positive solution to the first
problem of (15). Now it suffices to show that the second problem of
(15) has a solution x+(t)= x_(t)+y(t) with y(t)>O and to use Lemma
1. After the change of the variable x y+x_ (t), the second problem
of (15) takes the form

-y" + A(t)y (t,y), y(0) y(1) 0 (69)

where

o(t, y) g(t, x_ (t) + y) + (x (t) A(t)x_ (t))
g(t,x_(t) + y) h(t,x_(t)).

First note that x_(t)>O implies (t,0)= g(t,x_(t))-h(t,x_(t))>
O, i.e., the function (t, 0) is positive. Secondly, from estimates (19) it
follows that for any number qi E (hi,),0i) there is a sufficiently large
/3i > 0 such that the components of (t, y) satisfy

Ni f0y Niy boj(t )a qi y} + i
j=N_t+l j=Ni_ +1

whenever Yu_t+l E 0,...,yu E 0

for each i= 1,... ,k. Splitting problem (69) according to (17) into
the k independent problems in the subspaces R’-’-’ of Ru, we see
that each of the k problems satisfies all the assumptions of Theorem 2
and so has a positive solution. The direct sum y*(t) of these solu-
tions is a positive solution of problem (69). It determines the solution
x+(t)=x_(t)+y*(t)x_(t) to the second problem of (15) and by
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Lemma 1, problem (12) has a solution x*(t) E (x_, x+). The relations
x_(t)>O, x_(t)O imply that x*(t) is the desired nonzero positive
solution of (12). Theorem 6 is proved.
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