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Let N> and p > 1. Let [2 be a domain of N. In this article we shall establish Kato’s
inequalities for p-harmonic operators Lp. Here Lp is defined as Lpu div(lVulP-2Vu) for
u E Kp(f), where Kp(f) is an admissible class. If p= 2 for example, then we have
K2(f) {u E Loc(f): Oju, O2i,ku /oc(9t) forj, k 1,2 N}. Then we shall prove
that Zlul >_ (sgn u) Zu andu+ > (sgn+u)’-lLeu in D’ ([2) with u Kp(f). These inequal-
ities are called Kato’s inequalities provided thatp 2.
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1 INTRODUCTION

Let N> 1. Let f be a domain ofN. Define

M(x, Ox) Oxj(ajk(X)Oxk), (1.1)

where ajk(X) E Cl(f) is positive definite in the following sense.

N

Z ajg(x)jg > C}]2, for any E v\{0} and x f. (1.2)
j,k=l

Here C is a positive number independent if each x and . First we recall
well-known Kato’s inequalities. (For the proof, see [1]).

THEOREM 1.1 For u and M(x, Ox)U Loc(f), we have

M(x, Ox)lul >_ (M(x, Ox)u)sgnu in 7Y(f’t), (1.3)

M(x, Ox)u+ >_ (M(x, Ox)u)sgn+ u in D’(f). (1.4)
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Here

u() fo u # O,
sgn u(x)= lu(x)l’

O, for u=O,
foru>O,

sgn+ u(x) 1/2, for u O,
O, foru<O,

(1.5)

andu+ max [u(x), 0]. By 7Y(f) we denote the set ofall distributions on f.
In this paper we shall consider the operators defined by

Zpu- div(IVulP-2Vu),
N

IVulp-2ZXu / (p- 2)lVulP-4 OUOkuO!kU,
j,k=l

(1.6)

wherep > andOju Ou/Oxj, Oj2,ku 02u/(OXjOXk) forj, k 1,2,... ,N.
Then we shall generalize Theorem 1.1 for the operators Lp in place of
linear elliptic operators represented by the Laplacian.

This paper is organized in the following way. In Section 2 we prepare
basic inequalities including thep-harmonic operators Lp. In Section 3 we
shall state our main result, and the proof is also given there.

2 PRELIMINARY

We shall establish some fundamental inequalities for smooth functions u,
which are useful to prove our main result.

LEMMA 2.1 Assume that u E C2(9t). Then it holds that

Zlul (sgnu)Lpu
Lt,u+ >_ (sgn+u)p-lLpu

in (f),
in 79’ (f).

(2.1)

Here by D’(f) we denote the set ofall distributions on f.

Proof For any e > 0 we set

Ue- (U2 + g2) 1/2. (2.2)
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Then we see

Oju
u

Oju,
ue

u= u u+- (O,ul >_-O?u.
Ue 1,1e Ue

Here au 02u/OV,j 1, 2,..., N. Using these we have

(2.3)

(2.4)

p-2 u>_ --Ll,U. (2.5)
Ue

In a similar way we have

,/ (/u,)_l( (_u) )2
tpu + (p- 1) u- Ivulp

_> Z.u. (2.6)

Since 2u+ u + lul holds, letting e --+ 0 we have the desired inequalities.
In the next we shall consider the operators Lp,, for r/> 0 defined by

Zp,ou div((r/2 + IVul2)(p-2)/Zvu). (2.7)

Then we see

u ( (uououo,t,.u. _(,2u / IVu12)(’-2)/2 Au / (p 2)\/ -77

u 7 + I) IVul

Ue

(2.8)
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Similarly we can compute Lp,n((u + u)/2) to obtain the following:

LpdT (U --2 uf)

( Ej,k=NlVul2)(p-)/2 Au + (p- 2)w20),kuOjuOku)w(+ w )

2VU[2)(p-2)/2( 2)Wff [VU[2+ (Vw. Vu)( + wl + (p- : + wlVul

Here

we-- l+

w_,

Therefore we have

LEMMA 2.2 For U Cc C 2(-) it holds that

(2.9)

(2.10)

(2.11)

Letting e - 0, we have for u E C2(Q)

(2.12)

LEMMA 2.3 For U C2(’2) it holds that in D’(f)
N

Zp,.lul > (sgn u)(r/2 + IVul2) (p-2>12 /Xu + (p 2) j,k=_i .uOku,u.
,: + IVul:

(sgnu)Lpmu, (2.13)
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Lp,oU+ > (sgn+u)(r/2 + (sgn+u)2lVul:) (p-2)/9

N u
x Au + (p 2)(sgn+u)2- ;g----2j (2.14)

3 MAIN RESULT

We introduce an admissible class Kp([2) for the operators Lp.
DEFINITION 3.1 Letp > andp*= max(p- 1, 1). Let us set

IVulp-21u] Zlo(2 forj, k 1,2,...,N}. (3.1)

Now we are in a position to state our main result.

THEOREM 3.1 Let p > 1. Assume that u E Kp(Ft), then it holds that in

Lplul >_ (sgn u)Lpu,

Lpu+ > (sgn+ u)p-1Zpu.
(3.2)

Remark 1 (1) Ifp 2, then K2 (f) {u
for j, k 1,2,..., N }. Since L2 A in this case, it is known that Kato’s
inequalities hold under the assumptions that u, Au Loc(f). But if
p 2, the operator Lp is nonlinear. Hence it was needed to introduce the
class Kp. Ifp > 2, we see IVulp-21Ofjul Zoc(2) by a Young’s inequality.

(2) We can also establish the same type results for the operators with
variable coefficients.

Proof Without loss of generality, we assume that Ft=llv. If
u E C2(Nv), then the assertions follow from Lemma 2.1. Hence we
approximate a locally integrable function u by smooth functions up
(p > 0) as follows" Let us set B= {x E .N; IX < r}. Let qa C(]1.N)
satisfy _> 0, feu(x)dx= and q)=0 in B. Now We set
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qOp(X)-- p-Nqo(x/p) for p > 0 and define

up(x) u p(x) =_ fv u(x y)p,( y) dy. (3.3)

Then it is clear from the assumptions on u that as p --, 0

up u almost everywhere
p* N

Up, OjUp, Of,kUp -- U, OjU, j2.,kU in Lloc(N) respectively.
(3.4)

Moreover we shall show that as p ---, 0

Lpu, Lpu in Loc(IRN). (3.5)

First it follows from the definition of the operator Lp that for a smooth
function v

N

ILpvl (p- 1)[Vvlp-2 Ikvl. (3.6)
j=l

Therefore we see Lpu E Lo (N).
Nowwe assume thatp > 2. Then from H61der’s inequality it holds that

for any p > 0 and any compact set K

N

j=l

< (p 1) j,k1’ IVu,lp-ldx

X (fKl,j,kUp[P-ldx)1
< C(K)< +o. (3.7)

Here C(K) is a positive number independent ofeach p > 0. Hence by (3.4)
and the dominated convergence theoremwe have Lpu, Lpu inLoc (IRN)
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as p 0. From Lemma 1.1 and the dominated convergence theorem
we see

(3.8)

Since Lp(ur,) Lpu in the sense of the distribution, we get

in 79’(Is). (3.10)

Then by letting e ---. 0, we see Lpu Lplul in the sense ofthe distribution,
and the right-hand side tends to (sgn u)Lpu in Loe(/v). Therefore we get
the desired inequality.
We proceed to the case that <p < 2. In this case we make use ofLp,,

instead. First we see for any compact set KofIv and any r/> 0,

N

j,k=l

(3.11)

Here we note that <p < 2 andku E Loc ([N) forj, k 1, 2,..., N. Let
up be defined by (3.3). Then it follows from Lemma 2.2 that (up) satisfies
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As p- O, we see Lp,n(up) Lp,,(u) in the sense of distribution, and the
terms in the right-hand side also converges in Loe (IRn). Therefore we get
in D’(N)

(3.13)

Letting e + 0 we have in a similar way in D’(]1N)

tp,olul (sgnu)(v 2 + IVul2) (p-2)/2

x (Au+(p-2) g.uO uO ,u 
\

(3.14)

Finally by letting r/ O, we have in the sense of distribution Lp,,[u[
Lp[u[, and the right-hand side also converges in Loc(N). After all we get

Lplul >_ (sgnu)Lpu in (3.15)

In a similar way we can show

Lpu+ >_ (sgn+ u)P-ILpu in D’(N), (3.16)

by making use ofLemma 2.2. Therefore the assertions are proved.
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