J. of Inequal. & Appl., 2001, Vol. 6, pp. 29–36 Reprints available directly from the publisher Photocopying permitted by license only

Some Remarks on Kato's Inequality

TOSHIO HORIUCHI

Department of Mathematical Sciences, Ibaraki University, Mito, Ibaraki, 310, Japan

(Received 30 August 1999; Revised 4 November 1999)

Let $N \ge 1$ and p > 1. Let Ω be a domain of \mathbb{R}^N . In this article we shall establish Kato's inequalities for *p*-harmonic operators L_p . Here L_p is defined as $L_p u = \operatorname{div}(|\nabla u|^{p-2}\nabla u)$ for $u \in K_p(\Omega)$, where $K_p(\Omega)$ is an admissible class. If p = 2 for example, then we have $K_2(\Omega) = \{u \in L^1_{\operatorname{loc}}(\Omega): \partial_j u, \partial_{j,k}^2 u \in L^1_{\operatorname{loc}}(\Omega) \text{ for } j, k = 1, 2, \dots, N\}$. Then we shall prove that $L_p |u| \ge (\operatorname{sgn} u) L_p u$ and $L_p u^+ \ge (\operatorname{sgn}^+ u)^{p-1} L_p u$ in $\mathcal{D}'(\Omega)$ with $u \in K_p(\Omega)$. These inequalities are called Kato's inequalities provided that p = 2.

Keywords: Kato's inequality; p-Harmonic operators

1991 Mathematics Subject Classification: 35J70, 35J60

1 INTRODUCTION

Let $N \ge 1$. Let Ω be a domain of \mathbb{R}^N . Define

$$M(x,\partial_x) = \partial_{x_i}(a_{jk}(x)\partial_{x_k}), \qquad (1.1)$$

where $a_{ik}(x) \in C^1(\Omega)$ is positive definite in the following sense.

$$\sum_{j,k=1}^{N} a_{jk}(x)\xi_j\xi_k \ge C|\xi|^2, \quad \text{for any } \xi \in \mathbb{R}^N \setminus \{0\} \text{ and } x \in \Omega.$$
 (1.2)

Here C is a positive number independent if each x and ξ . First we recall well-known Kato's inequalities. (For the proof, see [1]).

THEOREM 1.1 For *u* and $M(x, \partial_x)u \in L^1_{loc}(\Omega)$, we have

$$M(x,\partial_x)|u| \ge (M(x,\partial_x)u)\operatorname{sgn} u \quad \text{in } \mathcal{D}'(\Omega),$$
 (1.3)

$$M(x,\partial_x)u_+ \ge (M(x,\partial_x)u)\operatorname{sgn}^+ u \quad \text{in } \mathcal{D}'(\Omega). \tag{1.4}$$

Here

$$\operatorname{sgn} u(x) = \begin{cases} \frac{u(x)}{|u(x)|}, & \text{for } u \neq 0, \\ 0, & \text{for } u = 0, \\ 1, & \text{for } u > 0, \\ 1/2, & \text{for } u = 0, \\ 0, & \text{for } u < 0, \end{cases}$$
(1.5)

and $u_+ = \max[u(x), 0]$. By $\mathcal{D}'(\Omega)$ we denote the set of all distributions on Ω .

In this paper we shall consider the operators defined by

$$L_{p}u = \operatorname{div}(|\nabla u|^{p-2}\nabla u),$$

= $|\nabla u|^{p-2}\Delta u + (p-2)|\nabla u|^{p-4}\sum_{j,k=1}^{N}\partial_{j}u\partial_{k}u\partial_{j,k}^{2}u,$ (1.6)

where p > 1 and $\partial_j u = \partial u / \partial x_j$, $\partial_{j,k}^2 u = \partial^2 u / (\partial x_j \partial x_k)$ for j, k = 1, 2, ..., N. Then we shall generalize Theorem 1.1 for the operators L_p in place of linear elliptic operators represented by the Laplacian.

This paper is organized in the following way. In Section 2 we prepare basic inequalities including the *p*-harmonic operators L_p . In Section 3 we shall state our main result, and the proof is also given there.

2 PRELIMINARY

We shall establish some fundamental inequalities for smooth functions u, which are useful to prove our main result.

LEMMA 2.1 Assume that $u \in C^2(\Omega)$. Then it holds that

$$L_p|u| \ge (\operatorname{sgn} u)L_p u \quad \text{in } \mathcal{D}'(\Omega),$$

$$L_p u_+ \ge (\operatorname{sgn}^+ u)^{p-1}L_p u \quad \text{in } \mathcal{D}'(\Omega).$$
(2.1)

Here by $\mathcal{D}'(\Omega)$ we denote the set of all distributions on Ω .

Proof For any $\varepsilon > 0$ we set

$$u_{\varepsilon} = (u^2 + \varepsilon^2)^{1/2}. \tag{2.2}$$

Then we see

$$\partial_j u_\varepsilon = \frac{u}{u_\varepsilon} \partial_j u, \tag{2.3}$$

$$\partial_j^2 u_{\varepsilon} = \frac{u}{u_{\varepsilon}} \partial_j^2 u + \frac{1}{u_{\varepsilon}} \left(1 - \left(\frac{u}{u_{\varepsilon}} \right)^2 \right) (\partial_j u)^2 \ge \frac{u}{u_{\varepsilon}} \partial_j^2 u.$$
(2.4)

Here $\partial_j^2 u = \partial^2 u / \partial x_j^2$, j = 1, 2, ..., N. Using these we have

$$L_{p}u_{\varepsilon} = \left| \frac{u}{u_{\varepsilon}} \right|^{p-2} \left(\frac{u}{u_{\varepsilon}} L_{p}u + (p-1) \frac{1}{u_{\varepsilon}} \left(1 - \left(\frac{u}{u_{\varepsilon}} \right)^{2} |\nabla u|^{p} \right) \right)$$

$$\geq \left| \frac{u}{u_{\varepsilon}} \right|^{p-2} \frac{u}{u_{\varepsilon}} L_{p}u.$$
(2.5)

In a similar way we have

$$L_p\left(\frac{u+u_{\varepsilon}}{2}\right) = \left(\frac{1+(u/u_{\varepsilon})}{2}\right)^{p-1} \left(L_p u + (p-1)\frac{2}{u_{\varepsilon}}\left(1-\frac{u}{u_{\varepsilon}}\right)|\nabla u|^p\right)$$
$$\geq \left(\frac{1+(u/u_{\varepsilon})}{2}\right)^{p-1} L_p u. \tag{2.6}$$

Since $2u_{+} = u + |u|$ holds, letting $\varepsilon \to 0$ we have the desired inequalities.

In the next we shall consider the operators $L_{p,\eta}$ for $\eta \ge 0$ defined by

$$L_{p,\eta} u = \operatorname{div} \Big((\eta^2 + |\nabla u|^2)^{(p-2)/2} \nabla u \Big).$$
 (2.7)

Then we see

$$L_{p,\eta}u_{\varepsilon} = \frac{u}{u_{\varepsilon}}(\eta^{2} + |\nabla u_{\varepsilon}|^{2})^{(p-2)/2} \left(\Delta u + (p-2)\left(\frac{u}{u_{\varepsilon}}\right)^{2} \frac{\partial_{j}u\partial_{k}u\partial_{j,k}u}{\eta^{2} + |\nabla u_{\varepsilon}|^{2}}\right)$$
$$+ \frac{1}{u_{\varepsilon}}\left(1 - \left(\frac{u}{u_{\varepsilon}}\right)^{2}\right)(\eta^{2} + |\nabla u_{\varepsilon}|^{2})^{(p-2)/2}|\nabla u|^{2}$$
$$\times \left(1 + (p-2)\left(\frac{u}{u_{\varepsilon}}\right)^{2} \frac{|\nabla u|^{2}}{\eta^{2} + |\nabla u_{\varepsilon}|^{2}}\right)$$
$$\geq \frac{u}{u_{\varepsilon}}(\eta^{2} + |\nabla u_{\varepsilon}|^{2})^{(p-2)/2}$$
$$\times \left(\Delta u + (p-2)\left(\frac{u}{u_{\varepsilon}}\right)^{2} \frac{\sum_{j,k=1}^{N} \partial_{j}u\partial_{k}u\partial_{j,k}u}{\eta^{2} + |\nabla u_{\varepsilon}|^{2}}\right). \tag{2.8}$$

Similarly we can compute $L_{p,\eta}((u+u_{\varepsilon})/2)$ to obtain the following:

$$L_{p,\eta}\left(\frac{u+u_{\varepsilon}}{2}\right)$$

$$= w_{\varepsilon}(\eta^{2}+w_{\varepsilon}^{2}|\nabla u|^{2})^{(p-2)/2}\left(\Delta u+(p-2)w_{\varepsilon}^{2}\frac{\sum_{j,k=1}^{N}\partial_{j,k}u\partial_{j}u\partial_{k}u}{\eta^{2}+w_{\varepsilon}^{2}|\nabla u|^{2}}\right)$$

$$+ (\nabla w_{\varepsilon}\cdot\nabla u)(\eta^{2}+w_{\varepsilon}^{2}|\nabla u|^{2})^{(p-2)/2}\left(1+(p-2)w_{\varepsilon}^{2}\frac{|\nabla u|^{2}}{\eta^{2}+w_{\varepsilon}^{2}|\nabla u|^{2}}\right).$$

$$(2.9)$$

Here

$$w_{\varepsilon} = \frac{1}{2} \left(1 + \frac{u}{u_{\varepsilon}} \right),$$

$$\nabla w_{\varepsilon} \cdot \nabla u = \frac{w_{\varepsilon}}{u_{\varepsilon}} \left(1 - \frac{u}{u_{\varepsilon}} \right) |\nabla u|^{2}.$$
(2.10)

Therefore we have

LEMMA 2.2 For $u \in C^2(\Omega)$ it holds that

$$L_{p,\eta}u_{\varepsilon} \geq \frac{u}{u_{\varepsilon}}(\eta^{2} + |\nabla u_{\varepsilon}|^{2})^{(p-2)/2} \times \left(\Delta u + (p-2)\left(\frac{u}{u_{\varepsilon}}\right)^{2}\frac{\sum_{j,k=1}^{N}\partial_{j}u\partial_{k}u\partial_{j,k}u}{\eta^{2} + |\nabla u_{\varepsilon}|^{2}}\right), \quad (2.11)$$

$$L_{p,\eta}\left(\frac{u+u_{\varepsilon}}{2}\right) \geq w_{\varepsilon}(\eta^{2}+w_{\varepsilon}^{2}|\nabla u|^{2})^{(p-2)/2} \times \left(\Delta u+(p-2)w_{\varepsilon}^{2}\frac{\sum_{j,k=1}^{N}\partial_{j,k}u\partial_{j}u\partial_{k}u}{\eta^{2}+w_{\varepsilon}^{2}|\nabla u|^{2}}\right).$$
(2.12)

Letting $\varepsilon \to 0$, we have for $u \in C^2(\Omega)$

LEMMA 2.3 For $u \in C^{2}(\Omega)$ it holds that in $\mathcal{D}'(\Omega)$

$$L_{p,\eta}|\boldsymbol{u}| \geq (\operatorname{sgn}\boldsymbol{u})(\eta^2 + |\nabla\boldsymbol{u}|^2)^{(p-2)/2} \left(\Delta\boldsymbol{u} + (p-2) \frac{\sum_{j,k=1}^N \partial_j \boldsymbol{u} \partial_k \boldsymbol{u} \partial_{j,k} \boldsymbol{u}}{\eta^2 + |\nabla\boldsymbol{u}|^2} \right)$$
$$= (\operatorname{sgn}\boldsymbol{u}) L_{p,\eta} \boldsymbol{u}, \tag{2.13}$$

$$L_{p,\eta}u_{+} \geq (\text{sgn}^{+}u)(\eta^{2} + (\text{sgn}^{+}u)^{2}|\nabla u|^{2})^{(p-2)/2} \\ \times \left(\Delta u + (p-2)(\text{sgn}^{+}u)^{2}\frac{\sum_{j,k=1}^{N}\partial_{j,k}u\partial_{j}u\partial_{k}u}{\eta^{2} + (\text{sgn}^{+}u)^{2}|\nabla u|^{2}}\right).$$
(2.14)

3 MAIN RESULT

We introduce an admissible class $K_p(\Omega)$ for the operators L_p . DEFINITION 3.1 Let p > 1 and $p^* = \max(p-1, 1)$. Let us set

$$K_p(\Omega) = \{ u \in L^1_{\text{loc}}(\Omega) : \partial_j u, \partial_{jk}^2 u \in L^{p^*}_{\text{loc}}(\Omega), \\ |\nabla u|^{p-2} |\partial_{j,k}^2 u| \in L^1_{\text{loc}}(\Omega) \text{ for } j, k = 1, 2, \dots, N \}.$$
(3.1)

Now we are in a position to state our main result.

THEOREM 3.1 Let p > 1. Assume that $u \in K_p(\Omega)$, then it holds that in $\mathcal{D}'(\Omega)$

$$L_p|u| \ge (\operatorname{sgn} u)L_p u,$$

$$L_p u_+ \ge (\operatorname{sgn}^+ u)^{p-1}L_p u.$$
(3.2)

Remark 1 (1) If p = 2, then $K_2(\Omega) = \{u \in L^1_{loc}(\Omega): \partial_j u, \partial^2_{jk} u \in L^1_{loc}(\Omega),$ for $j, k = 1, 2, ..., N\}$. Since $L_2 = \Delta$ in this case, it is known that Kato's inequalities hold under the assumptions that $u, \Delta u \in L^1_{loc}(\Omega)$. But if $p \neq 2$, the operator L_p is nonlinear. Hence it was needed to introduce the class K_p . If p > 2, we see $|\nabla u|^{p-2} |\partial^2_{ik} u| \in L^1_{loc}(\Omega)$ by a Young's inequality.

(2) We can also establish the same type results for the operators with variable coefficients.

Proof Without loss of generality, we assume that $\Omega = \mathbb{R}^N$. If $u \in C^2(\mathbb{R}^N)$, then the assertions follow from Lemma 2.1. Hence we approximate a locally integrable function u by smooth functions u_ρ $(\rho > 0)$ as follows: Let us set $B_r = \{x \in \mathbb{R}^N : |x| < r\}$. Let $\varphi \in C_0^{\infty}(\mathbb{R}^N)$ satisfy $\varphi \ge 0$, $\int_{\mathbb{R}^N} \varphi(x) dx = 1$ and $\varphi = 0$ in B_2^c . Now we set

 $\varphi_{\rho}(x) = \rho^{-N} \varphi(x/\rho)$ for $\rho > 0$ and define

$$u_{\rho}(x) = u * \varphi_{\rho}(x) \equiv \int_{\mathbb{R}^{N}} u(x - y) \varphi_{\rho}(y) \, \mathrm{d}y.$$
(3.3)

Then it is clear from the assumptions on u that as $\rho \rightarrow 0$

$$u_{\rho} \to u \quad \text{almost everywhere} \\ u_{\rho}, \partial_{j}u_{\rho}, \partial_{j,k}^{2}u_{\rho} \to u, \partial_{j}u, \partial_{j,k}^{2}u \quad \text{in } L^{p^{*}}_{\text{loc}}(\mathbb{R}^{N}) \text{ respectively.}$$
(3.4)

Moreover we shall show that as $\rho \rightarrow 0$

$$L_p u_{\rho} \to L_p u \quad \text{in } L^1_{\text{loc}}(\mathbb{R}^N).$$
 (3.5)

First it follows from the definition of the operator L_p that for a smooth function v

$$|L_p v| \le (p-1) |\nabla v|^{p-2} \sum_{j=1}^N |\partial_{j,k}^2 v|.$$
(3.6)

Therefore we see $L_p u \in L^1_{loc}(\mathbb{R}^N)$.

Now we assume that $p \ge 2$. Then from Hölder's inequality it holds that for any $\rho > 0$ and any compact set K

$$\begin{split} \int_{K} |L_{p}u_{\rho}| \, \mathrm{d}x &\leq (p-1) \int_{K} |\nabla u_{\rho}|^{p-2} \sum_{j=1}^{N} |\partial_{j,k}^{2}u_{\rho}| \, \mathrm{d}x \\ &\leq (p-1) \sum_{j,k=1}^{N} \left(\int_{K} |\nabla u_{\rho}|^{p-1} \mathrm{d}x \right)^{(p-2)/(p-1)} \\ &\times \left(\int_{K} |\partial_{j,k}^{2}u_{\rho}|^{p-1} \mathrm{d}x \right)^{1/(p-1)} \\ &\leq C(K) < +\infty. \end{split}$$
(3.7)

Here C(K) is a positive number independent of each $\rho > 0$. Hence by (3.4) and the dominated convergence theorem we have $L_p u_\rho \rightarrow L_p u$ in $L^1_{loc}(\mathbb{R}^N)$ as $\rho \rightarrow 0$. From Lemma 1.1 and the dominated convergence theorem we see

$$L_{p}(u_{\rho})_{\varepsilon} \geq \left| \frac{u_{\rho}}{(u_{\rho})_{\varepsilon}} \right|^{p-2} \frac{u_{\rho}}{(u_{\rho})_{\varepsilon}} L_{p} u_{\rho}$$

$$= \left| \frac{u_{\rho}}{(u_{\rho})_{\varepsilon}} \right|^{p-2} \frac{u_{\rho}}{(u_{\rho})_{\varepsilon}} (L_{p} u_{\rho} - L_{p} u)$$

$$+ L_{p} u \left(\left| \frac{u_{\rho}}{(u_{\rho})_{\varepsilon}} \right|^{p-2} \frac{u_{\rho}}{(u_{\rho})_{\varepsilon}} - \left| \frac{u}{(u)_{\varepsilon}} \right|^{p-2} \frac{u}{(u)_{\varepsilon}} \right)$$

$$+ \left| \frac{u}{(u)_{\varepsilon}} \right|^{p-2} \frac{u}{(u)_{\varepsilon}} L_{p} u$$

$$\rightarrow \left| \frac{u}{(u)_{\varepsilon}} \right|^{p-2} \frac{u}{(u)_{\varepsilon}} L_{p} u, \text{ as } \rho \to 0.$$

$$(3.9)$$

Since $L_p(u_\rho)_{\varepsilon} \to L_p u_{\varepsilon}$ in the sense of the distribution, we get

$$L_p u_{\varepsilon} \ge \left| \frac{u}{u_{\varepsilon}} \right|^{p-2} \frac{u}{u_{\varepsilon}} L_p u \quad \text{in } \mathcal{D}'(\mathbb{R}^N).$$
 (3.10)

Then by letting $\varepsilon \to 0$, we see $L_p u_{\varepsilon} \to L_p |u|$ in the sense of the distribution, and the right-hand side tends to $(\operatorname{sgn} u)L_p u$ in $L^1_{loc}(\mathbb{R}^N)$. Therefore we get the desired inequality.

We proceed to the case that $1 . In this case we make use of <math>L_{p,\eta}$ instead. First we see for any compact set K of \mathbb{R}^N and any $\eta > 0$,

$$\int_{K} |L_{p,\eta}u| \, \mathrm{d}x \le (p-1) \int_{K} (\eta^{2} + |\nabla u|^{2})^{(p-2)/2} \sum_{j,k=1}^{N} |\partial_{j,k}^{2}u| \, \mathrm{d}x < \infty.$$
(3.11)

Here we note that $1 and <math>\partial_{j,k}^2 u \in L^1_{loc}(\mathbb{R}^N)$ for j, k = 1, 2, ..., N. Let u_ρ be defined by (3.3). Then it follows from Lemma 2.2 that $(u_\rho)_\varepsilon$ satisfies

$$L_{p,\eta}(u_{\rho})_{\varepsilon} \geq \frac{u_{\rho}}{(u_{\rho})_{\varepsilon}} (\eta^{2} + |\nabla(u_{\rho})_{\varepsilon}|^{2})^{(p-2)/2} \times \left(\Delta u_{\rho} + (p-2) \left(\frac{u_{\rho}}{(u_{\rho})_{\varepsilon}} \right)^{2} \frac{\sum_{j,k=1}^{N} \partial_{j} u_{\rho} \partial_{k} u_{\rho} \partial_{j,k} u_{\rho}}{\eta^{2} + |\nabla(u_{\rho})_{\varepsilon}|^{2}} \right).$$
(3.12)

T. HORIUCHI

As $\rho \to 0$, we see $L_{p,\eta}(u_{\rho})_{\varepsilon} \to L_{p,\eta}(u)_{\varepsilon}$ in the sense of distribution, and the terms in the right-hand side also converges in $L^{1}_{loc}(\mathbb{R}^{n})$. Therefore we get in $\mathcal{D}'(\mathbb{R}^{N})$

$$L_{p,\eta}u_{\varepsilon} \geq \frac{u}{u_{\varepsilon}}(\eta^{2} + |\nabla u_{\varepsilon}|^{2})^{(p-2)/2} \times \left(\Delta u + (p-2)\left(\frac{u}{u_{\varepsilon}}\right)^{2} \frac{\sum_{j,k=1}^{N} \partial_{j}u\partial_{k}u\partial_{j,k}u}{\eta^{2} + |\nabla u_{\varepsilon}|^{2}}\right).$$
(3.13)

Letting $\varepsilon \to 0$ we have in a similar way in $\mathcal{D}'(\mathbb{R}^N)$

$$L_{p,\eta}|\boldsymbol{u}| \geq (\operatorname{sgn}\boldsymbol{u})(\eta^{2} + |\nabla\boldsymbol{u}|^{2})^{(p-2)/2} \times \left(\Delta\boldsymbol{u} + (p-2)\frac{\sum_{j,k=1}^{N}\partial_{j}\boldsymbol{u}\partial_{k}\boldsymbol{u}\partial_{j,k}\boldsymbol{u}}{\eta^{2} + |\nabla\boldsymbol{u}|^{2}}\right).$$
(3.14)

Finally by letting $\eta \to 0$, we have in the sense of distribution $L_{p,\eta}|u| \to L_p|u|$, and the right-hand side also converges in $L^1_{loc}(\mathbb{R}^N)$. After all we get

$$L_p|u| \ge (\operatorname{sgn} u)L_p u \quad \text{in } \mathcal{D}'(\mathbb{R}^N).$$
(3.15)

In a similar way we can show

$$L_p u_+ \ge (\operatorname{sgn}^+ u)^{p-1} L_p u \quad \text{in } \mathcal{D}'(\mathbb{R}^N),$$
(3.16)

by making use of Lemma 2.2. Therefore the assertions are proved.

Reference

 T. Kato, Schrödinger operators with singular potentials, Israel J. Math., 13 (1972), 135-148.