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As a continuation of (J. Miir, Y. Seo, S.-E. Takahasi and M. Tominaga, Inequalities
of Furuta and Mond-Pearir, Math. Ineq. Appl., 2 (1999), 83-111), we shall discuss
complementary results to Jensen’s type inequalities on the Hadamard product of
positive operators, which is based on the idea due to Furuta and Mond-Perarir. We shall
show Hadamard product versions of operator inequalities associated with extensions of
Hrlder-McCarthy and Kantorovich inequalities established by Furuta, Ky Fan and
Mond-Perarir.
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1. INTRODUCTION

According to [3] and [14], the Hadamard product of operators on a
Hilbert space His defined as follows: If Uis an isometry ofHinto H(R) H
such that Ue, e, (R) e, where {en} is a fixed orthonormal basis ofH, then
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the Hadamard product A B of (bounded) operators A and B on H for
{en} is expressed as

A a- U*(A (R) B)U. (1)
As an effect of (1), Fujii [3, Theorem 3] showed the following Jensen’s

type inequalities on the Hadamard product ofpositive operators, which
is an operator version for the Aujla-Vasudeva theorem [2, Theorem 3.2]:
Iff is a submultiplicative operator convex (resp. supermultiplicative
operator concave) function on (0, ), then

f(A B) <_f(A) ,f(B) (resp. f(A B) >_f(A) ,f(B)) (2)

for all A, B > 0.
Also, Liu and Neudecker [9] showed several matrix Kantorovich-type

inequalities on the Hadamard product, and Mond-Pe6ari6 moreover
extended them in [13], also see [7]: If A and B are positive semidefinite
Hermitian matrices such that 0 < rn _< A (R) B < M, then

A2 B2 (A B)2 _< 1/4 (M- m)2, (3)

M+m(A,B)(A , B2)1/2 < 2v/-M--- (4)

We note that (3) and (4) are complementary to (2) forf(t)- 2 and
respectively.
On the other hand, Furuta [5,6], Ky Fan [8] and Mond-Pe6ari6 [11,12]

showed several operator inequalities associated with extensions of
H61der-McCarthy and Kantorovich inequalities. For instance, Furuta
showed that if A is a positive operator on H such that 0 < m < A < M,f
is a real valued continuous convex function on [m, M] and q is a real
number such that q > or q < 0, then there exists a constant C(q) such
that the following inequality

(f(A)x,x) <_ C(q)(Ax, x)q

holds for every unit vector x E H under some conditions. Also, one of
the authors and et al. [15] showed a complementary result to Jensen
inequality for convex functions: Iffis a real valued continuous strictly
convex function on [m, M] such thatf(t) > 0, then for a given a > 0 there
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exists the most suitable constant/3 such that

(f(A)x,x) <_ f((Ax, x)) +/3 (6)

holds for every unit vector x E H.
Moreover, in the previous paper [10], by combinig (5) with (6), we

showed the following complementary results to operator inequalities
associated with extensions of H61der-McCarthy and Kantorovich
inequalities established by Furuta, Ky Fan and Mond-Peari6: Iffis a
real valued continuous convex function on [m, M] and g is a real valued
continuous function on [m, M], then for a given real number a there
exists the most suitable constant/3 such that

(f(A)x,x) <_ cg((Ax, x)) +/3 (7)

holds for every unit vector x E H under some conditions.
In this note, we shall discuss complementary results to Jensen’s type

inequalities on the Hadamard product ofpositive operators correspond-
ing to (7), which is based on the idea due to Furuta and Mond-Pe6ari6.
We shall show Hadamard product versions of operator inequalities
associated with extensions of H61der-McCarthy and Kantorovich
inequalities established by Furuta, Ky Fan and Mond-Pe6ari6.

2. JENSEN’S TYPE INEQUALITIES

Ando [1, Theorems 10 and 11] showed Jensen’s type inequalities on
the Hadamard product of positive definite matrices by applying con-
cavity and convexity theorems. Also, Furuta [4, Theorem 2], Aujla-
Vasudeva [2, Corollary 3.4], Fujii [3, Corollary 4] and Mond-Pe6ari6
[12, Theorem 2.1] showed another Jensen’s type inequalities on the
Hadamard product.

First, we shall show that these inequalities are mutually equivalent.

THEOREM Let A and B be positive operators on a Hilbert space H.
Then thefollowing inequalities hold andfollowfrom each other.

(i)

A * B <_ (Ap * BP) 1/p ifl <_p,
A . B > (Ap , Bp)I/p if either 1/2 <_p <_ orp <_ -l.
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(ii)

Ap * B
p <_ (A * B)p

Ap * B
p >_ (A * B)p

/f0<p< 1,

if either 1 <_ p <_ 2 or -1 <_ p < O.

(iii)

(A nr) 1/r , (A * ns) 1Is if either r < s with r,s_ (-1, 1),
or <r<l <s orr<-I <s< 2"

Proof (i) = (iii) For the case of < r < s, put p sir >_ !. Then we
have A B < (Asir Bs/r)/ by (i). Replacing A by A and B by B and
raising to the power 0 < 1/r < 1, we have (A * Br) 1/r <_ (A BS) 1/s by the
L6wner-Heinz inequality. Similarly for the other cases.

(iii) = (ii) For 0 <p < 1, put s 1/p _> and r in (iii), then we have
A B < (A lip. B1/p)p. We have only to replace A by Ap and B by Bp.

(ii) = (i) Consider 1/p in (ii) for <p < c and replacing A by Ap and B
by Bp in (ii).

For the sake of convenience, we prepare some notations. Let A and B
be positive operators on a Hilbert space Hsuch that 0 < m < A < M1 and
0 < m2 < B < M2. Put m mm2 and M-- MM2. Also, letf(t) be a real
valued continuous function defined on an interval including [m,M].
Thenfis called supermultiplicative (resp. submultiplicative) iff(xy)>
f(x)f( y) (resp.f(xy) <_f(x)f( y)). We define:

f(M f(m) Mf(m) mf(M
af-- M-m bf- M-m

and

Xf- [mi,M,] U [m2, M2] U [m,M].

Also, we introduce the following constant by Furuta [6]"

mr(M)- Mf(m) ((q- 1)(f(M) -f(m)) q

Cf(m,M;q)
(q_ 1)(M- m) q(mf(M) --M---f-i J

where q is a real number such that q > or q < O. It is denoted simply
by C(q).
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We shall show an Hadamard product version corresponding to
[10, Theorem 2] which is based on the idea to Furuta and Mond-Pe6arid.

THEOREM 2 Let A and B be positive operators on a Hilbert space H
such that 0 < ml <_ A <_ M1 and 0 < m2 <_ B <_ M2. Put rn mira2 and
M M1M2. Suppose that either ofthefollowing conditions holds

(i) f(t) is a real valued continuous supermultiplicatire convex function
defined on the interval Xfor;

(ii) f(t) is a real valued continuous submultiplicatire concave function
defined on the interval Xf.

Let g(t) be a real valued continuousfunction on [m, M], J1 an interval
including {f(t)f(s)" E [ml, M1], s [m2, M2]} andJ2 an interval including
{g(t)" [m, M]}. If F(u, r) is a real valuedfunction defined on J1 x J2,
operator monotone in u, then thefollowing inequalities hold

F(f(A) ,f(B),g(A B)) <_ max F(aft + bf, g(t))I (8)
tE[m,M]

in case (i), or

F(f(A) ,f(B),g(A B)) >_

in case (ii).

min F(aft / bf, g(t))I (9)
tE[m,M]

Proof Though the proof is quite similar to Mond and Pe6ari6 [11,
Theorem 4], we give a proof for the sake of completeness. Let the
condition (i) be satisfied. Since f is convex, we have f(t) < aft-+ by for
any E [m, M ]. Thus we obtainf(A (R) B) <_ af(A (R) B) + by since 0 < rn <
A (R) B < M, so that it follows from the supermultiplicativity offthat

f(A) ,f(B) U*(f(A) (R)f(B))U <_ U*f(A (R) B)U
<_ U*(af(A (R) B) + by)U- af(A B) + bfI.

By the monotonicity of F, we have

F(f(A) ,f(B),g(A B)) <_ F(au(A B) / bfI, g(A B))
< max F(aft / bf, g(t))I.

t[m,M]

Thus we obtain the inequality (8). The proof in case (ii) is essentially
the same.
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Remark 3 Note that we do not assume the operator convexity or
operator concavity off.
As a complementary result, we cite the following theorem:

THEOREM 2 Let A, B, g, J1 andJ2 be as in Theorem 2. Let -F(u, v) is a

real valuedfunction defined on J1 J2, operator monotone in u.

Iff(t) is a real valued continuous submultiplicative concave function
defined on the interval Xf then

F(f(A) ,f(B),g(A B)) <_ max F(aft + bf, g(t))I,
t[m,M]

(10)

but iff(t) is a real valued continuous supermultiplicative convexfunction
defined on the interval XU then

F(f(A) ,f(B),g(A B)) >_ min F(aft / bf, g(t))I. (11)

Remark 4 Note that the function F(u, v) u cv for a real number
and F(u, v) v-1/2uv-1/2 (v > 0) are both operator monotone in their first
variables.

3. COMPLEMENTARY TO JENSEN’S TYPE INEQUALITIES

In this section, by virtue of Theorem 2, we shall show complementary
results to Jensen’s type inequalities on the Hadamard product ofpositive
operator which corresponds to (7).

THEOREM 5 Let A and B be positive operators on a Hilbert space H
such that O < ml < A < M1 and O < m2 < B <_ M2. Put m mlm2 and

M-M1M2. Let f(t) be a real valued continuous supermultiplicative
convex (resp. submultiplicative concave)function defined on the interval Xf
and g(t) a real valued continuousfunctions defined on [m, M]. Thenfor a

given real number c

f(A) , f(B) <_ cg(A B) +/31 (resp. f(A) , f(B) >_ cg(A B)+/31)
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holdsfor

min (aft + by ag(t) }).max {aft + by ag(t)) (resp. /3
te[m,M]te[m,M]

Proof We only prove it for supermultiplicative concave case. Let us put
F(u, v) u av in Theorem 2. Then it follows from the inequality (8) that

f(A) ,f(B) cg(A B) <_ max F(aft / bf, g(t))I

max {aT + by g(t)}I,

which gives the desired inequality.

Remark 6 Ifwe put c in Theorem 5 and g(t) is a real valued strictly
convex (resp. strictly concave) twice differentiable function defined on
[m, M], then we have the following:

f(A) ,f(B) g(A B) <_/31 (resp. f(A) ,f(B) g(A B) >_/31)

holds for/3 af. to / bf- g(to) and

M if g’(M) < af
to- m if g’(m) >_ af

g,-1 (af) otherwise.

Further ifwe choose c such that/3 0 in Theorem 5 then we have the
following corollary.

COROLLARY 7 LetA, Bandfbeasin Theorem5andg(t)astrictlyconvex
(resp. strictly concave) twice differentiablefunetion defined on [m, M].

Ifg(t) > 0 on [m, M] andf(m) > O,f(M) > 0 then

f(A) ,f(B) < cig(A B) (resp. f(A) ,f(B) >_ c2g(A B)),

but, ifg(t) < 0 on [m, M] andf(m) < O,f(M) < 0 then

f(A) ,f(B) <_ c2g(A B) (resp. f(A) ,f(B) >_ og(A B)),
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both holdfor
(af. to + bf)/g(to)
if[aug(M) f(M

a m-xff(m) f(M)’I

otherwise

)g’(M)][afg(m) f(m)g’(m)] < 0

and

(af. to + bf)/g(to)
if [aug(M f(M)g’(M)][afg(m) f(m)g’(m)] < 0

a2 minff(m) f(M)

otherwise.
In theformulas of we designed to the unique solution ofthe equation

aug(t) g’(t)(af, + by) O.

Proof This proofis quite similar to the one in [10, Theorem 6]. Indeed,
for case g(t) > 0 apply Theorem 2 and for case g(t) < 0 apply Theorem 2
both with F(u, v) 1-1/2u1-1/2 (v > 0). We define h(t) (af. + bf)/g(t).
If h’(m)h’(M)< 0 then the equation h’(t)=0 has the unique solution

to E (m, M). If h’(m)h’(M)> 0 then it follows that h(t) is monotone on

[m, M] and its extreme occurs at rn or at M.

Ifg(t) q, then we have the following theorem which is considered as
the Hadamard product version of [6, Theorem 1.1].
THEOREM 8 Let A andB bepositive operators on a Hilbert space Hsuch
that 0 < ml <_ A <_ MI and 0 < m2 <_ B < M2. Put rn mm2, M M1M2
and q a real number. Iff(t) is a real valued continuous supermultiplicative
convexfunction defined on the interval Xf, thenfor a given real number a

U(A) .f(B) <_ a(A B)q + I (12)

holdsfor

af
q/(q-1)

a(q- 1)\a/ + by

if m < (af ’l(q-’)

<_M and aq(q-1)>O
\cql

max{f(M) aMq, f(m) mq}
otherwise.
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But iff(t) is a real valued continuous submultiplicative concave function
defined on the interval Xf thenfor a given real number t

f(A) .f(B) >_ a(A B)q -Jr-/31 (13)

holdsfor

af)
q/(q-1)

c(q 1) qq +by

ifm < (af 1<_M and aq(q-1)<O

min{/(M) cMq,f(m) amq)

otherwise.

Proof We only prove it for the supermultiplicative convex case.
Put h(t) aft + by- at q (t > 0) and suppose that af/(aq) > 0. Put
t-(af/(aq))1/q-) and hence we have that h’(t)=0 if and only if
t- tl. If m < (af/(ozq)) /(q-1) <_ M and aq(q- 1) > 0, then h"(t)-
-aq(q-1)tq-2<O (t>0) and so maxt[m,M]h(t)=h(tl). If m_<
(af/(ctq))l/(q-1)<_ M and aq(q-1)<0, then h"(t)>0 (t>0) and so

maxt[m,M]h(t)= max{h(M),h(m)}. Also if either (af/(aq))1<m
orM < (af/(ctq)) l/(q- 1), then h(t) is either nonincreasing or nondecreasing
on [m, M] and hence maxt[m,M] h(t) max{h(m), h(m)}.
Next suppose that af/(aq) < 0. Then af/(aq) q-1 < 0 (t > 0),

hence h’(t)-aq(af/(aq)-tq-) has the same sign on (0, oc) and so

maxtim,M h(t) max{h(m), h(m)}.
Finally suppose that af= 0 or aq 0 or q 1. Then h(t) is evidently

nonincreasing or nondecreasing on (0, ) and hence maxtlm,M] h(t)=
max{h(m),h(m)}. Note that

elf)
q/(q-1)

h(t, c(q 1) qq

and

max{h(M), h(m)} max{f(M) omq,f(m) omq}.

Therefore, we obtain the desired result by virtue ofTheorem 5.
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Remark 9 If we put c in Theorem 8 then we have the following:
If f(t) is a real valued continuous supermultiplicative convex (resp.
submultiplicative concave) function on Xfand q a real number then

f(A) ,f(B) <_ (A B)q %- flI (resp. f(A) ,f(B) >_ (A B)q + &I)

holds for

(q- 1)(af/q)q/(q-1) + bf
/31 if m < (af/q) 1/(q-l) <_ M and q (0, 1)

max{f(M) Mq,f(m) m q}
otherwise,

(resp.

(q- 1)(af/q)q/(q-1) + bf
/32- if m < (af/q) 1/(q-l) <_ M and q E (0, 1)

min{f(M) Mq,f(m) m q)
otherwise).

Further if we choose c such that/3 0 in Theorem 8 then we have the
following corollary.

COROLLARY 10 Let A, B,fand q be as Theorem 8. Then

f(A) ,f(B) <_ al(A * B)q (rssp. f(A) ,f(B) >_ a2(A B)q)

holdsfor

(resp.

af( q )l-q1--q

Cl if m <bY < M and af (q-1) >0-afl-q-
max{f(m)/mq,f(M )/Mq}

otherwise.

o2

eaf( q)l-q_
q

if m < f < M and af (q-1) < O
afl-q-

min(f(m)/mq,f(M)/Mq}
otherwise).
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Proof This proofis quite similar to the one in Theorem 8. Indeed, hence
h(t) (af. + bf)/tq for > 0. We have h’(t) 0 for tl bf/af, q/
(1 q) and h"(tl) < 0 if and only if af(q- 1) > 0 (resp. h"(tl) > 0 if and
only if af(q 1) < 0). Further if m < tl < M then al h(t) (resp. a2
h(t)). Otherwise h(t) is monotone on [m, M] and its extreme occurs at m
or at M.

The following corollary is complementary to (2), which is considered
as an Hadamard product version of [15, Theorem ].

COROLLARY Let A andB be positive operators on a Uilbert space H
such that O < mI < A <M and O < m2 < B < M2. Put m-- mm2 and
M= MM2. Let f(t) be a real valued continuous supermultiplicative
strictly convex (resp. submultiplicative strictly concave) twice differen-
tiablefunction on Xf thenfor a given a > 0

f(A) ,f(B) <_ af(A B) +/3I (resp. f(A) ,f(B) >_ af(A B)+/3I)

holdsfor/3 -af(to) + afto + by and

M

-d

ifM <_f’-’()
iff’-1 --otherwise.

Proof By virtue of Theorem 5, it is sufficient to see that /3=
-af(to) + afto + bf. Put h(t) aft + bf- af(t). By an easy differentiable
calculus, we have h’(to)= 0 when to=f’-(af/a) and to gives the upper
bound of h(t) on [m,M] if toE(m,M). Also, if to_(m,M), then h(t) is
either nonincreasing or nondecreasing on [m, M].

.Remark 12 Ifwe put a in Corollary 11 then we have the following:
Iff(t) is a real valued continuous supermultiplicative strictly convex
(resp. submultiplicative strictly concave) twice differentiable function
on Xfthen

f(A) ,f(B) f(A B) <_/3I (resp. f(A) ,f(B) f(A B) >_
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holds for/3 af. to + bf-f(to) and

M iff’(M) <_ af
to rn iff’(m) >_ af

f,-1 (af) otherwise.

Further if we choose a such that/3 0 in Corollary 11 then we have
the following corollary.

COROLLARY 13 Let A, B andfbe as Corollary 11.

Iff t) > 0 on XU then

f(A) ,f(B) <_ af(A B) (resp. f(A) ,f(B) >_ af(A B)),

but iff t) < 0 on XU then

f(A) ,f(B) >_ af(A B) (resp. f(A) ,f(B) <_ af(A B)),

all hold for a-(af, to+by)If(to) and to is the unique solution of
the equation aff(t) f’(t)(af, + hf).

Proof For case f(t)> 0 apply Theorem 2 and for case f(t)< 0 apply
Theorem 2’ both with F(u, v) Y-1/2ul-l/2(v > 0). The equation h(t) =_

af-f’(t) =0 has the unique solution in fin, M). Since, iff(t) is strictly
convex (resp. strictly concave) differentiable function thenf(x) -f(y) >
(x- y)f’(y) (resp.f(x)-f(y) < (x- y)f’(y)) for x E O(y) then for the
continuous function h’(t) we have h’(rn)h’(M) < O.

4. APPLICATIONS

In this section, we shall show applications of Theorem 8 for potential
and exponential functions. Note that the potential functionf(t)= p is a
real valued continuous supermultiplicative strictly convex (resp. sub-
multiplicative strictly concave) differentiable ifp [0, 1] (resp.p E (0, 1)).

First, we state the following corollary obtained by applyingf(t)= p

to Theorem 8.

COROLLARY 14 Let A and B be positive operators on a Hilbert space H
such that O < ml <_ A < M1 and O < m2 < B < M2. Put m-- mlm2 and
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M--M1M2. Ifpq [O, 1] (resp. pE(0, 1)) and q a real number, then for a

given real number a

Ap,Bp

_
o(A,B)q+lI (resp. Ap,Bp

_
o(A,B)q-+-/2I)

holdsfor

a(q 1) (a )q/(q-1) +b-

/fro (__)l/(q-1)fi <_M and aq(q-1) > O

max(mp am q, Mp aMq}
otherwise,

(resp.

(_q )q/(q-1)a(q 1) + b

(_)
1/(q-l)

if m<_ <_ M and aq(q-1) <0

min{mp om q, Mp aMq)
otherwise),

where (Mp mP)/(M- m) andS= (Mmp mMP)/(M- m).

Further if we put f(t)-tp in Corollary 10 and Remark 9 t-hen we
have the following corollary.

COROLLARY 15 Let A and B be positive operators on a Hilbert space H
such that 0 < ml <_ A <_ M1 and 0 < m2 <_ B <_ M2. Put m mimE and
M-M1M2. Thenforp, q[O, 1]andp.q>O

Ap*Bp < (A,B)q+/3 (14)

holdsfor

I ()q/(q-1)/3=
b+(q- 1) 6

max{mp m q, mp mq} otherwise

1/(q-l)

<M
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and

Ap,Bp <_a’(A*B)q

for

b q-1 q

a 1 -q q

max{mP/mq, MP/Mq}
al-q

otherwise.

Butfor p, q E (0, 1) thefollowing inequality

<M

Ap,Bp >_ (A,B)q+/ (16)

holdsfor

I ()q/(q-1)/3= b+(q- 1)

min{mp m q, Mp Mq}

ifm<

otherwise

1/(q-l)

<M

and

Ap,Bp >_ oz. (A,B)q (7)

for

oz-- I--q(q--1 )min{mP/mq, MP/Mq}

ifm< <M
al-q-

otherwise,

where a (gp mP)/(M m)andb (Mmp mMP)/(M m).

Proof If we put a- in Corollary 14 then we have the inequality (14)
and if we choose a such that/3- 0, then we have (15).

We have the following Hadamard product versions of inequalities
of Furuta, Ky Fan and Mond-Pe6ari6 which are extensions of the
Liu-Neudecker inequalities in [9].

THEOREM 16 Let A and B be positive operators on a Hilbert space H
such that O < ml < A < MI and O < m2 <_ B < M2. Put m mm2 and
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M M1M2. Thenforp

_
[0,

O)

( Mp mP p/(p-1)Ap*Bp- (A,B)p <_ (p- 1),p--__-)
(ii)

Mmp mMp

+ M-m

mMp Mmp (p-AP * BP <- (p- 1)(M- m) p
Mp mp Ip

mMP -mP (A , B)p.

Ifp E (0, 1) we have the o,posite inequalities.

Proof (i) If we put q =p and a- in Corollary 14, then we have the
desired constant/3 since mp-lp <_ (Mp mP)/(M m) <_ MP-lp.

(ii) If we put q--p and choose a such that/3 0 in Corollary 14, then
the constant a coincides with Furuta’s constant C(p).

Remark 17 If we put p--2 in Theorem 16, then we have
A2

* B
2 (A B)2 _< 1/4(M- m)2 and (A2 B2) <_ (M+ m)Z/(4Mm)

(A * B)2. We directly can prove the second inequality by using Kijima’s
theorem in [7]. Since (M- A (R) B)(A (R) B m) >_ 0 for 0 < m _< A (R)

B < M, we have

A2(R)B2-(A(R)B)<_ (M+m)(A(R)B)-Mm.

Since (M+ m)ZX- 4Mm(M+ m)X+ 4MZm2-- ((M+ m)X- 2Mm)2> 0
for any positive operator X, it follows from (1) that

A2 B2 _< (M + m)(A B) Mm _< (M4Mm+ m) (A B).
By virtue of Theorem 16 (ii), we show an operator version for the

Mond-Pe6ari6 theorem [13, Theorem 2.3]:

THEOREM (Mond-Pe6ari6) Let A and B be positive operators on a
Hilbert space H such that 0 < ml <_ A <_ M1 and 0 <m < B <_ M. Put
m mlmz and M-- M1M. Also let r and s be nonzero real numbers such
that r < s and either r (- 1, 1) or s (- 1, 1). Then

(A , BS)/ <_ fX(A , Br) 1/r (18)
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holdsfor

A--
(s--r)(Kr-1)

1/s { s(Xr Ks)
s)(X s

and K-- M/m.

Proof We first prove (18) for s _> 1. In this case we put p s/r. If r > 0
then p > and m[ <_ A <_ M, m <_ B < M. In this case Theorem 16
(ii) gives

where Ct,/r(m, M; s/r) is Furuta’s constant forf(t) s/r. Then replacing
A by A and B by Br, we have

(AS, ns) Cts/, (m Mr;
S ) (hr * nr )s/r,

and

Therefore, it follows from the L6wner-Heinz inequality (because
0 < 1/s _< 1) that

(AS, Bs) 1/s < Cts/ (m r, Mr; s)1/s B) 1/r/t ,
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and

Similarly, if r < 0 then p < 0 and M[ < A <_ m, M < B < m.
Then Theorem 16 (ii) and the LSwner-Heinz inequality give

(AS , BS)l/s <__ Cts/r(Mr, mr. S) (A Br)l/r

where

(r- s)(K-s 1)

Kr) ){(s- r)(Kr- 1)

1/S { s(gr_gs) }--l/r(r_s)(Ks_l)
K

Next, we prove (18) for s 1. In this case we putp r/s. If < s <
or s _< -1 then according to the assumptions we have r < -1 or r < -1.
If 0<s<l then p<0 and m{<_As<_M{, m<Bs<_M2. Then
Theorem 16 (ii) gives

Ar * B (As)r/s* (BS) r/s <_ Ctqs (m s, MS; r_ ) (AS , Bs)r/s"
S

Therefore since < 1/r < 0 it follows that

(Ar ,B )l/r > Ctr/s(m s, _) (AS,MS
r 1/r

Bs)l/s
S

But a simple calculation implies that kCt/s(ms, MS; r/s) 1/r 1, so that
we obtain the desired inequality.

Finally, if s < 0 then p > and M{ < A < m, M < B < m. Then
Theorem 16 (ii) gives

Ar , B (AS)r/s, (Bs)r/s <_ Ct/s(MS, mS; r)(AS , BS)r/s
S
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Therefore since -1 < 1/r < 0 it follows that

(Ar , Br)l/r >_ ctr/s(MS, ms; r-) l/r

s
(A , Bs) 1/s.

But a simple calculation implies that Ctr/s(MS, mS; r/s)/r 1, so that
we have the desired inequality.

Further we show an operator version for the Mond-Peari6 theorem
[13, Theorem 2.4].

THEOREM (Mond-Pe6ari6) 2
Peari() 1. Then

Let A, Bandr, s be as in Theorem (Mond-

holdsfor

(A B )/s (A * B) 1/r AI (19)

A max { [OM + (1 O)mS] 1/s
0[0,1]

[OM -Ji-- (1 O)m ]’

Proof We first prove (19) for r (-1, 1). If we put a =af and the
function g(t)-t in Theorem 5 then for a real valued continuous
supermultiplicative convex (resp. submultiplicative concave) functionf
the inequality

f(A) ,U(B) <_ afA B + flI

holds for

(resp. f(A) ,f(B) >_ afA B + flI)
(20)

fl max {aft + bf- aft) bf
t[m,M]

(resp./3 min {aft + by- af t} by).
t[m,M]

Replacing A by A and B by B we have

f(As) ,f(Bs) (hfA B + DfI) <_ 0

(resp. f(As) ,f(B") (guA B + {)fI) > 0),
(21)

where

f(Ms) f(m s) f)f MSf(m s) mSf(Ms)
MS-m MS-m
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Therefore, the function f(t)=t r/s is supermultiplicative convex if
r < 0, r < s (resp. submultiplicative concave if r > 0, r < s). If we put it
in inequalities (21) we have

Ar,Br-(aAs,Bs+bI) <_0

(resp. A B (a A B + bI) >_ 0),
(22)

where

M m MSm Mrm
b--

MS_ms’ MS_m

Thus, we have

(A * or) 1/r [aA B + bI] 1/r. (23)

This inequality is a simple consequence of (22) and the fact that the
function f(t)-t 1/ (resp. f(t)-t-1/r) is operator monotone if r>_
(resp. r <-1). Therefore, it follows from the inequality (23), by the
operational calculus that

(As Bs) 1/s (A , Br) 1/r <_ (A , BS) 1/s [aA B + bI] 1/r

<_ ma_x{t 1/s (at + b)l/r}I,
tET

where Tdenotes the open interval joining m to Ms, and is the closure
of T, i.e. if s > 0 then [m s, M ], but if s < 0 then [Ms, m ]. We
set 0 (t mS)/(M mS). Then a simple calculation implies a. + b
OM + (1 -O)m r. Thus, if r (-1, 1), we have

(A , BS) 1/s (A , Br) 1/r

< max { [OM + (1 O)mS] 1/s
0E[0,l

[OM -+- (1 O)m ]l/r } I.

Then we obtain the inequality (19).
Next we prove it for s (-1, 1). In this case we replace s by r in the

inequality (21). Because the function f(t)=t sir is supermultiplica-
tive convex if s > 0, r < s (resp. submultiplicative concave if s < 0, r < s)
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then we have

where

As,Bs-(Ar,Br+bI) <0

(resp. A Bs- ({t A B + bI) >_ 0),
(24)

M m Mrm MSm b- - MM -m a -m a

If s _> (resp. s < -1) then the function f(t)- 1Is (resp. f(t) -1/) is
operator monotone and from (24) it follows

Finally, if s (- 1, 1), we have

(AS* BS)I/s (Ar * Br)l/r " [At* Br abI11/s (A * Br)l/r

_< ma_x t-
tGT

where T denotes the open intervaljoining rn to Mr, and ’l is the closure
of T, i.e. if r > 0 then [m r, M but if r < 0 then ’ [Mr, m ].
We set O- (t m r)/(M m r). Then a simple calculation implies
1/a. t-b/a=OM +(1 -O)m s. Thus, ifs (-1, 1) then we have

(A , BS) /s (A * Br) 1/r

< max { [OM + (1 O)mS] 1/s
0[0,]

[OM -- (1 O)m r]l/r } I.

This is the desired inequality.

Now, we state the following corollary obtained by applying g(t)- e
to Remark 6 and Corollary 7.
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COROLLARY 18 Let A andB be positive operators on a Hilbert space H
such that O < ml < A < MI and O < m2 < B < M2. Put m-- mlm and

M=MaM2. Let f(t) be a real valued continuous supermultiplicative
strictly convexfunction on Xf. IfA af> 0 then

f(A) ,f(B)- exp{A(A B)} _</31

holdsfor

{ afln(ee) + by

max{f(m) em,f(M) eTM}
/fm < A-11n:) < M

otherwise

and

f(A) ,f(B) <_ a exp{A(A B)}

holdsfor

af expAbf} if [af- Af(m)][af- Af(M)] < 0

max{f(m)/em,f(M)/eTM} otherwise.

Though the exponential function is neither supermultiplicative nor

submultiplicative, we have the following corollary related to it:

COROLLARY 19 Let A andB be positive operators on a Hilbert space H
such that O < m < A <M and O <m < B < M. Put m= mlm2 and
M-- M1M. Letf(t) be a real valued continuous strictly convexfunction
on Xf such that f(xy) >_f(x) +f(y). If A > 0 andf(M) >f(m), or A < 0
andf(M) <f(m), then

exp{f(A)} exp{f(B)} -exp{A(A B)} _</31

holdsfor

/3- -ln - +b

max,[ef(m) em, ef(M) eTM}

/fm<A-lln() <M
otherwise
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and

exp{f(A)} exp{f(B)} <_ c exp{A(A B)}

holdsfor

o e.e exp

max{ef(m)-m, ef(M)-M)

/f [8- Aef(m)][- Aef(M)] < 0

otherwise,

where gt (ef(M) ef(m))/(M- m)
(M-m).

and ()tief(m) reef(M))/

Proof Since f(t) is convex and f(xy)>_f(x)+f(y), it follows that
exp{f(x)} is supermultiplicative convex. Replacingf(x) by exp{f(x)} in
Corollary 18 we obtain the desired inequalities.
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