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Inthispapernonlinear integral inequalities with weakly singular kernels for functionsintwo
and n independent variables are solved. The obtained results are related to the well known
Gronwall-Bihari and Henry inequalities for functions in one variable and the Wendroff
inequality for functionsin two variables. A modification of Ou-Iang—Pachpatte inequality
and inequalities for functions in n independent variables are also treated here.
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1. INTRODUCTION

D. Henry proposed in his book [7] a method to estimate solutions of
linear integral inequality with weakly singular kernel. His inequality
plays the same role in the geometric theory of parabolic partial dif-
ferential equations (see [6,7,18]) as the well known Gronwall inequality
in the theory of ordinary differential equations. In the paper [13] a new
method to estimate solutions for nonlinear integral inequalities with
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singular kernels of Bihari type is proposed. The resulting estimation
formulas are similar to those for classical integral inequalities (see
[1,2,5,9-12,16]). For instance the estimate of solution of the Henry
inequality is of exponential form in contrary to the Henry’s estimate (see
[7,18]) by an infinite series of a complicated form. The method has been
applied in the paper [14] in the proof of global existence of solutions and
a stability theorem for a class of parabolic PDEs.

In this paper we use the method proposed by the author in the paper
[13] to obtain an analogue of the Wendroff inequality (see [1,5,9,10]) for
functions in two variables. Thandapani and Agarwal [19] proved inter-
esting results concerning inequalities for functions in # independent
variables. Applying our method of desingularization of weakly singular
inequalities we prove a singular version of one of them. We remark that
the papers [3,4,15,19] contain many results on inequalities of Wendroff
type and applying our desingularization method one can formulate and
prove their singular versions in a similar way as we are doing this
in Section 4. We also present an estimate of solutions of an analogue of
Ou-Ilanginequality whose generalization for the nonlinear case has been
given by Pachpatte [16].

2. WENDROFF TYPE INEQUALITIES

First let us recall a definition of a class of functions from the paper [13].

DEFINITION 2.1  Let g > 0 be areal number and 0 < T < oco. We say that
a functionw: RT — R (R = (0, 00)) satisfies a condition (q) if

e "wm))? < R(t)w(e ™ "u!) forallue R*, 1€(0,T), (q)

where R(Y) is a continuous, nonnegative function.

Examples (see [13])

1. w(u)=u"™, m> 0 satisfies the condition (q) with R(r) =~ D%,
2. w)=u+au"™,where 0 <a<1,m> 1 satisfies the condition (q) with
R(1)=27""e™™".
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We shall need the following well known consequence of the Jensen
inequality:

(A1 +Ap+ -+ Ay) Sn N A, + A5+ + AD) (1)
(see [8,17)).
We shall study an inequality of the type
o a-1 p—1
uixn) <ae)+ [ [ =9 -0
x F(s, w(u(s, 1)) dsdt, (2)

for (x,»)€(0,T)*=(0,T)x (0, T) (0<T<o0), where a>0, 8>0.
Results on integral inequalities in two variables with regular kernels
(i.e. with =1, 8=1, F continuous) and a(x, y) constant are contained
in the books [1,5,9,10].

THEOREM 2.2 Let a(x, ) be a nonnegative, C *-function,

0%a(x,y) Oa(x,y) da(x,y)
Ox0y — 0, ox — 0 (or oy O) ©

on (0, Ty = (0, T)x (0,T) (0< T<00), u(x,y), F(x,y) be continuous,
nonnegative functions on (0, T)* satisfying the inequality (2), where
w:R"— R is a nonnegative C'-function. Then the following assertions
hold:

(i) Suppose a>1, 8>1andw satisfies the condition (q) with g=2. Then
u(x,y) < e"”{ﬂ"l [Q(Za(x, ¥)?%)

12
+2K /0 /OyF(s,t)zR(H—t)dsdt]} Y

where

r28-1TrRa-1)
4a+p-1 ’

(x,9) € (0, T1)> = (0, Ty) x (0, T1),

K=
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T is the Gamma function, Q(v) = [; dy/w(y), vo >0, Q! is the
inverse of Q and Ty >0 is such that the argument of Q™" in (3)
belongs to Dom(Q™") for all (x, ) € (0, T)*.

(ii) Suppose o= [ =1/(z+ 1) for some real number z > 1 and w satisfies
the condition (q) withq=z+2. Then

u(x,y) < ex+y{9—1 [Q(2a(x, )

1/q
x ry
+M,/ / F(s,t)qR(S-f—t)dsdt]} s
0 0

(x,y) € (0, T,), where
_z+2 _ (T(1 —pé) 2/p B oz
=TT MZ_(p(l—pé) ’ 6“1_ﬂ_z+1’

T, > 0 is such that the argument of Q™! belongs to Dom(QY™") for all
(x9 J’) € <0a T2)

Proof First let us prove the assertion (i). Using the Cauchy—Schwarz
inequality we obtain from (2)

u(x,y) <a(x,y)+ // (y—0?!

x e![e” O F(s, t)w(u(s, 1))] dsdz

a(x.y) + [/ / 5Ty — )2ﬂ“2e2’dsdt] 2
X [/Ox /Oy e 25 (s, 1) w(u(s, 1)) dsdt] 1/2. (4)

For the first integral in (4) we have the estimate

/ / 2a 2 2v(y _ t)2/f—262t dsdz

2(x+y) / 20— Ze—ZU /}' n2ﬂ—2e—2n do d’I]
0 0
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2(x+y) x y
= 2§(a+ﬁ)—2 / g2 / %t dodg
0 0
e2(x+y)

< WF(Zﬂ - 1)1_‘(201 - 1)

Therefore we obtain from (4)

x py 1/2
u(x,y) < a(x,y)+e"+y1<‘/2[ / / F(s, 1)%e 20 (u(s, 1)) dsdt|
0 Jo

where K is as in Theorem 2.2. Using the inequality (2) withn=2, r=2
and applying the condition (q) with ¢ =2 we obtain

v(x,y) < a(x,y) + ZK/Ox /Oy F(s,0)*R(s + Dw(v(s, 1)) dsdz,  (5)

where

v(x,) = (" Mu(x,1))%  a(x,y) = 2a(x,y)". (6)
We need the following lemma.
LEMMA 2.3 Let w:R"— R be a nonnegative, nondecreasing C'-

function, a(x,y) be a nonnegative C>-function on (0, T)* (0< T<o0)
such that

d%a(x,y) >0 da(x,y) >0 ( da(x,y) > 0)

oxdy ~ 7 oy o Tox

on (0, T)Y (0< T<o0). Let k(x,y) be a continuous, nonnegative C*
function and z(x, y) be a continuous, nonnegative function on (0, T)? with

z(x,y) < a(x,y) + /Ox /Oy k(s, t)w(z(s, 1)) dsds, (7)
(x,y) €(0, T)*. Then
2(x,y) < Q' [Q(a(x, )+ /0 ’ /0 " ks, 1) dsdt], (5.9) € O.TV.

where Ty >0 is such that the argument of Q™' in the above inequality
belongs to Dom(Q~") for all (x,y) € (0, T})>.
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Remark 1If a(x,y) is constant then the lemma is a consequence of
[9, Theorem 7.8]. In this case it suffices to assume that w is contin-
uous only.

Proof Let V(x,y) be the right-hand side of (7). Then

0V (x,y) _0%a(x,y)

ooy~ oxdy T k(x, y)w(z(x,)), (8)
O’V (x,5) _ o *V(x,) | o OV(x,y) OV(x,y)
—WJ;—ZQ(V(X,J’))_WﬂLQ (Vx, 3)) =5 oy

)
Since Q'(V) = 1/w(V) and 2"(V) < 0 we obtain from (8) and (9)

0V (x.y)) _ Falx.y) 1
0x0y - ox0y w(V)

< 0%a(x,y) 1
0x0y wla(x,y))

+ k(x,y)

+ k(x,). (10)

However

o d [ do
Ox0y alx.y) = O0xdy /0 w(o)

Ly 1]
S Ox| Oy wla(x,y))

_dalxy) 1 da(xy) 1

- Oxdy w(a(x,y))_w/(a(x’y)) Ox  w(a(x,y))?
>62a(x,y) 1
= 0x0y wla(x,y))’
ie.
0%a(x,y) 1

gy ) 2 =5 B ) "
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(If 9a/dy > 0 then one can obtain (11) by estimating (8/0x0y)(a(x, )).)
Thus we obtain from (10) and (11)

O’V(x.)) _ 97Qa(x,y))
Ox0y - 0Ox0Oy

+ k(x,y)

and this yields

Q(v(x,y)) < Qa(x,y)) + /(j /Oy k(s,t)dsds.

From this inequality we obtain

z(x,y) < V(x,y) < Q7! [Q(a(x,y)) + /Ox /Oy k(s,1) dsdt].

Now let us continue the proof of Theorem 2.2. Applying Lemma 2.3
to the inequality (5) we obtain

v(x,y) < Q7! [Q(a(x,y)) + 2K/0x /Oy F(s,1)*R(s + 1) dt ds] .

Using (6) we obtain

1/2

u(x, y) < ex+y{sr‘ [Q(2a(x, ) +2K /0 ) /0 " Fls, 02R(1 + 5) dt ds}}

Now we shall prove the assertion (ii). Let p=(z+2)/(z+ 1),
qg=z+2.Then

X ry 1/p
u(x,y) < a(x,y) + [ / / (x — 5) PP (y — 1) PP dsdt]
0 0

x pry 1/q
X [/ / e 96 (s, £)w(u(s, 1)) dt ds] :
o Jo
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We have
x oy
/ / (x — 8) e (y — 1) el dsdr
o Jo
x y
=/ (x—s)_p‘seps/ (y — 1) P drds
0 0

<2 = ps) [ (x = 5)Perds
~pl-p F 0

exty
Smr(l — pé)*.

Thus we have

u(x,y)

X py 1/q
<a(x,y) + Ke* [/ / F(s, )2 R(t + 8)w(e 1 u(s, 1)?) ds dr
0 Jo

and this yields
x oy
v(x,y) < alx,y) + 2K2/ / F(s,0)"R(t + s)w(v(s, 1)) dsdz,
o Jo
where

a(x.y) = 2a(x.y7, vxny) = (e P ux ),
/
M. — (F(l —pé))“’

7
p'p

and this yields the inequality for u(x, y) from the assertion (ii).
Ifa#B,a,6< %, then there are some technical problems and we omit
this case.

THEOREM 2.4 Let functions a, F be as in Theorem 2.2 and u(x, y) be a
continuous, nonnegative function on (0, T')? satisfying the inequality

u(x,y) < a(x,y)+ /OX /Oy(x _ 5!
X

(y = 0P 9 VR, Du(s, 1) dsdr,  (12)
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where 3> 0, v > 0. Then the following assertions hold:
(i) If8>1,v>1—(1/2p) then
u(x,y) < e*o(x,y), (13)
for (x,y) € (0, T), where
49-1 X ry )
B(x, ) = 2=/ exp [—— KILf / / Fls, 1)9e16+) dgdi |,
q 0o Jo
(14)

K is as in Theorem 2.2,

T2y =2)p+ 1)\ L1
L_< p(2’7—2)p+1 , p>1, g>1, ;-{-5_1_

(ii) Let f=1/(z+ 1) for some real number z>1, p=(z+2)/(z+ 1),
g=z+1,v>1—1/kq, where k> 1. Then

u(x,y) <e*U(x,y), (15)

where

rq
U(x,y) = 2'""V"a(x, y) exp[Q / / e St F(s, 1) dsdt]

r>1is such that 1|+ 1/r=1, Q= M,P, M, is as in Theorem 2.2,
P=[C(sq(y— D+ D" and a=—z/(z+ 1) =8 — 1.

Proof We shall prove the assertion (i). From

1/2
u(x,y) <a(x,y)+ [/ / 5) e (y — t)w_zez’dsdt]

©opx py 12
X / / sP 222 F(s, 1) (e u(s, 1)) ds dt]
LJ/O JO

< a(x,y) +eXVK'/?

Xy 1/2
X / / s 222 F (s, 1) (e~ u(s, 1)) ds dt] ,
LJo Jo
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where K is as in Theorem 2.2. This yields
x ry
v(x,y) < c(x,p) + 2K/ / P2 (s, 1) (s, ) dsdt,  (16)
0o Jo

where

v(x,p) = (€ u(x,y)?,  clxy)=2a(xy)".  (17)

From (16) we have

x oy 1/p
v(x,y) < e(x,y) +2K / / sr=2py @1=Dpep(st) g dt}
0 Jo

X pry 1/q
x [ / / F(s, 1)2e75+ 0 y(s, t)qudt} : (18)
o Jo

where p, g are as in theorem. For the first integral in (18) we have

j[ J/ S22 (21D plet) g s

——-/p o@r=pe- /py r@=2re~" dr do
(p(27—2)p+1) 0 0

<<nav—ap+w>2

pr-Dpil
and thus we obtain from (18) that

v(x,y) < c(x,p)+ 2KL /OX /Oy F(s, 126?00y (s, 1)? dsdt, (19)
where L is defined in theorem. This yields

X pry
v(x,p)? < 2971 [c(x,y)q + 2"K‘1L"/ / F(s, 1)%Me4S+y(s, 1)? dsdr | .
0

(20)
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One can check that from the assumptions of theorem it follows that

9c(x,y) dc(x, y) 9c(x,y)
_> _— > _— > .
ox0y — 7 ox ~ 0 {or oy ~ 0

Thus from Lemma 2.3 and (20) we obtain
| 44 x pry ,
st < 2 e[ xons [ [ Fs oo s
0o Jo

and the equalities (17) yield (20).
Now let us prove the assertion (ii). From the inequality (12) we obtain

X ry 1/p
u(x,y) <alx,y)+ [/ / (x — §) Py — 1) P2replotD) dsdt]
o Jo

x ry /q
X [/ /y s10=D 0=V e=a6+) B, 1)Tu(s, 1)? ds dt]
o Jo

(1 - ap)\*”
x+y N T
<a(x,y)+e ( P )

X y ]/K,
x [/ / (1) prg(y=1) o —(s+0) dsdt]
o Jo

x ry 1/rq
% [/ / e’(”’)F(s, t)’q(e”(s‘”)u(s,t)"’dsdt]
0o Jo
x py 1/rq
Sa(x’y)+ex+yQ|:// er(s+t)F(s’t)"](e-—(s+t)u(s’t))rqudt] ,
0 Jo

where Q = M, P, M, is as in Theorem 2.2, Pis as in theorem and r, s are
as in the assertion (ii). The above inequality yields

x ry
v(x,y) < 277! [a(x, N+ Q"’/ / e’CHDF(s, )" v(s, 1) ds dt] ,
0 Jo

where

v(x,y) = (67 u(x, y))™. (21)
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Therefore we have

x pry
v(x,») <277 'a(x, )" exp [Q"’ / / " F(s, 1) ds dt
0 0

and using (21) we obtain (15).

3. OU-IANG-PACHPATTE TYPE INEQUALITY
We shall prove a theorem corresponding to an analog of Ou—Iang—
Pachpatte inequality (see [13,16]).

THEOREM 3.1 Let T> 0, F andw be as in Theorem 2.2 and a be a positive
constant. Let u(x,y) be a continuous, nonnegative function on (0, T)?
satisfying the inequality

x oy
u(x,y)* <a+ / / (x —)* Ny = )P F(s, w(u(s, 1)) dsdr, (22)
0o Jo
(x,») €0, T)z. Then the following assertions hold:

i) Suppose a>1, 3>1 and w satisfies the condition (q) with q=2.
'pp 2 2
Then

u(x,y) <eV(x,y), (%) €(0,T1), (23)
where
d(x,y) = [A ‘( (2a%) +2K// (s, 1) S—l—t)dsdt)}]/“,
(x.3) € (0, Th)?,

K is the number from Theorem 2.2 and A f do/w(\/o ) vo >0,
T, > 0 is such that the argument of A~ belongs 10 Dom(A™") for all
(07 Tl) .

(ii) Suppose a=p=1/(z+1) for some real numbers z>1 and let
p=(z+2)/(z+1), g=z+2. Assume that w satisfies the condition



NONLINEAR SINGULAR INTEGRAL INEQUALITIES 299

(Q) withq=2z+2. Then
u(x,y) <e*U(x,y), (%) € (0, T»)? (24)

where
X py 1/2q
U(x,p)= (A1 (AQ1 %)) + 27 M4 / / F(s,0)R(s + £)dsdt| .
0Jo
(x,y)€(0, T3), T> >0 is such that the argument of A" in the above

inequality belongs to Dom(A™") for all (x,y)€ (0,Ts), M, is as in
Theorem 2.2.

Proof Let us prove (ii). Using the Cauchy—Schwarz inequality and
inequality (1) we obtain

x py
u(e, y)? < a+ / / (x = )2 (3 = e F(s, D) uo(u(s, 1)) ds dr
0 Jo
x y 1/2
<a+ </ / (x —5)272(y — 1) 2240 s dt)
0 0

Xy 12
x ( / / F(s, 1) R(s + (e 2 Du(s, 1)?) dsdt)
0 0

X ry 1/2
<a+ Ke‘(”y)(// F(s,1)*R(s + D)w(e 2" u(s, 1)?) ds da ,
0Jo

where K is as in Theorem 2.2. Applying the inequality (1) similarly as in
the proof of Theorem 2.2 we obtain the inequality

x ry
e u(x,y)? <24 + 2K/ / F(s, 1)*R(s + Nw(eu(s, 1)) dsdr,
o Jo
where K is an in Theorem 2.2. This yields
x py
W% ) < e+ 2K / / Fls, ) R(s + Dw(v(s, 1)) dsdi,  (25)
0o Jo

where

v(x,y) = (€ Mu(x,y))?,  c=24 (26)
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Let V(x, y) be the right-hand side of (25). Then

v(x,p) S VV(xy),  w(x 1) < w(v/V(x,)). (27)
We have

92V (x,y)

axay K (%) R(x + )w(v(x, ) (28)

and
KB /VW) dt 8 0V(x,)/dy
oxdyJo  w(Vi) Oxw(y/V(x,y))

_0%V(x,) ' 1

O xdy  w(\/V(%,))

CV(xy) V(xy)  JV(x)
Oy Ox  2\/V(x,y)w(\/V(x, ))?
< 02V (x,y) 1

X0y w(y/V(x,))

ie.
82 O*V(x,y) !
BxayA(V(x’y>> - Ox0Oy 'w(\/ V(x,y)

From this inequality and (28) we have

(29)
%A(V(x, ») < 2K /0 ’ /0 " Fls, 02 R(s + 1) ds dt

and using (26), (27) we obtain the inequality (22).
Now let us prove (ii). Following the proof of the assertion (ii) of
Theorem 2.2 one can show that

w(x,y)* < a+2K? /x /y F(s, 1) R(s + t)w(w(s, 1)) ds dt, (30)
o Jo

where

a=2d,  wxy) = (" ulx, )"
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Applying the same procedure to (30) as we have used in the proof of the
assertion (ii) as well as that one from the proof of (ii) of Theorem 2.2 one
can prove the inequality (24).

4. ON A LINEAR INTEGRAL INEQUALITY IN
n INDEPENDENT VARIABLES

In this section we state and prove a result on a singular integral inequal-
ity in n variable. In the proof of this result we apply our method of
desingularization of weakly singular inequalities and the well known
result by Thandapani and Agarwal [19, Theorem 2.3]. First let us formu-
late this result.

Let 2 C R” be an open bounded set and let a point (x/,...,x}) € Qbe
denotedby x’. Lety=(y1,..., ¥, x=(x1,..., %) EQ(y < x,i.e.y; < x;
i=1,2,...,n) and denote by D parallelepiped defined by y < s < x. The
fyx -ds indicates the n-fold integral fyx, .. f;: -ds; - -ds, and u(x)
denotes 0"u(x)/(0x; - - - 0x,,).

THEOREM 4.1 [19, Theorem 2.3] Let V{(s,x) be the solution of
characteristic initial value problem

(=1)"Vi(s,x) = Y El(s,b)V(s,x) =0 inQ, (31)

Vis,x)=1 onsi=x;, 1<i<n (32)

andlet D% be a connected subdomain of Q) containing x such that V(s, x) > 0
forse D*. Let D C D" be a parallelepiped andu: D™ — R be a continuous
function satisfying the inequality
m
u(x) < a(x) +b(x) Y _E"(x,u), x€D, (33)
r=1
where

xr—l

E(xu) = /y T fad) /y T fa(a) [ et asrax
(34)

<
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a,b,f,;: DY — R, j=1,2,...,r are continuous, nonnegative functions.
Then

u(x) <a(x /x zm:Es (s,a)V(s,x)ds, xeD. (35)
r=1

In the sequel we use the notations: e :=¢l, x7 := xll x}z -+ x,)" for

x:(xl,xz,.. .,x,,)eR", v = (’71,’)’2,. ..,’yn) (S Ri = {(k],kg,.. .,k,,) |
ki€ R, ki >0, i=1,2,...,n},where |x|=x; +x2+ -+ +x,. Wealso
denote by [A] the vector (3,0,...,8)€R”, by 1,2,... the vectors
a,1,...,DeRrR", (2,2,...,2)eR", ... and by p/q we mean the vector
(plg,....plD.

THEOREM 4.2 Let Q,D,D%, V(s, x), a(x), b(x),fr1(x), ..., fr(x) be as
in Theorem 4.1 and let o = (v, ...,y) € R], 0<a <1 (ie. 0<; <1,
i=1,2,...,n). Let u:D* — R be a continuous, nonnegative function
satisfying the inequality
m
u(x) < a(x)+b(x) Y F'(x,u), x>0, (36)
r=1

where

F"(x,u)

x!

- /0 ) /o ). /0 (1 X)) -

Then the following assertions hold:

() Suppose a=(ai,...,a,)>}. Then

u(x)Se"[Za( )2 + 4b(x ( / Srilo )
X /Ox (/(]x‘- . -/Oxr_zf,,(x’_l)za(x’*l)2 dx"dx"! --.dxz)

x W(x',x) dxl] , (38)
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where
1 n
S = Wgr(zai - 1)

and W(s, x) is the solution of characteristic initial value problem

m

(—1)"Wi(s,%) = > _K;(s, B)W(s,x) =0 in Q (39)
r=1

W(s,x)=1 onsi=x;, i=1,2,...,n (40)

, @ r—1 x e
K'(s,B)=S (}1;[/0 Srj(o) do

x /OX/OXI -‘-/Oxy_lf,,(x’)zB(x’)zdx’--~dx1.

(ii) Suppose a=[1/(z+ 1)] for a real number z>1 and let g=z+2,
p=0E+2)/(z+1),ie l/p+1/g=1. Then

m r—1 x a/p
u(x) < 2'7Vaex [a(x)q +b(x)'T} Z (H/o Sri(o) dO’)
r=1 \ j=1

X /Ox </0x ---/OXF Sr(x")1297 a(x)1 dx’mdxz)
1/q
x Z(x', x) dxl] , (41)

where

T'(1 - ps)"\'”
Tp = (W) 5 6=1- a, (42)
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Z(s, x) is the solution of characteristic initial value problem
(—1)"Zs(s,x) = Y Ri(s,C)Z(s5,x) =0 in Q (43)
r=1

Z(s,x)=0 onsi=x; i=12,...,n, (44)

where C(x) =29""a(x)7,
1 x q/p
r — q . P
R (s,x) =T} (,I;'l[/() Ji(o) da>

x xl xr—!
></ (/ / ﬁ,(x’)"2"“b(x’)"dx’---dx2> dx'.
0 0 0

Proof Weshall prove (i). Let us estimate the function F'(x, u) using the
Cauchy—Schwarz inequality and the inequality

X
/ (xl _0_)2a—262(rd0_<e2xs’
0

where S is as in theorem.
We have

A < [ () / T ha(e?) / AN

X [/X _ (x"t = xR De 2 dx']
0

Xr—l 1/2
X |:/ frr(xr)2e~2xru(xr)2 dxr:| dxr—] . -dxl
0

12

2

< s [ ) / ) / T

xr! 1/2
X [ / Fre(x) e u(x")? dx’] dx" ... dx!
0
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1/2.x * 1 * VA x r—=2
<5 [alsh) [l [T fraer)
M2 1/2
x _A frr-—l(xr—])2dxr_1:|
12
% / / frr —2x ( )2 dxr—1:| dxr—-2._,dxl
X 1/2
< S1/2ex (/ f,,_1(0')2 da)
0
x . x! n X3 o
<[ a6 [l [T frate)
X2 Ayl 1/2
r\2,-2x" N2 q3,.r-1 r=2 . 45l
X(/o /0 Ser(x")e™ ¥ u(x")"dx ) dx dx'.

Proceeding in this way using the Cauchy—Schwarz inequality one can
prove that

F(x,u) < 5% "(H/ fii(0)*d )

x XI xr—l 1/2
X {/ / / S(x")2e P u(x") dx" dx"! ---dx’} .
0o Jo 0

From this inequality and (36) we have
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where v(x)=e *u(x). Then using the Jensen inequality (1) we obtain

v(x)* < 2a(x)* + 2Sh(x (H/ fi(0)*d )

[ [ e

From Theorem 4.1 it follows that
v(x)? < 2a(x)” +28b(x)> Y (H / £i(0) da)

x/OX (/Ox ~--/0x—f,,(x’)2(2a(x’_1))2dx'_l---dx")

X W(x' ,x)dx!,

where W(s, x) is as in theorem and from definition of v(x) we obtain
the inequality (38).

Now let us prove the assertion (ii). We shall estimate the function
F"(x,u) using the Holder inequality:

x ) x! 5
< [ [ ot
X! r—1 ¥
></0 Srr-1(x )[/0
1/q
[/ Sy e (')quf} dx e dx
< T /0 fale) /0 Sl [ e
1/q
{/ f(x")le (r)qur] dx" ' dxt,

r—1

1/p
(xr—l _ xr)[pa—p] epx' dxr]
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where T), is as in theorem. Similarly as in the case (i) using the Holder
inequality one can prove that

r—1 x 1/p
F'(x,u) < Tpe"<H/ Sri(s)? ds)
=170
x x] xr—l l/q
X {/ / / f,,(x’)qv(x’)qu’---dxl} .
0o Jo 0
From this inequality, (36) and the Jensen inequality (1) it follows that
m [r=1 ox 4/p
o)t < 20! [a(x)" +b(x)'T Z(H / Iolo do)
r=1 \ j=1 Y0

3 /0"/; /f,, Y dl]

and from Theorem 4.1 we have

r=1

J / o ol qu(r)q)dzr'"dxz)Z(xl,x)dxll,

where Z(s, x) is as in theorem and from definition of v(x) we obtain the
inequality (41).

v(x)"§2'1—'[( )+ b(x qT;’i(H/f, ”do)

Remark The case a<%, a not equal to some [S], is much more
complicated than the case (ii) from the above theorem and we do not
solve it.

I wish to express my gratitude to Professor Ravi P. Agarwal for the
information on papers containing results on integral inequalities in »
variables.
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