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Singular differential systems of the type

(p(t)ly’l-y’)’ (t)z-, (q(t)lz’la-lz’) b(t)y- (*)

are considered in an interval [a, ), where c, 3, A, # are positive constants andp, q, qo, b are
positive continuous functions on [a, o). A positive decreasing solution of (,) is called
proper or singular according to whether it exists on [a,)or it ceases to exist at a finite point
of(a, ). First, conditions are given under which there does exist a singular solution of(,).
Then, conditions are established for the existence of proper solutions of (,) which are
classified into moderately decreasing solutions and strongly decreasing solutions according
to the rate of their decay as .
Keywords: Nonlinear differential equation; Singular nonlinearity;
Positive solution; Singular solution; Asymptotic behavior

AMS Subject Classification: 34C11

1. INTRODUCTION

We consider systems of second order singular differential equations of
the type

(P(t)iY’Ia-lY’)’= q(t)z-’X’
(A)

(q(t)lz’la-lz’)’ b(t)y-’,

* Corresponding author.
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582 T. KUSANO AND T. TANIGAWA

where a,/, A and # are positive constants, andp(t), q(t), q(t) and b(t) are
positive continuous functions defined on [a, ), a _> 0.
By a solution of (A) on Jc [a, ) we mean a vector function (y, z)

which has the property that y, z, ply’la-ly and qlz’l/-lz are
continuously differentiable on Jand satisfies the system (A) at all points
of J. Obviously, both components of a solution must be positive on J.

In this paper we are concerned exclusively with positive decreasing
solutions of (A), that is, those solutions of (A) whose components are
positive and decreasing on intervals of the form [a, T), T_< . Let (y, z)
be such a solution and let [a, T) be its maximal interval ofexistence. There
are two possible cases: T< x or T cx. If T< , (y, z) has the property
limr_0y(t) limr_0 z(t) 0 and is called an extinct singular solu-
tion. The question of existence of extinct singular solutions for (A) is
discussed in Section 2. If, on the other hand, T=, then (y, z) exists on
[a,) and both y and z decrease to nonnegative limits as . In this
case (y,z) is called a decreasing proper solution. Motivated by our
knowledge [2,5] ofpositive decreasing proper solutions ofsingle singular
differential equations of the form

(p(t)ly’l-ly’)’ (t)y-, (B)

we take up the two cases:

(p(t))
-1/ dt and (q(t))-1/ dt x (1.1)

and

(p(t))-1/ dt < c and (q(t))-1// dt < cx, (1.2)

and focus our attention on the following two types ofdecreasing proper
solutions (y, z) of (A):

(I-1) lim y(t) const. > 0, lim z(t) const. > 0,

and

(II-1 lim y(t) 0, lim z(t) 0
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in case the condition (1.1) holds, and

(1-2) lim
y(t)

t--, ---" const. > 0, lim
z(t)

t-o
const. > 0,

and

(11-2) lim
y(t) z(t)

t--*x ((’) --0’ t---olim =0

in case the condition (1.2) holds, where 7r(t) and p(t) are given by

7r(t) (p(s))-1/ ds, p(t) (q(s))-1/ ds, t>a. (1.3)

A solution of the type (I-1) or (I-2) is called a moderately decreasing
solution or a moderately decaying solution, while that ofthe type (II- 1) or
(11-2) is referred to as a strongly decreasing solution or a strongly decaying
solution. The cases (1.1) and (1.2) are examined separately in Sections 3
and 4, where, first, necessary and sufficient conditions are established for
the existence ofmoderately decreasing or moderately decaying solutions
of (A), and then sufficient conditions are derived for the existence of
strongly decreasing or strongly decaying solutions of (A).
The motivation of our study in Sections 2-4 is to extend some of the

results [2,5] obtained for the single singular differential equation (B) to
the case of second order singular differential systems, on the one hand,
and to generalize the results [3,7] developed for the simplest system
y"=qo(t)z-, z"= (t)y-u to as large a class of singular differential
systems of the type (A) as possible, on the other.

Because ofthe generality ofthe functionsp(t) and q(t) in (A), the results
for (A) can be applied to provide useful information about the existence
ofpositive spherically symmetric solutions of singular systems ofpartial
differential equations of the type

div(IDulm-2Du) f(Ixl) v-a,
div(IDvl"-2Dv) g(Ix[)u-U,

(c)

in exterior domains Ea in/tv, N> 2, where rn > 1, n > 1, A > 0 and # > 0
are constants,D stands for the gradient operator (O/Oxl,..., O/OXN), and
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{x nC: Ixl a}, a > 0 and f(t) and g(t) are positive continuous
functions on [a, ). Some of the results obtained for (C) in this manner
are listed in Section 5.
There has been an increasing interest in the study of spherically

symmetric solutions of nonsingular differential systems including

div(lDulm-2Du) f(lxl)v,
div([Dvln-2Dv) g([xl)u,

as a special case; see, e.g., [1,4,6]. To the best ofour knowledge, however,
there is no previous work devoted to the qualitative study of systems of
partial differential equations with nonlinear singularities.

2. EXTINCT SINGULAR SOLUTIONS

In our earlier paper [2] we have proved that in case A < min{a, } the
single singular differential equation (B) possesses a positive singular
solution which is extinct at any given point to the fight ofa. An extension
of this result to differential systems of the form (A) is presented below.

THEOREM 2.1 Suppose that

and # < (2.1)
a+l

Then,for any given T> a, there exists a singular solution ofthe system (A)
which is positive on [a, T) and extinct at T.

Proof We first note that aft > A# by (2.1). Define the positive constants
k and I by

k =/(a + 1) A(/5 + 1) a(fl + 1) #(a + 1) (2.2)
a/- # a/3- #

It is easy to see that k > 1, l> 1,

lA a(k- 1) > 0 and -k# =/3(l- 1) > O.
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Let K1, K2, L1 and L2 denote the positive constants

1( b,/q* ) l(..._*_/.q, ) 1/
LI 7 ,--- ]) L2 7 \(l- 1)

(2.3)

where we have used the notation

f*= max f(t),
t[a,Tl

f,= min f(t),
te[a,T]

and put

C2 K2L-/ /(-u),
(2.4)

It is clear that K1 _( g2, L1 _< L2, Cl C2 and dl _< dE.
Let us now consider the set y c C[a, T] x C[a, T] consisting ofvector

functions (y(t), z(t)) satisfying

c(T- t)k <_ y(t) <_ c2(T- t)k,

d(T- t) <_ z(t) <_ d2(T- t), E [a, T], (2.5)

and the mapping .T" 3; C[a, T] x C[a, T] defined by

.T’(y,z)(t) (z(t), 7-[y(t)), [a, T], (2.6)

where

 z(t) p(r) (z(r))- dr] (2.7)

and

7-[y(t) t" (q(s))- b(r)(y(r))-" dr ds. (2.8)



586 T. KUSANO AND T. TANIGAWA

As is easily verified, (y, z) E Y implies that

KldA/a(T t) <_ z(t) <_ K2d’Va(T t),
LlC-V/(T t) <_ 7"[y(t) <_ L2c-V/(T- t), tE [a,T].

Since from (2.3) and (2.4)we have KldV= Cl, K2dV= c2,

Llc’/ dl and L2c-’/ d2, we see that -(y,z) y, showing that
maps 3; into itself. Let {(yn(t),Zn(t)))n=l be a sequence of vector

functions of 3; converging to (y(t), z(t)) uniformly on [a, T] as n c.
Then (y,z) y and it can be shown with the help of the Lebesgue
convergence theorem that .(yn, Zn)(t) converges to .(y,z)(t) uni-
formly on [a, T] as n cx. This shows that " is a continuous mapping.
Finally, using (2.7), (2.8) and (2.5), we find that

t [a,T],

whence it follows that the set ’(Y) is compact in C[a, T] C[a, T].
Thus we are able to apply the Schauder fixed point theorem to

conclude that there exists a vector function (y,z) Y such that
(y, z) ’(y, z), that is,

y(t) (p(s)) -1 qo(r)(z(r))-x dr ds,

z(t) J (q(s)) -1 b(r)( y(r)) -u dr ds, [a, T].
(2.9)

The system of integral equations (2.9) shows that the restriction of vec-
tor function (y(t), z(t)) on [a, T) gives a desired extinct singular solution
of (A). This completes the proof.

Example 2.2 Consider the singular differential system

(ly’l-ly’) a(k 1)kz-,
(Iz’l-lz’)’ (1- 1)ly-u

(2.10)
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on [0, cx), where A and # satisfy (2.1) and k and l are given by (2.2).
According to Theorem 2.1 the system (2.10) has an extinct singular
solution on any interval of the form [0, T), T> 0. One such solution is
given by (y(t),z(t))= ((T- t)k, (T- t)t).

Remark 2.3 It is known [2] that the single singular equation (B) admits
no extinct singular solution provided A > and the functionsp(t) and 99(0
are smooth. It would be of interest to extend this type of nonexistence
result to the case of singular systems of the form (A).

3. DECREASING POSITIVE PROPER SOLUTIONS

Let us turn to the study ofpositive decreasing solutions of(A) existing on
the entire interval [a,
We begin with the case where the functions p(t) and q(t) in (A) satisfy

the condition (1.1), and direct our attention to the two types of positive
decreasing solutions (y, z) of (A) on [a, oe) such that

lim y(t) const. > 0, lim z(t) const. > 0 (3.1)
t-,oc t--c

and

lim y(t) 0, lim z(t) 0. (3.2)

A solution (y, z) satisfying (3.1) or (3.2) is referred to as a moderately
decreasing solution or a strongly decreasing solution of(A), respectively.

Let (y, z) be a positive decreasing solution of (A) on [a, c). Note that
the system (A) for this (y, z) takes the form

(-p(t) (-y’(t))a)’ 99(t)(z(t))-

(-q(t) (-z’(t)))’ b(t)(y(t) t>a.
(3.3)

We claim that

lim p(t)(-y’(t)) lim q(t)(-z’(t)) O.
t--o t--,o

(3.4)

In fact, iflimtop(t)(-y (t)) =k > 0, then

p(t)(-y’(t)) >_ k or -y’(t) >_ k/a(p(t))-/, t>_a,
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and integrating the last inequality gives

y(t) y(a) < -k1/ (p(s))-1/ ds,

Letting o in the above and using (1.1), we have limtoy(t)= -o,
which contradicts the assumed positivity of y(t). Thus we must have
limtp(t)(-y’(t))=O. Similarly, it is impossible that limt_oq(t)
(-’(t)) > 0.
We now integrate (3.3) from to to obtain in view of (3.4)

-y’(t) (p(t))-1 q(s)(z(s)) -’x ds

-z’(t) (q(t)) -1 b(s)(y(s))- ds t>a.

(3.5)

One more integration of (3.5) yields the following system of integral
equations for a moderately decreasing solution of (A):

y(t) y(o) + (p(s))-1 (r)(z(r))- dr ds,

z(t) z(x)+ (q(s)) -1 b(r)(y(r))-" dr ds,

(3.6)

where y(o) limt_, y(t) and z(oe) limto z(t). On the basis of (3.6)
one can characterize the existence of a moderately decreasing solutions
of(A).

THEOREM 3.1 Suppose that (1.1) holds. The system (A) has a positive
decreasingproper solution (y,z) satisfying (3.1) ifand only if

(p(t)) -1 (s) ds dt < cz (3.7)

and

dt < oe. (3.8)
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Proof (The "only if" part) Suppose that (A) has a moderately
decreasing solution (y,z). Then (3.6) holds, which implies that the two
repeated integrals therein must converge for all > a. This fact combined
with (3.1) easily shows that both (3.7) and (3.8) are satisfied.

(The "if" part) Suppose that (3.7) and (3.8) hold. Let c > 0 and d> 0
be given arbitrarily, and choose to > a large enough so that

and

f,o [(p(t))- f (s) dsl / dt < cd/ (3.9)

fto [(q(t))-l l" 2(s) ds] 1/ dt <_ c"/d. (3.10)

Define y to be the set of vector functions (y, z) E C[to, c) C[to, cx)
satisfying

c < y(t) < 2c and d < z(t) < 2d fort>t0.

Let the mapping .T" y C[t0, o) x C[t0, o) be defined by

.(y,z)(t) (z(t),7-[y(t)), (y,z) < y, (3.11)

where and are the integral operators given by

z(t) c + ftt (P(S))-I qo(r)(z(r))- dr ds, (3.12)

7"[y(t) d + (q(s))- b(r)(y(r))-u dr ds, > to. (3.13)

That ’(y) c Y is an immediate consequence of (3.9) and (3.10). It is
verified in a routine manner that " is a continuous mapping and that
’(y) is a relatively compact subset of the Frrchet space C[to, )x
C[t0,) with the usual product metric topology. The Schauder-
Tychonof fixed point theorem then ensures the existence of a fixed
element (y, z) E y of , which, by the definition of ’, satisfies the
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integral equations

y(t) c + (p(s))-1 qo(r)(z(r))- dr ds

z(t) d + ftt (q(s))-I (r)(y(r))-u dr ds, >_ to.

(3.14)

Differentiating (3.14) twice, we conclude that the vector function (y, z)
is a moderately decreasing solution of (A) on the subinterval [to, oe) of
[a, ee) such that y(ee) c and z() d. To complete the proofit suffices
to continue this (y, z) to the left of to as the solution of the differential
system (A) and to observe that the continuation provides a positive
decreasing solution of (A) over [a, oe). It should be noted that in the
process ofcontinuation up to the point a no blow-up of(y, z) takes place
because of the presence of negative exponents in (A).

Our next task is to study the question of existence of strongly
decreasing solutions of (A). To this end we need integral conditions,
stronger than (3.7) and (3.8), which are formulated in terms of the
functions

(t) ft [(p(s))-l fs q(r) dr] l/a
ds, (3.15)

(t) ftt [(q(s))-l Js’ (r) drl
1/

ds. (3.16)

THEOREM 3.2 Suppose that (1.1) holds anda> A#. In addition to (3.7)
and (3.8) suppose that

faa dSl dt < oe (3.17)

and

(q(t)) -1 b(s) ((s))-u ds dt < cx. (3.18)
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Then the system (A) possesses a positive decreasingproper solution (y, z)
satisfying (3.2).

Proof Our proofis an adaptation of the method used by Usami [7] for
the special case where a =/3 1 and p(t) q(t) 1.

According to the proof of Theorem 2.1, there exists for every n E N
a moderately decreasing solution (yn, zn) on [a,) such that
lim/_ yn(t) limt_. Zn(t) In. Note that (Yn, z) satisfies

-+ (p(s) q(r)(zn(r))- dryn(t)
n

-+ (q(s)) -1 b(r)(yn(r))- drZn(t)
n

ds, t>a.

(3.19)

Using the decreasing nature of yn(t) and zn(t), we have the following
system of inequalities from (3.19):

yn(t) >_ (Zn(t))-/a(t), Zn(t)

_
(yn(t))-l/(t), > a. (3.20)

Combining (3.20) with the equations for the derivatives y’(t) and Zn’ (t):

-y’(t) (p(t)) -1 (S)(Zn(S))-x ds

--Zn(t (q(t)) b(s)(yn(S))- d

(3.21)

we see that

--yn(t) <_ (yn(t))/a (p(t)) -1 p(S)(ff(S)) -’x ds

--Zn(t) <_ (Zn(t))a/a (q(t)) -1 b(s)(ff(s))- ds

(3.22)
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from which, after integration over [t, ), it follows that

afl yn t) (afl-)/afl

<

aB( ln)(-"1 [+

+ (p(s))-’ p(r) ((r))-x dr ds,

"
ds,

(3.23)

for t>a. The inequalities (3.23) imply that the sequence
{(yn(t),Zn(t))}n=l is uniformly bounded on [a, o), and the inequalities
(3.22) show that the sequence is locally equicontinuous on [a, c).
Consequently, there is a subsequence of { (yn(t), Zn(t)) }nl which con-
verges to a continuous vector function (y,(t), z,(t)) as n o, the con-
vergence being uniform on compact subintervals of [a, ). The limit
function (y,(t),z,(t)) is positive because of (3.20). The Lebesgue con-
vergence theorem guarantees that (y,(t),z,(t)) satisfies the integral
equations

y,(t) (p(s))- qo(r)(z,(r))- dr ds,

z,(t) (q(s)) -1 b(r) y, (r) )-" dr ds, t>a,

(3.24)

whence we conclude that (y,(t), z,(t)) is a strongly decreasing solution of
(A) existing on [a, ). This completes the proof.

Remark3.3 Let ( y, z) be a strongly decreasing solution of(A) on [a, x).
Then it satisfies the integral equations (3.6) with y(o) z() 0, from
which, using the decreasing property ofy(t) and z(t), we deduce that

y(t) > (z(t))-/(t), z(t) > (y(t))-/(t), > a, (3.25)

in particular

y(t) > (z(a))-/a(t), z(t) > (y(a))-/(t), t> a. (3.26)
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Using (3.26) in (3.6), we obtain

y(t) < (y(a))Au/ (p(s)) -1 qo(r)((r)) -A dr ds

z(t) < (z(a))Au/a (q(s)) -1 b(r)(q(r))-’ dr ds, > a.

(3.27)

The inequalities (3.26) and (3.27) provide estimates for the rate ofdecay
of all positive strongly decreasing solutions of (A).

Example 3.4 Consider the system

(ly,l-y,), ae-(+ltz-a

(iz,l-z,)’ fle-(/+U)ty-,
(3.28)

which is a special case of (A) with p(t)= q(t)=_ 1, qo(t)= ae-(+)t and
b(t) =/3e-(+u)t. Since (t) and b(t) satisfy the conditions (3.7), (3.8),
(3.17) and (3.18), Theorem 3.1 implies that (3.28) has a moderately
decreasing positive solution (ym, Zm) such that limty,,,(t)=c and
limt__, Zm(t) d for any given constants c > 0 and d> 0.

Suppose in addition that a/3 > A#. We then have

tb(t) Cl e-((a+’)/a)t, (t) c2e-((+u)/)t,

(p(s))- qo(r) ((r)) -’x dr ds c3e-((a/3-A#)/a/3)t,

(q(s))- b(r) (I,(r))-u dr ds c4e-((a-’t)/aB)t,

where the constants cl,..., C4 depend only on a,/3, A and #, and so,
applying Theorem 3.2, we conclude that there exists a strongly
decreasing positive proper solution (ys, z), which, by Remark 3.3,
satisfies

ce-((a+’)/’)t <_ y(t) <_ Ce-((’-’)/’)t,
de-((+u)/)t <_ z(t) <_ De-((’-u)/’)t,

(3.29)
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where c, C, d and D are constants depending on y, z, a,/3, A and #. One
such solution is (y0, z0) (e-t, e-t).
We notice that the assumption a/3> A# in Theorem 3.2 is not

absolutely necessary, because (e-t, e-t) is a solution of (3.28) for any
positive values of a, 3, A and #.

4. DECAYING POSITIVE PROPER SOLUTIONS

Our attention is now directed to positive decreasing proper solutions
of the system (A) in which p(t) and q(t) are subject to the condition

(1.2). Here extensive use is made of the decaying functions 7r(t) and p(t)
defined by

7r(t) (p(s))-1/ ds, p(t) (q(s)) -1//3 ds, t> a. (4.1)

Our purpose here is to examine the existence of a positive decreasing
proper solution (y, z) of (A) such that either

lim
y(t)

t---,oo
const. > 0, lim

z(t)
t

const. > 0 (4.2)

or

lim
y(t) z(t)

t---oo
0, t-.lim 0. (4.3)

A solution of (A) satisfying (4.2) or (4.3) is called a moderately decaying
solution or strongly decaying solution, respectively.

Let (y,z) be a moderately decaying solution of (A) on [a, ).
Integrating (3.3) from to cx, we have

-y(t) [(p(t)) -1 (r/a+ ftqo(s)(z(s))-ads)l /

[ ( foo )]1//3-z’(t) (q(t))-I /3 + b(s)(y(s))-" ds t>a.

(4.4)
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where r/and ( are positive constants given by

r/-- -lim (p(t))l/ay’(t) lim
y(t)

t--, t Tr( t)

( -lim lim
z(t)

Integration of (4.4) from to then yields

ds, >_ a.

(4.5)

Naturally, letting r/= 0 in (4.5), we obtain the integral equations
for a strongly decaying solution of (A).

The existence of a moderately decreasing solution for (A) can be
characterized as the following theorem indicates.

THEOREM 4.1 Suppose that (1.2) holds. The system (A) has a positive
decreasingproper solution y, z) satisfying (4.2) ifand only if

qo(t)(p(t))- dt < o and b(t)(Tr(t)) -’ dt < cxz. (4.6)

Proof (The "only if" part) In deriving (4.4) we found the convergence
of the integrals

o(s) ((s))-’x ds. and 2(s)(y(s))-" as

for all > a. This fact combined with (4.2) implies the truth of (4.6).
(The "if" part) Suppose that (4.6) holds. Let r/and be arbitrary but

fixed positive constants and take to > a so that

ro
qo(t)(p(t))-adt <_ (2a- 1)r/a( and

b(t)(rr(t))-u dt <_ (2/ 1)r/u(. (4.7)
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Denote by 3; the set of all vector functions (y,z) E C[to,) x C[to,)
such that

r/Tr(t) <_ y(t) _< 2r/Tr(t), (p(t) _< z(t) <_ 2’p(t), > to, (4.8)

and let .T" denote the mapping

.T’( y, z) t) (z(t), 7-/y(t)), (y,z) E y, (4.9)

where 7 and 7-/are defined by

z(t) ft [(p(s)) -1 (r/a+ fs p(r)(z(r))-’Xdr)] 1/ ds, (4.10)

7-[y(t) (q(s))-I ( + b(r)(y(r))-u dr ds, > to.

(4.11)

It can be shown that (i) map 3; into itself, (ii) is a continuous
mapping, and (iii) (y) is a relatively compact subset of C[to, )x
C[to, ). Therefore, by the Schauder-Tychonoff theorem, there exists
a fixed element (y, ) of, which satisfies the system (4.5) ofintegral
equations for t0. Hence (y, ) is a moderately decreasing solution
of (A) defined on [t0,) and satisfying limy(t)/(t) and
limz(t)/p(t) (. To conclude the proof it suffices to continue (y,)
over the entire interval [a, ) as the positive decreasing solution of
the differential equation (A).

Conditions stronger than (4.6) is needed to ensure the existence of a
strongly decreasing positive solution for (A).

Suppose that (1.2) holds anda . In addition to (4.6)THEOREM 4.2
suppose that

qo(t)((t)) -’x dt < o, (4.12)

b(t)(b(t))-u dt < o, (4.13)
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where

b(t) (p(s))- qo(r) dr ds, (4.14)

(t)= fI(q(s))- f(r)dr]/ ds. (4.15)

Then, the system (A)possesses apositive decreasingproper solution (y, z)
satisfying (4.3).

Proof Let {(y.,z.)}.=l be the sequence of moderately decaying
solutions of (A) on [a,) such that

lim
y"(t) 1

and lim z,(t____) 1
to 71"(t) n t--*o 7r(t) n

The sequence exists by Theorem 3.1 and satisfies for > a

and

(4.16)

-yn(t) (p(t)) -1 + o(s)(zn(S))-ads

[ -,(’ /,:-Zn(t (q(t)) - + b(s)(yn(s))-u ds

(4.17)

From (4.16) we have

yn(t) >_ (Zn(t))-’Xlad(t), Zn(t) >_ (yn(t))-ul(t), t> a. (4.18)
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Combining (4.17) with (4.18) shows that

[ ( )1-yn(t) < (p(t)) -1 + (yn(t)) "x"//3 p(s)((s)) -’x ds

-Zn(t) <_ [(q(t))-1 (1+ (Zn(t))"x#/a ft(s)(d(s))-U ds)l 1//3

(4.19)

We have in particular

t>a.
(4.20)

where

A qo(s)(ff(s))- ds and B p(s)((s))-u ds.

Rewriting (4.20) as

--ynt(t) (1 + A(yn(t))’Xu//3) -1/ <_ (p(t))-/

--Zn(t) (1 -[- B(zn(t))A#/) -1//3
< (q(t)) -1//3, t> a,

(4.21)

and integrating these inequalities from to cx, we find that

+ Au"xu/ du < 7r(a),

fzn(t) ( )-1//3+ Bv "xu/’ dv <_ p(a),
dO

(4.22)

Since

fo(1 + AuA#/3) -1/ fo ( )du + Byau/
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because of the assumption aft> A#, it follows from (4.22) that the
sequence { (yn(t),Zn(t))}nl is uniformly bounded on [a, o). Using this
fact, we see from (4.20) that the sequence is locally equicontinuous on
[a, o). Consequently, there exists a subsequence of {(yn(t),zn(t))}nl
which converges to a continuous vector function (y.(t), z,(t)) uniformly
on compact subintervals of [a, c). The limit function (y.(t),z.(t)) is a
desired strongly decaying solution of(A), since from (4.16) it follows that

y,(t) (p(s))- q(r)(z,(r))- dr ds,

z,(t) f [(q(s))-’ (f (r)( y,(r))- dr) ] 1/ ISIS,

This completes the proof.

t>a.

(4.23)

Remark 4.3 Proceeding as in Remark 3.3 one can give estimates for the
rate of decay of strongly decaying solutions (y, z) of (A). The estimates
are formally the same as those given in (3.26) and (3.27).

Example 4.4 To illustrate the above results we consider the system

((cosh t)lY’l-ly’) o21-ae-(’x+2)/(1 q- e-2t)a-lz-A,
(4.24)

((cosh t)lz’[-lzt)’ --/321-/e-(U+:)t(1 q- e-2t)-ly-u,
for > 0. It is easy to see that p(t) (cosh t) and q(t) (cosh t) satisfy
(1.2) and the corresponding functions 7r(t) and p(t) (cf. (4.1)) are given
by 7r(t) p(t) 7r- 2 tan-ae/, > 0. In calculating the integrals in (4.6),
(4.12) and (4.13), we can use 2e-/ in place of 7r(t) and p(t), since
lim/o etTr(t) limt_.o etp(t) 2, and regard the functions

(t) a21-ae-(+2)t(1 + e-2t)a-1 and

b(t) 321-/e-(U+2)t(1 + e-Vt)-to be positive constant multiples of e-(’x+2)t and e-(z+2)t, respectively.
Taking these facts into account, we find that (4.6) certainly holds and that
(4.12) and (4.13) are satisfied if

/3>1/2A(#+2) and a>1/2#(A+2), (4.25)

respectively.
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Theorem 4.1 then implies that, for any given constants r/> 0 and ( > 0,
the system (4.24) has a moderately decaying solution (Ym, Zm) such that

lim etym(t) r/ and lim etzm(t) > O.

A concrete example of such solutions is (e-t, e-t). From Theorem 4.2
it follows that if (4.25) holds, then there exists a strongly decreasing
solution (y, z) of (4.24) such that

lim etys(t) lim e’zs(t) O.
&---(X)

5. APPLICATION

The above results for (A) can be used to derive nontrivial information
about spherically symmetric solutions to singular systems of partial
differential equations of the form (C) in an exterior domain Ea, a > O.
The applicability is endorsed by the fact that a spherically symmetric

function (u, v) (y(Ixl), z(Ix[)) is a solution of (C) in Ea if and only if the
function (y(t), z(t)) is a solution of the ordinary differential system

(t v-1 ly’lm-2y’) tN-lf(t)z-,
(t-lZ’l-2z’) tV-lg(t)y-, t>a,

(5.1)

which is a special case of(A) with a rn 1,/3 n 1, p(t) q(t) v- 1,
(t)= tV-lf(t)and b(t) tV-lg(t).Itisassumed thatm > 1,n > 1, A > 0,
# > 0 andf(t) and g(t) are positive and continuous on [a, o).

First, we have the following statement from Theorem 2.1 applied
to (5.1).

I. Suppose that

n-1 m-1
A< and #<. (5.2)

n m

Then, for any fixed b > a there exists a spherically symmetric solution
(u, v) of (C) which is positive on E(a,b)= {x E IRv: a < Ixl < b} and
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satisfies

lim u(x) lim v(x) O.
Ixl--,b-0 Irish-0

We now confine our attention of the following special case of (C)

div(lDulm-2Du) Ixl-kv
div([Dvln-2Dv)

(D)

k and being positive constants, and examine the existence of positive
spherically solutions of (D) defined on Ea in the case where

N>m and N>n. (5.4)

In this case p(t) q(t) N-1 satisfy the condition (1.2), and the
functions 7r(t) and p(t) in (5.1) become

m- t_(N_m)/(m_l7r(t) N m

n- t_(N_n)/(n_l)p(t) =N-n t>_a.

The condition (4.6) for qo(t) N-l-k and (t) N-l-! reads as follows:

99(t)(p(t))- dt < oc : k > N+ ,k(N- n) (5.6)

" b(t)(Tr(t))-u dt < oc : > N+ #(N-m)m-1
(5.7)

Theorem 4.1 regarding the moderately decreasing solutions of (A)
yields the following result for (D).

II. If (5.4), (5.6) and (5.7) hold, then there exists a positive spherically
symmetric solution (u, v) of (D) on Ea satisfying

lim Ixl(N-m)/(m-1)u(x) const. > 0,

lim Ixl(U-")/("-l)v(x) const. > 0.



602 T. KUSANO AND T. TANIGAWA

We present via Theorem 4.2 a sufficient condition for (D) to have a
positive spherically symmetric solution (u, v) such that

lim Ixl(v-m)/(m-1)u(x) O, lim 0. (5.9)

III. Suppose that (5.4) holds. If(m 1)(n 1) > A# and k and satisfy

A(I- n) #(k-m)
k >N+ > N+ (5.10)

n-1 m-1

then, (D) has a positive spherically symmetric solution (u, v) on Ea
satisfying (5.9).
To prove this proposition we first notice that the inequalities in (5.10)

are consistent because of the assumption (m- 1)(n- 1) > A#. Next we
compute the functions (t) and (t) in (5.13), finding that they are
positive constant multiples of -(k-m)/(m- 1) and -(t-n)/(n- 1), respectively.
We finally check that (5.10) ensures the conditions (5.12) and (5.13) and
apply Theorem 4.2 to (5.1) withf(t)= -k and g(t)= -t.
The results of Section 3 could also be applied to formulate two

propositions, analogues ofthe above II and III, for the elliptic system (D)
in the case where

N<rn and N<n.
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