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0. INTRODUCTION

In this paper we give existence theorems for the generalized periodic
boundary value problem

u" =f(t,u,u’), (0.1)

u(a) u(b), u’(a) w(u’(b)).

Using these results (Theorems 4.1-4.3) we can get both the existence and
multiplicity for solutions of various periodic problems and their gen-
eralizations. One of such possible applications is shown in Corollary 4.4
which generalizes some results of [3], for other applications see [8] or [9].
The main tool ofour arguments is a connection between the existence

oflower and upper functions for (0.1), (0.2) (called also lower and upper
solutions by some authors) and the Leray-Schauder topological degree
of an operator associated with (0.1), (0.2).
The notions of lower and upper functions of the second order bound-

ary value problems have a long history starting in 1931 when G. Scorza
Dragoni [10] used them for the Dirichlet problem. So far there have been a
lot ofdefinitions introduced. Classically, we understand lower and upper
functions as C2-functions. Differential equations with Carath6odory
fight hand sides or with singularities involved their generalization, for
example as ACl-functions, Cl-functions having left and right second
derivatives or W2-functions. The majority of existence results was
gained under the ordering assumption that a lower function is less than or
equal to an upper one. During the last two decades the extension to
nonordered or reversely ordered lower and upper functionswas attained.
See [1] and the references mentioned there. Here, we introduce a defini-
tion (cf. Definition 1.7) oflower and upper functions ofthe problem (0.1),
(0.2) which generalizes those of [1,5-7] and consider the both cases of
their ordering as well as the nonordered one.

1. PRELIMINARIES

Throughout the paper we assume: -cx < a < b < , w II IR is contin-
uous and nondecreasing andf: [a, b] 2 IR fulfills the Carath6odory
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conditions on [a, b] x ]12, i.e. fhas the following properties: (i) for each
x E 11 and y E the function f(., x, y) is measurable on [a, hi; (ii) for
almost every [a, b] the function f(t,., .) is continuous on 112; (iii) for
each compact set Kc ]R the function mr(t) sup(x,yer If(t, x, y)l is
Lebesgue integrable on [a, b].

Furthermore, we keep the following notation: L[a, b] is the Banach
space of Lebesgue integrable functions on [a,b] equipped with the
usual norm denoted by I[’11. Furthermore, for k E N LI {0}, Ck[a, b] and
Cg[a,b] are the Banach spaces of functions having continuous kth
derivatives on [a, b] and of functions having absolutely continuous kth
derivatives on [a, b], respectively. As usual, the corresponding norms are
defined by

k

Ilxllc max Ix(i)(t)l
i=0 tE[a,b]

and

The symbols C[a, b] or AC[a, b] are used instead of C[a, b] or AC[a, b].
Moreover, gV[a, b] is the set of functions ofbounded variation on [a, b].
For u NV[a, b], using and uac denote its singular and absolutely contin-
uous parts, respectively. Furthermore, if u NV[a, b], then its one-sided
derivatives are denoted by D+u and D-u.

Car([a, b] x I) is the set of functions satisfying the Carath6odory
conditions on [a, b] x ll2.

Finally, for a given Banach space IK and its subset M, cl(M) stands for
the closure ofM and OM denotes the boundary ofM.

Iff is an open bounded subset in Cl[a, b] and the operator T: cl(f)H
Cl[a,b] is compact, then deg(I-T, f) denotes the Leray-Schauder
topological degree of I-T with respect to [2, where I stands for the
identity operator on Cl[a, b]. For a definition and properties ofthe degree
see e.g. [2].
By a solution of (0.1), (0.2) we understand a function u E ACl[a,b]

satisfying (0.1) for a.e. E [a, b] and having the property (0.2).
The following estimate will be helpful later.

LEMMA 1.1 LetafunctionmL[a,b]andsetsql(t)cI,t[a,b],besuch
that m(t) < 0 on a subset of[a, b] ofa positive measure,

m(t) < f(t, x, y) for a.e. [a, b] and any (x, y) ll(t) (1.1)
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and

w( y) >_ y for all y E [-Ilmll, Ilmll].

Let u be an arbitrary solution of (0.1), (0.2) such that u(t) ql(t) for all
[a, b]. Then

II’llc < Ilmll. (1.3)

Ifwe suppose m(t) > 0 on a subset of[a, b] ofa positive measure and

m(t) > f(t,x,y) for a.e. [a,b] and any (x,y) q/’(t) x N (1.4)

and

w( y) < y for all y [-Ilmll,, Ilmll] (1.5)

instead of(1.1) and (1.2), then the estimate (1.3) remains valid, as well.

Proof We shall restrict ourselves only to the proof of the former asser-
tion. The latter can be proved by a similar argument.

Let u be an arbitrary solution of(0.1), (0.2) such that u(t) ql(t) for all
[a, b] and let (1.1) and (1.2) be fulfilled. Then

m(t) < u’(t) for a.e. [a, b]. (1.6)

Certainly, there is to (a, b) such that u’(to) 0. Hence

-Ilmll _< Im(s)l ds < u’(t) for E (to, b] (1.7)

and

t

-Ilmll <_ Im(s)l ds < -u’(t) for E [a, to). (1.8)

In particular, with respect to (0.2),

t
w(u’(b)) u’(a) < Im(s)l ds < Ilmll. (1.9)
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If u’(b) > Ilmll held, then by (1.2) we would have w(u’(b)) > w(llml[) _>
Ilmll, a contradiction. This together with (1.7) yields

lu’(b)l < I[mll. (1.10)

Now, making use of (0.2), (1.2) and (1.7) we obtain for E [a, to]

u’(t) >_ u’(a) Im(s)l ds > Im(s)] ds Im(s)l ds -Ilmll.

This together with (1.7) yields

-Ilmll < u’(t) for all tE [a,b]. (1.11)

On the other hand, in virtue of (1.9), (1.10) and (1.2) we have for
[to, b]

u’(t) < u’(b) + ft
b "t ftbIm(s)[ ds < Im(s) ds / Im(s) ds <

This together with (1.8) and (1.11)completes the proof of (1.3).

Remark 1.2 If m(t) > 0 were fulfilled a.e. on [a, b], then in the case that
we suppose (1.1) and (1.2), the set of solutions u of (0.1), (0.2) such that
u(t) oil(t) on [a, b] would be empty. Analogous situation would occur if
m(t) < 0 held a.e. on [a,b] and we supposed (1.4) and (1.5).

Furthermore, we can see that provided w(y)=_ y (i.e. the boundary
conditions (0.2) reduce to the periodic ones), we get (1.3) under the
assumption (1.1) as well as under (1.4).
The Eq. (0.1) may be rewritten as the system of two equations of the

first order

x’ y, y’ f(t,x,y).

Generalization ofthe notions oflower and upper functions for systems of
differential equations of the first order leads to the following concepts
of "coupled" lower and upper functions which will be suitable for our
purposes.
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DEFINITION 1.3 Functions (O.I,/91) E AC[a, b] x IV[a, b] are said to be
singlowerfunctions of the Eq. (0.1) (on [a, b]),/f the singular part Pl of/91 is

nondecreasing on [a, b] and thefollowing system ofdifferential inequalities
is satisfied:

o. (t) pl (t) a.e. on [a, b], (1.12)

p’l(t) >_f(t,o.l(t),pl(t)) a.e. on [a,b]. (1.13)

DEFINITION 1.4 Functions (o’2,/92) E AC[a, b] x/V[a, b] are said to be
singupper functions ofthe Eq. (0. l) (on [a, b]), ifthe singularpart p. ofp2 is

nonincreasing on [a, b] and thefollowing system ofdifferential inequalities
is satisfied:

o’(t) p2(t) a.e. on [a,b], (1.14)

p2(t) <_f(t,o.2(t),pE(t)) a.e. on [a,b]. (1.15)

Remark 1.5 If (O.1, Pl) and (o.2, p2) are respectively lower and upper
functions to the given equation, then the monotonicity properties of the
singular parts of the functions pi (i 1,2) yield the relations

pl (t+) Pl (t) > 0 and p2(t+) -/92(t) < 0

Pl (s) pl (s-) > 0 and p2(s) p2(s-) < 0

for all [a, b),

for all s 6 (a, b].
(1.16)

Remark 1.6 Obviously, if (o., pl) are lower functions of the Eq. (0.1),
then o’ (t) pl (t) for any point of continuity of Pl in (a, b), while the
relations D+o’(t)=p(t+) and D-o.(s)=p(s-) are satisfied for any

[a, b) and s (a, b]. Analogous relations are true for upper functions
(o.2, p2) of (0.1), of course. On the other hand, for a given E { 1,2}, o./" (t)
need not be defined even for any [a, b] where D+o.i(t) D-o.i(t)
o.[(t) and thus o.[’(t) need not be defined for any t [a, b], which gen-
eralizes the notion ofW2l-lower and -upper functions introduced in [1].
Other definitions which generalize the notions ofW2l-lower and -upper
functions, but not so suitable for our purposes, were given by Fabry
and Habets in [4]. Recently, it was shown by Vrko6 in [11] that our Defi-
nitions 1.3 and 1.4 are equivalent to those from [4].
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DEFINITION 1.7 Lowerfunctions (or1, Pl) of(0.1) which satisfy

or, (a) r (b) and pl (a+) _> W(pl (b-)) (1.17)

are called lower functions of the problem (0.1), (0.2).
Upperfunctions (r2, p2) of(0.1) which satisfy

cr2(a) cry(b) and p(a+) < w(p2(b-))

are called upper functions of the problem (0.1), (0.2).

Remark 1.8 Iff(t, rl, 0) < 0 a.e. on [a, b] and w(0) < 0, then (rl, 0) are
lower functions of (0.1), (0.2) and, similarly, iff(t, r2, 0) >_ 0 a.e. on [a, b]
and w(0) > 0, then (r2, 0) are upper functions of (0.1), (0.2). On the other
hand, it is easy to see that iff(t, or(t), p(t)) > 0 a.e. on [a, b] and w fulfills
(1.2), then (or, p) could not be lower functions of(0.1), (0.2). Analogously,
f(t, or(t), p(t)) < 0 a.e. on [a, b] with (1.5) can be true for no upper func-
tions (or, p) of (0.1), (0.2).

Let us denote

L:x E ACl[a,b]-+(x"-x,x(a) -x(b),x’(a)) L[a,b] x IR2 (1.19)

and

F: x C [a, b] H Fx L[a, b] x IR, (1.20)

where

(Fx)(t) (f(t,x(t),x’(t)) x(t),O, w(x’(b))) a.e. on [a,b].

Then L is a linear bounded operator and the operator F is continuous.
After a careful computation we can check that ifwe put

(e2a-s-t + et-S)(e2S e2b)
if < s,

2(ea eb)2

V0(t, s) (e2b-s-t et-) (e2S + e2a) 2ea+b(et-s es-t)
2(ea eb)2

ift>s

(1.21)
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and

e2a+b-t -+- eb+t ea+b-t -F e
1 (t)

eb ea)2
and F2(t) e6 ea on [a, b], (1.22)

then

max [r0(t,s)[ + sup
t,sE[a,b] t,sE[a,b]

Oro(t,s)
Ot

max (Ir:(t)l + Ir(t)l) < omax (Ir (t)l + Ir (t)l) +
t[a,b] t[a,b]

and for any (y, rl,r2)EL[a,b] 2 the unique solution of the linear
boundary value problem

x" x y(t), x(a) x(b) rl, x’(a)

is defined by

b

x(t) Fo(t,s)y(s) ds + ’ (t)rl + r2(t)r2

Furthermore, the operator L+ defined by

L+: (y,r,r2) L[a,b] x I:
H L+(y,r,r2) C[a,b], (1.23)

where

b

(L+(y,r,rv.))(t) Fo(t,s)y(s)ds + r(t)r + l2(t)r2

is linear and bounded and the operator L+F: Cl[a, b] Cl[a, b] is com-
pact. The problem (0.1), (0.2) is equivalent to the operator equation

(I-L+F)x=O

and if for some open bounded set 9t c Cl[a, b] the relation

deg(I- L+F, 9t) :fi 0 (1.24)

is true, then the problem (0.1), (0.2) possesses at least one solution in f.
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2. STRICT LOWER AND UPPER FUNCTIONS AND
TOPOLOGICAL DEGREE

The following definition is motivated by the similar one used in [1 for the
periodic problem x" =f(t, x), x(a)= x(b), x’(a)= x’(b).

DEFINITION 2.1 Lower functions (crl,pl) of(0.1), (0.2) such that crl is

not a solution of this problem are called strict lower functions of (0.1),
(0.2)/f there exists e > 0 such that

pl(t) >_f(t,x,y) for a.e. E [a,b]
and all (x,y) [rl (t), crl(t) + e] [pl(t) e,p(t) + e]. (2.1)

Analogously, upperfunctions (cr2,/92) of(0.1), (0.2) are said to be strict

upperfunctions of(O. 1), (0.2)/for: is not a solution ofthisproblem and there
exists e > 0 such that

p(t) < f(t,x,y) for a.e. [a,b]
and all (x,y) [r2(t)- e, cr2(t)] [p2(t)- e, p2(t) + el. (2.2)

In this section we want to prove theorems giving sufficient conditions
for (1.24) in terms of strict lower and upper functions of (0.1), (0.2). We
shall need the following two lemmas.

LEMMA 2.2 Let (O’1,/91) and (or:, P2) be respectively strict lower andupper
functions ofthe problem (0.1), (0.2) such that

crl(t) < cr2(t) on [a,b]. (2.3)

Thenfor any solution u of(0.1), (0.2)fulfilling

cry(t) < u(t) < cr2(t) on [a,b] (2.4)

we have crl(t) < u(t) < cr2(t) on [a, b].

Proof (i) Suppose

u(to) a2(t0) max(u(t) cr2(t)) 0 and to (a,b).
tE[a,b]

(2.5)
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In particular, ut(to)-p2(to-)>_O>_u’(to)-p2(to-+-) and thus, with
respect to (1.16),

u’(to) lim p2(t) p2(to).
t--- to

(2.6)

Hence, if e > 0 is such that (2.2) is true, then there is 6 E (0, b to] such
that the relations cr2(t) e _< u(t) <_ Crz(t and pc(t) e" _< ut(t) <_ pc(t) + e
are satisfied for all E [to- 6, to + 6] and consequently, making use of

sing(2.2), (2.6) and the monotonicity of P2 WC get for any [to, to + 6]

(2.7)

By (1.16), (2.7) and (2.4) we have

0 >_ u(t) r2 (t) (u’ (s) p (s)) ds >_ 0 on [to, to + 6 ],

i.e. u(t)= r2(t) on [to, to + 6].

Let us put t* sup{- [to, b]: u(t) cr2(t on [to, 7-]}. Then t* _> to + 5,
u(t*)=rz(t*) and u’(t*)= pc(t*-). Let us assume that t*< b. Then,
by (1.16), we have u’(t*) >_ p2(t*+). If u’(t*) > pc(t*+) were valid, then
0 U(to) a2(to) u(t*) a2(t*) could not be the maximum value of
u(t) o2(t) on [a, b] and this would contradict the assumption (2.5). Thus,
u’(t*) p2(t*+). Repeating the above considerations with t* in place
of to, we would obtain further that there is 6" (0, b-t*] such that
u(t) tTz(t) on [t*, t* +5"], a contradiction with the definition of t*.
It means that t* b and u(t) r2(t) on [to, b]. Similarly, we could prove
that u(t)- a2(t) on [a, to], i.e. u(t)= a2(t) on [a, b]. This contradicts our

assumption that or2 is not a solution of the problem (0.1), (0.2) on [a, b],
i.e. u(t) < az(t) on (a, b).
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(ii) Suppose

0 u(b) r2(b) u(a) cr2(a) max(u(t) o-2(t)).
tE[a,b]

(2.8)

This is possible only if u’(a) < p2(a+) and u’(b) >_ p2(b-). On the other
hand, by (0.2) and (1.18) we have 0 > u’(a) p2(a+) >_ w(u’(b))
w(p(b-)) >_ 0 and hence

u’(a) p2(a+). (2.9)

Similarly as in part (i) of the proof, we can deduce from the relations
(2.8) and (2.9) that u(t) =_ crz(t) on [a,b]. This being impossible by
Definition 2.1, we conclude that u(t) < cr2(t) on [a, b].

(iii) Similarly we can show that under our assumptions the relation

u(t) > crl(t) is true for all E [a, b], as well.

LEMMA 2.3 Let (or1, pl) and(cry, p) be respectively strict lower andupper
functions of(0.1), (0.2) such that (2.3) is true. Let us put

f(t, rl (t), y) rl (t)
f(t, x, y) f(t, x, y) x

f(t, cr2(t), y) cr2(t)

/f x < (t),
<_ x _< o2(t),

/f o2(t) < x.

(2.10)

Thenf Car([a, b] x 112) andfor any solution u of the problem

u" u f(t,u,u’), (0.2) (2.11)

the relations (2.4) are satisfied.

Proof In view of(2.10), we havej Car([a, b] x I1;t2). Let u be an arbi-
trary solution of the problem (2.11) and let

u(to) cr{t0) max(u(t) cry(t)) > 0. (2.12)
tE[a,b]

By (0.2) and (1.18) it suffices to consider the cases to (a, b) and to a.
If to (a, b), then similarly as in the proof of Lemma 2.2 we obtain that

limt--,t0 p2 (t) p2 (t0) u’ (t0). If to a, then like in the second part ofthe
proof of Lemma 2.2 we get u’(a) p2(a+). In particular, in both cases,



210 I. RACHONKOV,, AND M. TVRD

if e > 0 is such that (2.2) is satisfied, then there is 6 E (0, b to] such that
u’(t) [02(0 e, p2(t) + e] and u(t) > cr2(t) on [to, to + 6]. Hence, owing to

(2.10) we have

u"(t) p(t) f(t, cr2(t),u’(t)) + u(t) cry(t) p(t)

> f(t,r.(t),u’(t)) p2(t) >_ 0 a.e. on [to, t0

and like in (2.7) for (to, to + 6] we obtain

(Ig tt0 < (s) p’ (s)) ds < u (t) p (t).

Consequently,

o < p2(s))ds <_ (u(t) o:(to))

on (to, to + 6].

As this contradicts the assumption (2.12), it follows that u(t)< cry(t)
on [a, b]. Similarly we could show that crl(t) < u(t) on [a, b].

THEOREM 2.4 Let (or1, Pl) and (or2,/92) be respectively strict lower and
upperfunctions of(0.1), (0.2) satisfying (2.3). Further, let us assume that
either (1.1) and (1.2) or (1.4) and (1.5) are satisfied with m L[a, b] and
ql(t) [crl(t), cr2(t)]for [a, b]. Let us denote

Vii {x Cl[a,b]: o’l(t) < x(t) < try(t) and

[Ix’l[c < I[ml[r on [a,b]} (2.13)

and let the operators L+ andFbe given by (1.23) and (1.20), respectively.
Then

deg(I- L+F, Vii) 1.

Proof Assume (1.1) and (1.2) and for some c E (0,) put

f(t,x,

g(t,x,y)= f(t,x,y)

f(t,x,c)

c) if y < -c,

iflY[ _< c,

ify>c
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and

w(-c) ify <-c,

r?(y) w(y) if Yl <- c,

w(c) if y > c.

Let f be given by (2.10), where we put g instead off and choose c >
Ilmll such that (Crl, Pl) and (r2, p2) are strict lower and upper functions of

u" g(t, u, u’), u(a) u(b) 0, u’(a) v(u’(b)). (2.14)

Now consider the parameter system of boundary value problems

u"- u Aj(t, u, u’), u(a) u(b) O,
u’(a) A(u’(b)), A E [0, 1]. (2.15)

Defining for x E Cl[a, b] and for a.e. E [a, b]

(/x)(t) (](t,x(t),x’(t)), 0, (x’(b))),

we get a continuous operator/: Cl[a, b] L[a, b] x lt2 and the system
(2.15) can be rewritten as the parameter system of operator equations

u-AL+u-O, A[O, 1].

For A [0, 1], a function u Cl[a, b] is a solution to (2.15) if and only if
it satisfies the relation

(/au(t) ,X ro(t, slf(s,u(s),u’(sllds + r’(tlC(u’(bl)

where I’0 and I’z are defined by (1.21) and (1.22). Therefore there is
r (0, oe) such that

[’1 Q 9f(r) {x E C[a,b] Ilxllc, < r)
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and for any A E [0, 1] any solution u to (2.15) belongs to gC(r). Thus, the
operator I- L+/is a homotopy on gCg(r) [0, 1] and

deg(I- L+/, g(f(r)) deg(I, gU(r)) 1.

Now, let A and let u be an arbitrary solution of the corresponding
problem (2.15). We can apply Lemma 2.3 and get (2.4). Hence u is a
solution of (2.14). Since g(t,x,y) > m(t) for a.e. E[a,b] and all (x,y)
[rl(t),cr2(t)]xN, r(t)<u(t)<cr2(t) on [a,b] and v(y)=w(y) for
y [-Ilmll, Ilmlld, we can use Lemma 1.1 and get Ilu’llc < Ilml[ < c.

It follows that u is a solution of (0.1), (0.2). Consequently, we can make
use of Lemma 2.2 to show that crl(t) < u(t) < cr2(t) on [a, b].
To summarize, for A- and for any solution u of (2.15) we have

u fl. Since F Fon cl(gZ), this means that

deg(I- L+F, a) deg(I- L+/, a) deg(I- L+/, off(r)) 1.

The case that (1.4) and (1.5) are satisfied instead of(1.1) and (1.2) could
be treated in a similar way.

Now, we prove an analogous theorem provided cry, r2 are ordered in
the opposite way, i.e.

erE(t) < rl(t) for all [a,b]. (2.16)

THEOREM 2.5 Let (O’1, Pl) and (or2, P2) be respectively strict lower and
upperfunctions of(O. 1), (0.2) satisfying (2.16). Further, let us assume that
either (1.1) and (1.2) or (1.4) and (1.5) are satisfied with m L[a, b] and
ql(t) =_ . LetA be such that Iltrl IIc / 11oEllc / (b a)llmll _< ,4 andZet

{x Cl[a,b] Ilxllc < A, IIx’llc < Ilmll
and there exists tx [a,b] such that a2(tx) < X(tx) < crl(tx)}.

Then

deg(I- L+F, Ft2) -1. (2.17)

Proof Put J A + (b- a). Assume (1.1) and (1.2) and consider an
auxiliary equation

u" =g(t,u,u’), (2.18)
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where

g(t,x,y)

f t, x, y) + Im(t)l
f(t,x, y)+ (x- A)lm(t)l
f(t,x,y)

f(t,x,y) + (t + x)[f(t,x,y) + Im(t)l]

ifx_>+l,
ifJ<x<J+ 1,

if -A <_x<_A,

if -J <x <-J,
ifx <-A- 1.

We have g Car([a, b] ]12) and

g(t,x,y) >-([m(t)[ + 1)
for a.e. E [a, b] and all (x, y) E [-(. + 2), (.,] + 2)] . (2.19)

The couples offunctions (O’1, Pl) and (or2, P2) are respectively strict lower
and upper functions to the problem (2.18), (0.2). Furthermore, in virtue
of the assumption (1.1), also (or3, P3) (-(/] + 2), 0) and (or4, p4)
( + 2,0) are respectively strict lower and upper functions to the
problem (2.18), (0.2) which are "well-ordered", i.e. cr3(t)< tr4(t) on
[a, b]. Let us define sets

f {x Cl[a,b] Ilxllc < + 2, IIx’llc < Ilmll. +1},
A {x ’-; o’1(/) < x(t) on [a,b]}

and

and an operator

A {x f" x(t) < rg.(t) on [a,b]),

G’x C’ [a, b] Gx L[a, b] x ,
where

(Gx)(t) (g(t,x(t),x’(t)), O, w(x’(b))) a.e. on [a, b].
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Owing to Theorem 2.4 we have

deg(I- L+G, fl) deg(I- L+G, Zl) deg(I- L+G, A2) 1.

Let us denote A- f\cl(A t3 A2). Then

A {x E f: there is tx [a,b] such that cr2(tx) < X(tx) < trl(tx)}

and by the additivity of the degree we have

deg(I L+G, A)
deg(I- L+G, 9t) -deg(I- L+G, A1) -deg(I- L+G, A2) -1.

Let u be a solution to (2.18), (0.2) and let u A. Then there is tu (a, b)
such that cr2(tu) < U(tu) < crl(tu). Consequently, for any [a, b] we have

lu(t)l U(tu) / u’ (s) ds II  llc + II =llc + (b a)llu’llc, (2.20)

wherefrom by (2.19) and Lemma 1.1 the relation IlUllc < A follows.
Therefore u is a solution of (0.1), (0.2) and using Lemma 1.1 and (2.20)
once more we get Ilu’llc < Ilmll and Ilullc < A, i.e. u ’2. Consequently,
the excision property of the degree yields

deg(I L+G, 2) 1,

wherefrom, since G Fon cl(f2), we obtain (2.17).
In the case that (1.4) and (1.5) are satisfied instead of (1.1) and (1.2)

we can argue similarly.

The case

there are r and s E [a, b] such that rl (r) < r2(r) and r2(s) < Crl (s)
(2.21)

is treated by the following theorem.
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THEOREM 2.6 Let (crl, Pl) and (o’:, P2) be respectively strict lower and
upperfunctions of(O. 1), (0.2) satisfying (2.21). Further, let us assume that
either (1.1) and (1.2) or (1.4) and (1.5) are satisfied with m E L[a, b]
and g(t) =_ I. Let A be such that [lrl [[c + [Io21[c -- (b a)[lm[[ _< A
and let

a3 {x C’[a,b]" Ilxllc < A, IIx’llc < Ilmll and there exist

rx, Sx [a,b] such that rl(rx) > X(rx) and cr2(Sx) < X(Sx)}.

Then

deg(I L+F, f3) 1.

Proof Let g, G, A, A, A2 and fl have the same meaning as in the proof
ofTheorem 2.5. Taking into account that in the case (2.21), 9t\cl(A1 tA A2)
is the set of all x for which there exist rx and Sx [a, b] such that
crl(rx) > X(rx) and cr2(sx) < X(Sx), it is easy to see that the proof of this
theorem can be completed by an argument analogous to that used in the
proof of Theorem 2.5.

3. LOWER AND UPPER FUNCTIONS AND
TOPOLOGICAL DEGREE

In this section we give propermodifications ofthe results described in the
previous section to the case oflower and upper functions which need not
be strict.

LEMMA 3.1 Let the assumptions of Theorem 2.4 be fulfilled but with
(crl, Pl) and(r2, P2) not necessarily strict. For a.e. [a, b] andany [0, 1
let us put

wl(t, ff) sup If(t, cr(t),p(t))-f(t,a(t),z)[, (3.1)
z,,lpj(t)-z[<C

w(t, if) sup If(t,r2(t),p(t)) -f(t,r2(t),z)[. (3.2)
z,,lm t)-zl<_ff
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Furthermore, let us define

h(t,x,y)

f(t, crl(t),y)

f(t,x,y)

f(t,r2(t),y)

(t)-x )-Crl (t) COl t,
crl (t) x +

-x /f x [o- (t), o-2(t)],

-r(t) + co2 t,
x o’:(t)+

/fx < , (t),

/ix > o-:(t)

(3.3)

and

w(-llml[) / Y + [Iml[ for y

W( y) w( y) for [Yl -< Ilml[,
w(l[mll) + Y -I[mll for y >

Then h E Car([a, b] x ]12) andfor any solution u ofthe problem

u"- u h(t,u,u’), u(a) u(b), u’(a) v(u’(b)) (3.4)

the relations (2.4) and (1.3) are true.

Proof The functions wi" [a, b] x [0, 1] H I+ (i 1, 2) given by (3.1)
and (3.2) are nondecreasing in the second variable and belong to the
class Car([a, b] x [0, 1]). Hence h E Car([a, b] x I2) as well. Let u be an
arbitrary solution of (3.4) and suppose

u(to) cr2(t0) max(u(t) rE(t)) > 0.
tE[a,b]

In virtue of (0.2) and (1.18) it suffices to consider the cases a < to < b and
to a. As in the proof ofLemma 2.3 we have

u’(to) lim p(t) pg.(to)
t--- to

in the former case and u’(a)= p2(a+) in the latter. Making use of the
continuity of or2, u and u we conclude that in both cases there are > 0
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and 71 E (0, 1) such that for all E [to, to + 6] we have

u(t)[p2(t) u’(t)[ < < u(t) r2(t) / < u(t) 0.2(t)

and, with respect to (3.2),

[f(t,r2(t),p2(t)) -f(t, cr2(t),u’(t))[ < 2(t, Ip2(t) u’(t)[)

(u(t)-0.2(t) )< 0.)2 t,
u(t) 0.2(t) +

Consequently, by means of (1.15), for any [t0, to + 6] we get

u"(t)

(u(t)--0.2(t) ) 0.2(t) p(t)u(t)+f(t, 0.2(t), u’(t)) + wg. t,
u(t)- r2(t)+

> 71 +f(t, 0.2(t), p2(t)) p(t) > O.

Like in the proof of Lemma 2.3 this yields a contradiction with the
assumption that U(to) 0.2(t0) is the maximal value ofu(t) 0.2(t) on [a, b].
Thus, the relation u(t) < 0.2(t) is true on [a, b]. Similarly we can show that
0.1(0 < u(t) on [a, b] as well, i.e. u satisfies (2.4). Therefore u is a solution
of (0.1) on [a, b]. Moreover, satisfies (1.2) or (1.5) for all y . Hence
by Lemma 1.1 we get (1.3).

LEMMA 3.2 Let the assumptions ofLemma 3.1 befulfilled. Thenfor any
# > 0 the couples (0.1 #, Pl) and (02 + #, P2) are respectively strict lower
and upperfunctions to the problem (3.4).

Proof Let (0"1,/91) and (0"2,/92) be respectively lower and upper functions
to the problem (0.1), (0.2) such that (2.3) is true. Let an arbitrary # > 0 be
given and let us define

2(t) 0.2(t) -t- # on [a, b].

Obviously, the couple (#2, p2) satisfies the boundary conditions (1.1 8).
Further, making use of (1.1 5) and (3.2), we get for a.e. [a, b]

> f(t, 0.2(t), p2(t)) > p(t).
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This means that (#2,/92) are upper functions to (3.4) and 2 is not a
solution of (3.4).
Now, let us put e (/z/2)/((tz/2)+ 1). Since e < #/2, for any E [a, b]

and any couple (x, y) E ]12 such that

Ix-#2(t)l < and [y-p2(t)l <

we obtain x cr2(t) > #/2 and [y p2(t)[ < (x cr2(t))/(x cr2(t) + 1) and
hence also

(t, lY p2(t)[) < w:z (t,
Consequently, for a.e. E [a, b] and all (x, y) E 2 fulfilling (3.5) we can
compute

x + h(t, x,y) 2 x + (t,
wz(t, lY m(t)l) +f(t, cry(t), p2(t))

> f(t, o’2(t), p.(t)) >_ p(t),

i.e. the functions (#2, p2) are strict upper functions to the problem (3.4).
Analogously we could show that for any # > 0 the functions (cr #,/91)
are strict lower functions of (3.4).

THEOREM 3.3 Let the assumptions of Theorem 2.4 befulfilled, but with
(ty, p) and (a2, P2) not necessarily strict. Then either the problem (0.1),
(0.2) has a solution which belongs to 0 or

deg(I- L+F, f 1. (3.6)

Proof Let (crl,/91) and (r2, P2) be respectively lower and upper functions
to the problem (0.1), (0.2) fulfilling the relation (2.3). Let us choose an
arbitrary # > 0. By Lemma 3.2 the couples (rl #, Pl) and (r2 + #, p2)
are respectively strict lower and upper functions to the modified problem
(3.4). It means that by Theorem 2.4

deg(l L+ H, f’t) 1,
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where H: x E Cl[a, b] -+ Hx L[a, b] x ]12,

(Hx)(t) (h(t,x(t),x’(t)), O, v(x’(b))) a.e. in [a,b],

fu {x C’[a,b]" 0-1(t)

on [a,b] and IIx’llc

and either fit(t) m(t) #- (t, 1) or fit(t) m(t) + # + w2 (t, 1)
(according to whether we assume (1.1), (1.2) or (1.4), (1.5)). On the
other hand, by Lemma 3.1 the problem (3.4) does not possess any solu-
tion in 9tu\cl(Vt 1). Moreover, H=Fon cl(fl) and so ifthe problem (0.1),
(0.2) has no solution belonging to 09tl, the modified problem (3.4) has
no solution belonging to 0fl, either. Therefore, by the excision property
of the degree we have (3.6).

In the case that cr and 0-2 fulfill the relation (2.16) or (2.21), making
use of Theorem 3.3 we can modify the proofs of Theorems 2.5 and 2.6
in such a way that we get the following assertions.

THEOREM 3.4 Let the assumptions of Theorem 2.5 befulfilled, but with

(0-, Pl) and (0-2, P2) not necessarily strict. Then either the problem (0.1),
(0.2) has a solution which belongs to Of2 or

deg(I L+F, "2) 1.

Proof Let (O’1,/91) and (0"2, P2) be respectively lower and upper functions
to the problem (0.1), (0.2) and let m, A, ., g, G, (0"3, P3), (0-4, p4), 9t, A, z2
andAhave the samemeaning as in theproofofTheorem 2.5. The couples
(0"1, Pl) and (0"2, P2) are respectively lower and upper functions to the
problem (2.18), (0.2) which need not be strict now. By Theorem 2.4 we
have again

deg(I- L+G,f) 1.

Let u be a solution of (0.1), (0.2) such that u 09t2. Then u is also a solu-
tion to (2.18), (0.2). Moreover, as in the proof of Theorem 2.5, making
use of (2.20) and of Lemma 1.1 we can show that

Ilullc < A and Ilu’llc < Ilmll. (3.7)
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Thus, there exist E { 1, 2) and tu [a, b] such that

U(tu) cri(tu), (3.8)

i.e. u OAi.

On the other hand, let u be a solution of (2.18), (0.2) such that u

0A1 t_J 0A2. By Lemma 2.2 we have -(J + 2) < u(t) < J + 2 on [a,b].
Furthermore, by (2.19) and Lemma 1.1 we get ]lu’][c < ]lm{[ + 1. As in
the proof of Theorem 2.5 this implies by (2.20) that [lullc < A, i.e. u is
a solution of (0.1), (0.2). Now, using (2.20) and Lemma 1.1 once more
we obtain again (3.7) and (3.8), i.e. u E 0f2.
To summarize, (0.1), (0.2) possesses a solution belonging to 09t ifand

only if (2.18), (0.2)possesses a solution belonging to 0A1 t_J 0A2.

Consequently, if the problem (0.1), (0.2) possesses no solution u such
that u E 0f2, then making use of Theorem 3.3 we get

deg(I- L+G, A1) and deg(I- L+G, A2) 1.

Finally, by the same argument as in the proof of Theorem 2.5 we can
show that any solution u E A of the problem (2.18), (0.2) belongs to f:.
Therefore

deg(I- L+G, f2) deg(I- L+G,) -deg(I- L+G, A1)
deg(I- L+G, A2) --1

and taking into account that F= G on c1(2) we complete the proof.

THEOREM 3.5 Let the assumptions of Theorem 2.6 befulfilled, but with

(crl, pl) and (tr2, p2) not necessarily strict. Then either the problem (0.1),
(0.2) has a solution which belongs to Of3 or

deg(I- L+F, f3) -1.

Proof Follows from Theorem 3.3 by a modification of the proof of
Theorem 2.6 similar to that used in the proof ofTheorem 3.4.

4. EXISTENCE THEOREMS

Theorems 3.3-3.5 give directly existence results for our problem (0.1),
(0.2). Similarly as in [7] (cf. Theorem 6) it is possible to show the existence
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of a solution to this problem even in the cases that the strict inequalities
(2.3) and (2.16) are replaced by the nonstrict ones.

THEOREM 4.1 Let the assumptions ofTheorem 2.4 be satisfied but with
(or1, pl) and (r2, p2) not necessarily strict and instead of(2.3) let us assume

rl t) < cr2 t) on [a, b]. (4.1)

Then the problem (0.1), (0.2) possesses a solution u such that

(with fl given by (2.13)).

Proof Consider an auxiliary problem

u" =iT(t, u, u’), (0.2), (4.2)

wheref is for a.e. E [a, b] and any y E given by

f(t,x,y)f(t,x,y)=
f(t, tr.(t),y)

Clearly (or1, pl) are lower functions to (4.2). Now, let an arbitrary k N
be given. The functions (tr2 + (1/k), p2) are then upper functions to (4.2)
and by Theorem 3.3 the problem (4.2) possesses a solution xk such that

xk(t) ICrl(t),r2(t)-+-] on [a,b] and IIxZIIc Ilmll,

Using the ArzelS.-Ascoli theorem and the Lebesgue Dominated Conver-
gence Theorem for the sequence {xk} we get a solution x cl(fl)of(0.1),
(0.2) as a C-limit of a proper subsequence of {x}.

THEOREM 4.2 Let the assumptions ofTheorem 2.5 be satisfied but with
(cq, Pl) and(r, Pz) not necessarily strict andinsteadof(2.16) let us assume

cr2(t) < tr (t) on [a, b]. (4.3)

Then the problem (0.1), (0.2) possesses a solution u such that u c1(2)
(with 2 given in Theorem 2.5).
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Proof For any k E N, a.e. E [a, b] and any x, y IR put

gk(t, x,y)=k(f(t, 0-2(t),y)-f(t, x,y))(x- (tr2(t)- ))
and

f (t,x,y)

f(t,x,y)

f(t, 0-2(t),y) + gk(t,x,y)

f(t, 0-2(t),y)

,f(t,x,y)

2
if x < 0-2(t) k’

iif x 0-2 , 0-2 (t)

if x 0-. -,0-2(t)
if x >_ 0-2(t).

The couples (0-1,/91) and (0"2 (l/k), P2) are then respectively lower and
upper functions to

U"=]k(t,u,u’), (0.2) (4.4)

and satisfy (2.16). It is easy to verify that for any k N the functionfk
satisfies the assumptions forfofTheorem 2.5 with the same m E L[a, b].
Thus by Theorem 3.4 for any k N there is a solution xk to the prob-
lem (4.4) and a point Sk [a, b] such that

I[x llc A + IIxllc Ilmll and 0"2(Sk)- _< Xk(Sk) < 0"1 (Sk),

whereA has the same meaning as in Theorem 2.5. Using the compactness
of the interval [a, b] and the Arzelt-Ascoli theorem we get the existence
of a subsequence {Xk} in {xk}, s* [a, b] and x Cl[a, b] such that

lim [[xk x[I c, 0 and lim Ske S*.

Obviously, x E c1(2) and by virtue ofthe Lebesgue Dominated Conver-
gence Theorem, x is a solution of (0.1), (0.2).
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THEOREM 4.3 Let the assumptions of Theorem 2.6 be satisfied but with
(al, pl) and (or2, P2) not necessarily strict. Then the problem (0.1), (0.2)
possesses a solution u such that u E cl(f3) (with f3 given in Theorem 2.6).

Proof If cr and or2 satisfy neither (4.1) nor (4.2), they fulfill (2.21) and
hence by Theorem 3.5 we have a solution u E cl(f3) to (0.1), (0.2).

COROLLARY 4.4 Let Z1, Z2 C[a, b],

max zl (t) < m2 min z2(t) (4.5)
tE[a,b] tE[a,b]

and letfor a.e. [a, b] and all x, y 1

f(t,x,y) < 0 if x (z(t),z2(t)) (4.6)

and

f(t,x,y) > 0 if x < z(t) or x > z2(t). (4.7)

Further, let (1.1) be satisfied with m EL[a,b] and ql(t)=[z(t),z2(t)],
[a, b]. Then

(i) there are at least two different solutions u and v to the periodic
boundary value problem

u" f t, u, u’), u(a) u(b), u’ (a) u’ (b) (4.8)

such that

v(t) <_ m for some tv [a,b] (4.9)

and

max{mz,v(t)) < u(t) on [a,b]; (4.10)
(ii) ifwe suppose in addition thatfor any compactKC [mz, o) there

is a nonnegativefunction h, L[a, b] such that

f(t, Xl, yl) f(t, x2, y2)
> -hl(t)lyl- Y2I for a.e. [a,b]
and all (xl,y), (x2,Y2) K such that xl > x, (4.11)

then u is the only solution of(4.8) bounded below by mz.
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Proof (i) Without any loss of generality we may assume that re(t) <_ 0
a.e. on [a, b], i.e. we have

f(t,x,y) >_ m(t) for a.e. E [a,b] and all (x,y)

Furthermore, by (4.5) there are rl, r2, such that

rl < min zl (t) _< ml < m2 _< max z2(t) < r..
tE[a,b] tE[a,b]

According to (4.6) the couples (ml, 0) and (m2, 0) are lower functions
of (4.8) and by (4.7) the couples (rl, 0) and (r2, 0) are upper functions
of (4.8). Hence, by Theorems 4.1 and 4.2 there are solutions v and vl of

(4.8) such that

rl < V(tv) < ml for some tv (a,b)
and m2 _< Vl (t) < r2 for all G [a, b].

Suppose that v and vl are not ordered on [a, b], i.e. there is sv such that

vl(s) < v(s), and set

trl (t) max{v(t), v, (t)) for [a, b]. (4.12)

Then r AC[a, b], tr E V[a, b], Crl is not a solution of (4.8) but the
functions (trl, try) are lower functions of (4.8). According to (4.7) we can

find a number r* > [Itrl IIc such that (r*, 0) are upper functions of (4.8).
This implies the existence of a solution u of (4.8) satisfying r(t)_<
u(t) < r* on [a, b]. Provided v and vl are ordered, we set u v.

(ii) Suppose (4.11) and let u-u be a solution of (4.8) such that

mE _< ul(t) on [a, b]. Set z(t)- Ul(t)- u(t) and choose a compact K such
that (u(t), u’(t)) Kand (Ul (t), u((t)) Kfor all [a, b]. Wecan assume
that maxt[a,b] z(t) Z(to) > 0 and z’(to) 0 for some to [a, b). Then
there exists t* > to such that z’(t*) <_ 0 and z(t) > 0 on [to, t*]. Now (4.11)
implies

z"(t) > -hk(t)lz’(t)l =-(h,(t)sgn(z’(t)))z’(t) for a.e. E [to, t*].
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Thus,

(zt t) exp (ftot(hk(s)sgn(zt (s) ds) ) t> O on [to, t*]

and

(ft0t* )z’(t*) exp (hk(s)sgn(z’(s))) ds > z’(to) O,

a contradiction.

Remark 4.5 ProvidedziisaconstantfunctionforsomeiE {1,2},itisa
solution of (4.8). In this case we can set v(t) 2i(t). If zl is not constant,
then there exists Sv [a, b] such that V(Sv) > Zl(Sv). Similarly, if z2 is not
constant, we get u(tu)< z2(tu) for some tu[a,b]. These observations
follow from the fact that any solution of (4.8) cannot have all its values
outside (Zl(t), z2(t)).

Remark 4.6 In the case that f(t, x,y) =_ g(t, x) the assertion (i) of
Corollary 4.4 is fulfilled under the assumptions (4.5), (4.6) and (4.7).
Thus our Corollary 4.4 generalizes Theorem 4.7 from [3]. Further, the
assertion (ii) of Corollary 4.4 is true provided g is increasing in x on
[m2, cx3) for a.e. [a, b].

Remark 4.7 The lower and upper functions method which is described
in this section (cf. Theorems 4.1-4.3 and Corollary 4.4) can be Used for
singular boundary value problems, as well. For multiplicity results for
periodic boundary value problems which were obtained by this method,
see [8].

Remark 4.8 Conditions ensuring the existence of constant lower
and upper functions of the problem (0.1), (0.2) were mentioned in
Remark 1.8. In the proof of Corollary 4.4 we constructed nonconstant
lower functions whose first component was the maximum of two solu-
tions of the problem (4.8) (cf. (4.12)). In general, it is not easy to find
conditions which guarantee the existence of nonconstant lower and
upper functions. One of the possibilities is shown in [9] where they are
constructed as solutions oflinear boundary value problems for general-
ized linear differential equations.
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