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The purpose of this paper is to introduce a class of new random generalized set-valued
strongly nonlinear implicit quasi-variational inequalities, to construct new random itera-
tive algorithms, and to give some existence theorems of random solutions for this class of
random generalized set-valued strongly nonlinear implicit quasi-variational inequalities.
We also prove the convergence ofrandom iterative sequences generated by the algorithms.
Our results extend and improve the earlier and recent results.
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1. INTRODUCTION

Variational inequality theory has become a rich source ofinspiration in
pure and applied mathematics. Variational inequalities not only have
stimulated new results dealing with nonlinear partial differential equa-
tions, but also have been used in a large variety of problems arising in
mechanics, physics, optimization and control, nonlinear programming,
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economics and transportation equilibrium and engineering sciences,
etc. Quasi-variational inequalities are the extended form of varia-
tional inequalities in which the constrained set depends upon the solu-
tions. These were introduced and studied by Bensoussan et al. [3]. For
more details, we may refer to [1,2,4,5,12,18-20,26], and the references
therein.

Recently, the random variational inequality and random quasi-
variational inequality problems have been introduced and studied by
Chang [5], Chang and Huang [7,8], Chang and Zhu [9], Ganguly and
Wadhwa [10], Huang [13,14], Huang and Cho [15,16], Huang et al. [17],
Noor and Elsanousi [22], Tan [24] and Yuan [25].

In this paper, we introduce and study a class of new random general-
ized set-valued strongly nonlinear implicit quasi-variational inequalities
and construct some new random iterative algorithms. We prove the
existence of random solutions for this class or random generalized set-
valued strongly nonlinear implicit quasi-variational inequalities without
compactness and the convergence of the random iterative sequences
generated by the random algorithms. Our results extend and improve the
earlier and recent results including the corresponding results of Chang
[5], Chang and Huang [8], Huang 13,14], Huang and Cho 16], Noor [21 ],
Noor and Elsanousi [22], Siddiqi and Ansari [23].

2. PRELIMINARIES AND FORMULATIONS

Throughout this paper, let (f, t, #) be a complete tr-finite measure space
and Hbe a separable real Hilbert space. We denote by B(H), (., .) and I111
the class of Borel a-fields in H, the inner product and the norm on H,
respectively. In the sequel, we denote 2n, CB(H) and h by

2/= {A: A E H},

CB(H) {A C H: A is nonempty, bounded and closed},

the Hausdorff metric on CB(H), respectively.

DEFINITION 2.1 A mapping x f H is said to be measurable iffor any
4.
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DEFINITION 2.2 A mapping T" f x H--His calleda random operator if
for any x E H, T(w, x)= x(w) is measurable. A random operator T is said
to be continuous (resp., linear, bounded) iffor any w f, the mapping
T(a;, .):H-- H is continuous (resp., linear, bounded).

DEFINITION 2.3 A set-valued mapping V:f--2z-/ /s said to be
measurable iffor any B 13, V-1 (B) {w f: V(w) f B } A.

DEFINITION 2.4 A mapping u gt H is called a measurable selection

ofa set-valued measurable mapping V f -- 2rI ifu is measurable andfor
any w f, u(a;) V(w).

LEMMA 2.1 ([16]) Suppose that a random function a: f2 H x H
I --(-cxz, +oe) satisfies thefollowing conditions:

(1) For any w f, a(w, ., .) H H-- is a bounded bilinearfunction,
(2) For any u, v, H, a(., u, v):f -- I is a measurablefunction.
Then there exists a unique random boundedlinear operator A f H-- H
such that

(A(w, u), v) a(w, u, v) and IlA(w, ")ll Ila(v,-,

for all u, v H andw f, where

IIA(w, ")1[ sup{l[A(a;, u)l]: ]lull -< 1),
]la(w, .,.)[[ sup{la(,u, v)]: ]lull <_ 1, Ilv]l _< 1).

DEFINITION 2.5 A mapping V: f x H-+ 2H is called a random set-

valuedmapping iffor anyx H, V(., x) is measurable. A random set-valued
mapping V: f x H-- CB(H) is said to be h-continuous iffor any
V(w, .) is continuous in the Hausdorffmetric h.

DEFINITION 2.6 A mapping a:ft x H xHI is called a random
coercive bounded bilinearfunction ifthefollowing conditions are satisfied:

(1) For any weft, a(w,.,.) is bilinear and there exist measurable

functions a, f (0, o) such that

a(, u, u) > a(w) llull 2 and la(, u, v)l <

for all u, v H andw f,
(2) For any u, v H, a(., u, v) is a measurablefunction.
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The measurable functions a(w) and /3(w) are called the coercive

coefficients.
From Definition 2.6, it is easy to see that a(a;) _</3(a) for all w E ft.
Let U, V, K: 9t x H 2n be three random set-valued mappings such

that for each w E 9t and x E H, K(, x) is a nonempty closed convex subset
ofH. Letg 9t x H Hbe a random operator and a 9t H x H--* be
a random function. Now, we consider the following problem.
Find measurable mappings u, x, y f2 H such that

g(w, u(w)) K(w, x(w)), x(a;) U(a;, u(a;)), y(a)) V(a;, u(w)),
a(w, u(w), v g(w, u(w))) > (y(w), v g(, u(a;)))

(2.1)

for all w E f and v K(w, x(a;)).
The problem (2.1) is called a random generalized set-valued strongly

nonlinear implicit quasi-variational inequality.
If U is an identity mapping, then the problem (2.1) is equivalent to

the problem finding measurable mappings u, y 9t H such that

g(a, u(w)) E K(w, u(w)), y(a) E V(a;, u(w)),
a(w, u(w), v g(, u(w) > y(w), v g(w, u(w)

(2.2)

for all w E 9t and v K(w, u(w)).
The problem (2.2) is called a random generalized set-valued nonlinear

implicit quasi-variational inequality and appears to be a new one.
Ifg is an identity mapping, then the problem (2.1) is equivalent to the

problem finding measurable mappings u, x, y f H such that

a(w, u(w), v u(w) > y(w), v
(2.3)

for all w E f and v K(w, x(w)), and the problem (2.2) is equivalent to
the problem finding measurable mappings u, y 9t H such that

u(w) K(w, u(w) ), y(w) V(w, u(w)),
a(w, u(w), v- u(w) > (y(w), v u(w))

(2.4)

for all w E f and v K(w, u(w)), respectively.
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The problems (2.3) and (2.4) are called the random generalized set-
valued strongly nonlinear quasi-variational inequality and random gen-
eralized set-valued nonlinear quasi-variational inequality, respectively.

If K(co, u) m(co, u) + K for all co E f and u E H, where m f x H H
is a random operator, K is a nonempty closed convex subset of H, then
the problem (2.1) is equivalent to the problem finding measurable map-
pings u, x, y 9t H such that

g(w, u(co) m(w, x(w) K, x(w) V(w, u(w) ), y(co) V(w, u(w) ),

a(w, u(w), v g(co, u(w) > y(w), v g(w, u(w)

for all co 9t and v m(w, x(w)) + K.
The problem (2.5) is called the random completely generalized set-

valued implicit quasi-variational inequality, considered by Huang and
Cho [16].

Obviously, the problem (2.1) includes many kinds of variational
inequalities and quasi-variational inequalities in [5,8,13,14,16,21-23] as
special cases.

If a(co, u, v) is a random coercive bounded bilinear function, then,
from Lemma 2.1, there exists a unique random bounded linear operator
A f x H--+ Hsuch that (A(co, u), v) a(w, u, v) for all u, v Hand co Ft.

In this case, it follows that:

(1) The problem (2.1) is equivalent to the problem finding measurable
mappings u, x, y" f --+ H such that

g(w, u(w)) K(co, x(co)), x(co) U(co, u(w)), y(co) V(co, u(w)),

(A (co, u(co)), v g(co, u(co))) > (y(co), v g(co, u(co)))
(2.1)’

for all co 9t and v K(co, x(w)).
(2) The problem (2.2) is equivalent to the problem finding measurable

mappings u, y f H such that

g(w, u(w) K(w, u(w) ), y(w) V(w, u(co) ),

(A (co, u(w)), v g(w, u(w))) > (y(w), v g(w, u(w)))
(2.2)’

for all co Eft and v K(co, u(co)).
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(3) The problem (2.3) is equivalent to the problem finding measurable
mappings u, x, y f ---, H such that

() K(, x()), x() v(, u()),
(A(w,u(w)), v u(w)) > (y(a;), v

y(w) V(w,u()),

for all w E f and v K(w, u(a:)).
(4) The problem (2.4) is equivalent to the problem finding measurable

mappings u, y ft H such that

u(w) K(w, u(w) ), y(w) V(w, u(w) ),
(A (, u()), v u()) >_ (y(), v u())

for all f and v K(w, u(w)).

3. RANDOM ALGORITHMS

We first give the following lemmas and definition for our main results.

LEMMA 3.1 ([6]) Let V: f x H-- CB(H)beah-continuousrandomset-
valued mapping. Then for any measurable mapping u:f -+ H, the set-

valued mapping V(., u( )) f CB(H) is measurable.

LEMMA 3.2 ([6]) Let V, W: f CB(H) be two measurable set-valued
mappings, e > 0 be a constant and u f H be a measurable selection

of V. Then there exists a measurable selection v f Hof 14"such thatfor
all w f,

llu(w) v(w)[I <- (1 + e)h(V(w), W(w)).

LEMMA 3.3 ([5]) IlKis a closed convex subset ofHandz H, then u K
satisfies the inequality (u z, v u) >_ Ofor all v K ifand only if

u Pr(z), (3.1)

where PK is the projection ofH onto K.
Note that the mapping PK defined by (3.1) is nonexpensive, i.e., for

all u, v H,

IIe(u)- eg(v)]l Ilu- vii.
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LEMMA 3.4 ([7]) LetKbe a closed convex subset ofHandm f2 x H H
be a random operator. If K(w, u) re(w, u) / Kfor all w E f and u H,
then for any v H, Pic(o,u)(V) m(w, u) / PIt (v m(w, u)) for all w f
and u H.

From (2.1)’ and Lemma 3.3, we have the following lemma.

LEMMA 3.5 Let U, V, K: Ft H--, 2I-I be three random set-valued
mappings such thatfor each oJ f andx H, K(, x) is a nonempty closed
convex subset of H. Let g: f H--+ H be a random operator and
a f H H---, IR be a random coercive bounded bilinearfunction. Then
the measurable mappings u, x, y f --, H are the solutions of (2.1)/f and
only iffor any w f,

), y( o) v( o, ),

g(co, u(w)) Ptc(,x(o))(g(a, u(co)) + p(w)( y(w) A(w, u(w)))),
(3.2)

where p ft (0, cx) is a measurable function and A ft H---, H is a

random bounded linear operator defined by (A(w, u), v) a(w, u, v)for all
u, v H andw ft.

DEFINITION 3.1 Let K: f H---. 2zI be a random set-valued mapping
such that for each w f and x H, (w, x) is a nonempty closed convex
subset of H. The projection PlC,x) is said to be a Lipschitz continuous

random operator if

(1) for any given x, z H, Pic.,x)z is measurable;
(2) there exists a measurable function rl:f-- (0,) such that for all

x, y, z Handw f,

IIPK( ,x Z- PK( ,y Zll YlI"

PROPOSITION 3.1 If K(w,x) is defined as in Lemma 3.4, and m:f
H--. H is a Lipschitz continuous random operator, then Piw,x is a

Lipschitz continuous random operator.

Proof It is easy to see that for any given x, z H, PK(.,x)Z is measurable.
Furthermore, for any x, y, z E H and w Ft, it follows from Lemmas 3.3
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and 3.4 that

IIPt(,xZ eg(,ylZl[ [[m(w,x) + Pr(z- m(w,x))

m(w,y) Pr(z- m(w,y))ll

_< Ilm(w, x) re(a:, y)II

/ IIP(- m(.:,x)) Pr(z- m(w,y))lt

< 211m(, x) m(w, y)l.

Since m is a Lipschitz continuous random operator, we know that

Pic(,x) is also a Lipschitz continuous random operator.

Now, by using Lemma 3.5, we construct the random algorithm for
the random generalized set-valued strongly nonlinear implicit quasi-
variational inequality (2.1).

ALGORITHM 3.1 Let g f x H--H be a continuous random operator,
K: f2 x H 2Ha random set-valuedmapping such thatfor each w E f and
x H, K(w, x) is a nonempty closed convex subset ofHand the projection
Pl(,x) is a Lipschitz continuous random operator. Let U, V: f2 x H---+
CB(H) be two h-continuous random set-valued mappings and a f x H x
H-- be a random coercive bounded bilinearfunction. For any measur-

able mapping Uo:f H, the set-valued mappings U(., Uo(.)), V(., Uo(.))
f CB(H) are measurable by Lemma 3.1. Hence there exist measurable
selections Xo(.) n of U(., uo(.)) and Yo(’): f’l --+ n of V(., uo(.)) by
Himmelberg [11]. Letting

ul (w) uo(w) g(w, uo(w)) + Pic(w,xo(,:))(g(w, u0(w))
+ p(w)(yo(w) A(w, u0(w)))),

where p and A are the same as in Lemma 3.5, then it is easy to see that

ua f H is measurable. Since Xo(W) U(w, Uo(W)) CB(H) and yo(w)
V(w, Uo(W)) CB(H), by Lemma 3.2, there exist measurable selections

Xl 9t -- H of U(w, Ul(W)) and Yl f H of V(w, Ul(W)) such that for all

[Ixo(w) xl(w)[ <_ (1 +})h(U(w, uo(w)), U(w,u(w))),

IlY0(W) Y(W)[[ < (1 +)h(V(w, uo(w)), V(a:,u(w))).
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Letting

u2(w) Ul (w) g(w, Ul (w)) + Ptc(u,x(w))(g(w, ui (w))
+ p()(y () A(, u ()))),

then u2 f ---* H is measurable.
Inductively, we can define three sequences {un(w)}, {xn(w)} and { y,(w)}

ofmeasurable mappings such that

xn() U(, un(co)), Yn() V(CO, Un(co)),

Ilx.()-x./a()ll < 1+ h(U(w, Un(W)) U(w, Un+l(w)))n+l

( ) h(V(co’un(co)) V(’un+l()))’IlYn(co)- Yn+l(w)[I < 1+
n +1

un+l (w) Un(W) g(w, Un(co)) " Pr(,x,())(g(w, Un(W))

+ p(co)(yn(w) A(co, Un(co))))
(3.3)

for all co E f and n =0, 1,2,..., where p and A are the same as in

Lemma 3.5.

Similarly, we have the following algorithms.

ALGORITHM 3.2 Let K, V, g anda be the same as in Algorithm 3.1. Then

for any measurable mapping Uo" --* H, we can define two sequences
{Un(co)) and { Yn(co)} ofmeasurable mappings by

Yn(co) V(w. Un(co)).

( 1)h(v(co)’u"(co))V(w’un+l(co)))’[[yn(w)- y,,+l(w)l[ _< +n +
Un+l (co) Un(co) g(co, Un(co)) + Pc(w,u.(w))(g(co, Un(co))

+ .()(y,(,) A(. u,.(..,))))
(3.4)
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for all w E f and n=O, 1, 2,..., where p and A are the same as in
Lemma 3.5.

ALGORITHM 3.3 Let K, U, Vanda be the same as in Algorithm 3.1. Then

for any measurable mapping uo:f H, we can define three sequences
{u,,(w)}, {x,(w)} and { y,,(w)} ofmeasurable mappings such that

x.() (, u.()), y.() v(, u.()),

[IXn()-X,/l()ll < 1+ h(S(w,u,(w)) S(w,u,+(w)))
n+l

( 1)h(V(w, Un(a))) V(aJ, Un+(a;))),y.()- y.+()ll-< +n /1
Un+l (a)) eK(w,x,(w))(Un(W) / p(a))( yn(W)

(3.5)

for all f and n=0, 1,2,..., where p and A are the same as in
Lemma 3.5.

ALGORITHM 3.4 Let K, Vanda be the same as in Algorithm 3.1. Thenfor
any measurable mapping Uo" f H, we can define two sequences {u,,(w)}
and { y,,(a)} ofmeasurable mappings by

y.() v(, u. ()),

Ily,() -y,+l()[I < -+-n / h(V(o.;),Un()), V(,Un+l())),

Un+l () eK(w,u,(w))(Un(W) / p()(yn() A(;,Un(a;))))
(3.6)

for all w 9t and n =0, 1,2,..., where p and A are the same as in
Lemma 3.5.

4. EXISTENCE AND CONVERGENCE

In this section, we discuss the existence ofrandom solutions for the ran-
dom generalized set-valued strongly nonlinear implicit quasi-variational
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inequality (2.1) and the convergence of the random iterative sequences
generated by the algorithm.

DEFINITION 4.1 A random operatorf: f HH is said

(1) to be strongly monotone if there exists a measurablefunction
(0, o) such that

(f(w, u) f(w, v), u v) > 6(w) Ilu vii 2

for all a; E f and u, v H,
(2) to be Lipschitz continuous ifthere exists a measurablefunction "y f

(0, cxz) such that

IIf( , u) v)ll  ( )llu vii

for all 2 and u, v H.

The measurablefunctions 6(w) and "7(w) are called the strongly monotone
coefficient and Lipschitz coefficient, respectively.

DEFINITION 4.2 A random set-valued mapping V" f H---, CB(H) is
said to be h-Lipschitz continuous if there exists a measurable function
7 f - (0, cz) such that

u), v)) vii

for all w f and u, v H. The measurable function rl(a;) is called the
h-Lipschitz coefficient.

THEOREM 4.1 Suppose that K: f2 xH 21-1 is a random set-valued
mapping such thatfor each w f andx H, K(w, x) is a nonempty closed
convex subset ofH and the projection Pi(,x) is a Lipschitz continuous
random operator with the Lipschitz coefficient "y(w). Let g:Q x H H
be a strongly monotone Lipschitz continuous random operator with the
strongly monotone coefficient (w) and Lipschitz coefficient r(w),
respectively. Suppose that U, V: H--- CB(H) are h-Lipschitz con-
tinuous random set-valuedmappings with the h-Lipschitz coefficients (w)
and (w), respectively, and a: x H x H--- IR is a random coercive
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bounded bilinear function with the coercive coefficients a(w) and/3(w),
respectively. If, for any w E f2,

(4.1)
1

a(co) > (1 k())7(co) -t- X//(/32(w) r/2())k()(2 k()),

p(),() < -k(), ,() < ,(,),

(4.2)

(4.3)

k(w) "7(w)f(w) + 2V/1 26(w) + o-2(w) < 1, (4.4)

then there exists measurable mappings u, x, y f --. H which are the solu-
tions of the random generalized set-valued strongly nonlinear implicit
quasi-variational inequality (2.1) andfor any w 9t,

Un((.O) ---4 U((.d), Xn(02) --4 X((.d), yn(a;) y(a;) as n + o,

where {u,(w)}, {x,(w)} and { y,(w)) are three sequence ofmeasurable map-
pings generated by Algorithm 3.1.

Proof By Algorithm 3.1, Definition 3.1 and Lemma 3.3, we have

[lUn+ () U.(W)[[
[[Un(W) g(w, Un(Ca3)) Un_ ((.0) -[- g(d, U())
+ P(,x.(ll(g(w,u.(w))+ p(w)(y.(w) A(, u.(w))))

P:(,._,(l(g(a2, u.-(w)) + P(w)(Y.-(w)- .4(w, u.- ()))) II
[[Un((.d) Un-1 (w) (g((.d, Un(W)) g(a;, Un-1 ()))11
+ IlP:(,.((g(w, u(w))+ p(w)(y.(w)- A(w, u(w))))

el(,x.((g(w,u.-(w)) + p(w)(Yn-I(W) A(, u- ())))

+ ]]P:(,x.((g(w, un_(w))+ p(a;)(yn_l(a;)- A(a;,Un-l(W))))

Pr(,x._l())(g(w, Un-l(W))+ p(w)(yn-l(W)- A(,Un-a())))ll
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(4.5)

Since a(, u, v) is a random coercive bounded bilinear function and g is
a strongly monotone Lipschitz continuous random operator, we have

< (1 2p()a(w) + ()2())l]Un( u._()ll 2 (4.6)

and

IlUn() U._ () (g(,U,,()) g(, U._ ()))[[ =
< (1 2(W) + o.2 ((a3))llUn(W) Un_ ((a./)II u. (4.7)

Further, since U, V are h-Lipschitz continuous, from (3.3), it follows
that

(4.8)

and

Yn(W) Yn-1 (W)]] _< (1+) h( V(w, u,,(w) ), V(w, Un_ ((.,0)))

(4.9)

It follows from the above inequalities, (4.5)-(4.9), that

Ilu.+, () u.()[I On()llu,,() Un--I ()11, (4.10)
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where

and

In view of (4.1)-(4.4), we know that 0 < On(w) < for sufficiently large
n. By (4.10), {un()} is a Cauchy sequence and so un(w)u(w) as
n oo. By virtue of (4.8) and (4.9), it is easy to see that {xn(v)} and
{yn(w)} are both Cauchy sequences in H. Let xn(v)x(o) and
yn(w)y(w) as noo. Since {un(w)}, {xn(w)} and {yn(w)} are all
measurable sequences of mappings, we know that u, x, y:f---, H are
measurable.
Now we prove that

g(w,u(w)) Pc(,x(w))(g(w,u(w)) + p(w)(y(w) A(w,u(w)))). (4.11)

In fact, from (3.3), we know that it is enough to prove that

lim PI(w,x,(oa))(g(w, Un(W)) + p(w)(yn(W) A(w, Un(Oa))))
n

Ptc(,x())(g(w, u(w)) + p(v)(y(v) A(o, u(v)))). (4.12)

It follows from Definition 3.1 and Lemma 3.3, we have
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This implies that the equality (4.12) holds and so the equality (4.11)
is true.

Next, we prove that x(w) E U(a, u(a)). In fact, we have

d(x(a;), U(w, u(w))) inf{llx() ell" z U(, u())
Ilx(0.)) Xn(0d)[ --t- d(Xn(Od), U(, u()))
IIx() x.()ll + h(U(,u.()), f(,u()))

[Ix() Xn()[I + C()[lUn()
(4.13)

From the above inequality (4.13), it is easy to see that d(x(w),
U(w, v(w)))= 0. This implies that x(o)E U(w, u(w)). Similarly, we have
y(o) V(w, u(w)). Therefore, by (4.11) and Lemma 3.5, we know that
u,x,y are the random solutions of random generalized set-valued
strongly nonlinear implicit quasi-variational inequality (2.1) and
x,,(o.;) -- x(), y,,(w) y(w), u,,(o.;) ---* u(w) as n . This completes the
proof.

From Theorem 4.1, the following results can be obtained immediately.

THEOREM 4.2 Let g, K, PI, V and a be the same as in Theorem 4.1. If,
for any a; f, the conditions (4.1)-(4.4) in Theorem 4.1 are satisfiedfor

k(w) "y(w) + 2V/1 26(w) +

then there exist measurable mappings u, y f’l --+ H which are the random
solutions of the random generalized set-valued nonlinear implicit quasi-
variational inequality (2.2) andfor any w f, un(w) u(w), yn(W) -’* y(w)
as n-- c, where {Un(W)} and {yn(w)} are two sequences of measurable
mappings generated by Algorithm 3.2.

THEOREM 4.3 Let K, PI, U, V and a be the same as in Theorem 4.1. If
for any w f, the conditions (4.1)-(4.4) in Theorem 4.1 are satisfiedfor
k(w)=’,/(w)((w), then there exist measurable mappings u,x,y:f H
which are the random solution of the random generalized set-valued
strongly nonlinear quasi-variational inequality (2.3) and for any w f,
u,(w) u(w), Xn(W) X(W), y,(w) y(w) as n o, where {u,(w)},
{x,(w)} and { y,(w)} are three sequences ofmeasurable mappingsgenerated
by Algorithm 3.3.
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THEOREM 4.4 LetK, Pr, Vandabethesameasin Theorem4.1.Ifforany
wE f the conditions (4.1)-(4.4) in Theorem 4.1 are satisfiedfor k(w)=
"y(w), then there exist measurable mappings u, y: f2 H which are the
random solution of the random generalized set-valued nonlinear quasi-
variational inequality (2.4) andfor any w E f2, u,(w) u(w) and y,,(w)
y(a;) as n , where {u,(w)} and { y,(w)} are two sequences ofmeasurable
mappings generated by Algorithm 3.4.

Remark 4.1 From Theorems 4.1-4.4, we can obtain several known
results of[5,8,13,14,16,21-23] as special cases.
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