
J. oflnequal. & Appl., 2000, Vol. 5, pp. 103-165
Reprints available directly from the publisher
Photocopying permitted by license only

(C) 2000 OPA (Overseas Publishers Association) N.V.
Published by license under

the Gordon and Breach Science
Publishers imprint.

Printed in Singapore.

Inequalities for Beta and Gamma
Functions via Some Classical and
New Integral Inequalities

S.S. DRAGOMIR a, R.P. AGARWAL b,, and N.S. BARNETT a

aSchool and Communications and Informatics, Victoria University of
Technology, P.O. Box 14428, Melbourne City, MC 8001, Victoria, Australia;
b Department of Mathematics, National University of Singapore,
10 Kent Ridge Crescent, 119260 Singapore

(Received 4 January 1999; Revised 20 April 1999)

In this survey paper we present the natural applications of certain integral inequalities
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1 INTRODUCTION

This survey paper is an attempt to present the natural application of
certain integral inequalities such as Chebychev’s inequality for synchro-
nous and asynchronous mappings, H61der’s inequality and Grtiss’ and
Ostrowski’s inequalities for the celebrated Euler’s Beta and Gamma
functions.

In the first section, following the well known book on special func-
tions by Larry C. Andrews, we present some fundamental relations and
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identities for Gamma and Beta functions which will be used frequently
in the sequel.
The second section is devoted to the applications of some classical

integral inequalities for the particular cases of Beta and Gamma func-
tions in their integral representations.
The first subsection of this is devoted to the applications of

Chebychev’s inequality for synchronous and asynchronous mappings
for Beta and Gamma functions whilst the seond subsection is concerned
with some functional properties of these functions which can be easily
derived by the use ofH61der’s inequality. Applications ofGriass’ integral
inequality, which provides a more general approach than Chebychev’s
inequality, are considered in the last subsection.
The third and fourth sections are entirely based on some very recent

results on Ostrowski type inequalities developed by Dragomir et al. in
[10-16]. It is shown that Ostrowski type inequalities can provide general
quadrature formulae of the Riemann type for the Beta function. The
remainders of the approximation are analyzed and upper bounded
using different techniques developed for general classes ofreal mappings.
Those sections can also be seen themselves as new and powerful tools
in Numerical Analysis and the interested reader can use them for other
applications besides those considered here.
For a different approach on Theory of Inequalities for Gamma and

Beta Functions we recommend the papers [17-27].

2 GAMMA AND BETA FUNCTIONS

2.1 Introduction

In the eighteenth century, L. Euler (1707-1783) concerned himselfwith
the problem of interpolating between the numbers

n! e-ttndt, n =0,1,2,...,

with non-integer values ofn. This problem led Euler, in 1729, to the now
famous Gammafunction, a generalization of the factorial function that
gives meaning to x! where x is any positive number.
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The notation F(x) is not due to Euler however, but was introduced
in 1809 by A. Legendre (1752-1833), who was also responsible for the
Duplication Formula for the Gamma function.

Nearly 150 years after Euler’s discovery of it, the theory concerning
the Gamma function was greatly expanded by means of the theory of
entire functions developed by K. Weierstrass (1815-1897).
The Gamma function has several equivalent definitions, most of

which are due to Euler. To being with, we define [1, p. 51]

n!nx

"--ni+In x(x + 1)(x + 2)... (x + n)" (2.1)

If x is not zero or a negative integer, it can be shown that the limit

(2.1) exists [2, p. 5]. It is apparent, however, that F(x) cannot be defined at
x 0, 1, -2,... since the limit becomes infinite for any ofthese values.
By setting x in (2.1) we see that

F(1) 1. (2.2)

Other values of l(x) are not so easily obtained, but the substitution of
x + for x in (2.1) leads to the Recurrence Formula [1, p. 23]

P(x + 1) xV(x). (2.3)

Equation (2.3) is the basic functional relation for the Gamma function;
it is in the form of a difference equation.
A direct connection between the Gamma function and factorials can

be obtained from (2.2) and (2.3)

l(n+l)=n!, n=0,1,2,... (2.4)

2.2 Integral Representation

The Gamma function rarely appears in the form (2.2) in applications.
Instead, it most often arises in the evaluation of certain integrals; for
example, Euler was able to show that [1, p. 53]

I’(x) e-ttx-1 dr, x > O. (2.5)
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This integral representation of F(x) is the most common way in which
the Gamma function is now defined. Lastly, we note that (2.5) is an
improper integral, due to the infinite limit of integration and because
the factor x-1 becomes infinite if 0 for value of x in the interval
0 < x < 1. Nonetheless, the integral (2.5) is uniformly convergent for all
a < x < b, where 0 < a < b < cx.

A consequence of the uniform convergence of the defining integral
for P(x) is that we may differentiate the function under the integral sign
to obtain [1, p. 54]

and

"(X) e-tt x-1 log tdt, x > 0, (2.6)

r"(x) e-tt x-] (log t)2 dt, x > O. (2.7)

The integrand in (2.6) is positive over the entire interval of integration
and thus it follows that F"(x) > 0, i.e., P is convex on (0, ).

In addition to (2.5), there are a variety of other integral representa-
tions of P(x), most of which can be derived from that one by simple
changes of variable [1, p. 57]

F(x) o log du, x > 0, (2.8)

and

r(x)r(y) j0"/:21-’(x + y)
cos2x-1 0 sin2y-1 0d0, x,y > 0. (2.9)

By setting x y 1/2 in (2.9) we deduce the special value

1-’(1/2) x/-. (2.10)

2.3 Other Special Formulae

A formula involving Gamma functions that is somewhat comparable
to the double-angle formulae for trigonometric functions is the
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Legendre Duplication Formula [1, p. 58]

2-ll(x)r(x + 1/2) vr(2x), x > O. (2.11)

An especially important case of(2.11) occurs when x n (n 0, 1,2,... )
[1, p. 55]

( ) (2n)’ V/-, n 0, 1,2, (2.12)P n + 22nn

Although it was originally found by Schl6mlich in 1844, thirty-two
years before Weierstrass’ famous work on entire functions, Weierstrass
is usually credited with the infinite product definition of the Gamma
function

ffI(x) e-x/n (2.13)Y(X-- xeVX + -n=l

where ,), is the Euler-Mascheroni constant defined by

],y lim - logn 0.577215... (2.14)
n

k=l

An important identity involving the Gamma function and sine function
can now be derived by using (2.13) [1, p. 60]. We obtain the identity

r(x)r(1 x) (x non-integer). (2.15)
sin 7rx

The following properties ofthe Gamma function also hold (for example,
see [1, pp. 63-65]):

Y(x) sx e-Stt x-1 dt, x,s > O; (2.16)

Y(x) exp(xt-et)dt, x>O; (2.17)
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j (_)nP(x) e-tt x-1 dt + n!(x + n)’n=0

x > O; (2.18)

I’(x) (log b)x x-1 b-t dt, x>0, b> 1; (2.19)

F(x) I"(x + 1) xg"(x), x > O; (2.20)

I’(x) e-t(t X)tx-1 log dt, x > O; (2.21)

r(--n) (--1)n22n-l(n --1)!X/’-
(2n-1)!

n=0,1,2,...; (2.22)

r(+)r(-.) =(-1)nTr, n=O, 1,2,...; (2.23)

133x-1/r(x)r (x +)r (x +) x > O; (2.24)r(3x)

[r’(x)] _< r(x)r"(x), x > o. (2.25)

2.4 Beta Function

A useful function of two variables is the Betafunction [1, p. 66] where

fl(x,y) := tx-l(1 t) y-1 dt, x > O, y > O. (2.26)

The utility of the Beta function is often overshadowed by that of the
Gamma function, partly perhaps because it can be evaluated in terms
of the Gamma function. However, since it occurs so frequently in prac-
tice, a special designation for it is widely accepted.
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It is obvious that the Beta mapping has the symmetry property

/3(x, y) =/3(y, x) (2.27)

and the following connection between the Beta and Gamma functions
holds:

r(x)r(y)
r(x+y)

x > O, y > O. (2.28)

The following properties ofthe Beta mapping also hold (see for example
[1, pp. 68-70]):

/3(x + 1, y) +/3(x, y + 1) =/3(x, y), x, y > O; (2.29)

/3(x, y + 1) y/3(x + y)
y

x x+y/3(x,y), x, y > O; (2.30)

(x,x) 2’-2x/3(x, 1/2), x > O; (2.31)

/3(x, y)/3(x + y, z)(x + y + z, w)
r(x)r(y)r(z)r(w)
P(x+y+z+w)

x,y,z,w>O; (2.32)

/3(.1+p 1-p.)=rrsec(.p) O<p< 1"
2 2 (2.33)

o"1 x-1 d- y-1

/3(x, y)
(t + 1)x+y

dt

pX(1 +p)X+y foo ltx-l(l_t)y
-1

-+- p)X+y
dt (2.34)

forx, y,p>O.
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INEQUALITIES FOR THE GAMMA AND BETA FUNCTIONS
VIA SOME CLASSICAL RESULTS

3.1 Inequalities via Chebychev’s Inequality

The following result is well known in the literature as Chebychev’s
integral inequality for synchronous (asynchronous) mappings.

LEMMA Let f, g, h" I C_ IR IR be so that h(x) >_ 0 for x E I and h,
hfg, hfand hg are integrable on I. Iff, g are synchronous (asynchronous)
on I, i.e., we recall it

(f(x) -f(y))(g(x)- g(y)) >_ (<_)0 for all x,y I, (3.1)

then we have the inequality

fI h(x) dx fI h(x)f(x)g(x) dx >_ (<_)f/h(x)f(x)dx JI" h(x)g(x) dx.

(3.2)

A simple proof of this result can be obtained using Korkine’s
identity [3]

fi h(x) dx fI h(x)f(x)g(x) dx- h(x)f(x) dx fi h(x)g(x) dx

1[ [ h(x)h(y)(f(x)-f(y))(g(x)- g(y))dxdy.
2 d! JI

(3.3)

The following result holds (see also [4]).

THEOREM Let m, n,p, q be positive numbers with the property that

(p m)(q n) < (>)O. (3.4)

Then

and

(p,q)fl(m,n) > (<) fl(p,n)(m,q) (3.5)

r(p + n)r(q + m) >_ (<_)r(p + q)r(m + n). (3.6)
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Proof Define the mappingsf, g, h :[0, 1] [0, cxz] given by

f(x) xp-m, g(x) (1 x)q-n and h(x) xm-l(1 x)n-1.

Then

f’(x) (p m)xp-m-l, g’(x) (n q)(1 x)q-n-, x (0,1).

As, by (3.3), (p m)(q- n) < ( > )O, then the mappings f and g are
synchronous (asynchronous) having the same (opposite) monotonicity
on [0, 1]. Also, h is non-negative on [0, ].

Writing Chebychev’s inequality for the above selection off, g and h
we get

f01 f01xm-l(1 X)n-1 dx xm-l(1 x)n-lxp-m(1 x)q-n dx

() xm-l(1 _x)n-lxP-mdx xm-l(1- x)n-l(1-x)q-ndx.

That is,

f01 f01xm- (1 x)n-’ dx xP- (1 x)q-’ dx

1

fo() xP-I(1 dx xm-l(1 x)q-1 dx,

which, via (2.26), is equivalent to (3.5).
Now, using (3.5) and (2.28), we can state

r(p)r(q) r(m)r’(n)
’(p + q) r(m + n)

> (<_) r(p)r(n), r(m)r(q)
r’(p + n) r(m + q)

which is clearly equivalent to (3.6).

The following corollary of Theorem may be noted as well:

COROLLARY For any p, m > 0 we have the inequalities

(m,p) > [(p,p)3(m,m)] /2 (3.7)
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and

r(p + m) >_ [r(2p)r(2m)] /2. (3.8)

Proof In Theorem set q p and n m. Then

(p m)(q- n) (p m)2 >_ 0

and thus

(p,p)(m,m) <_ (p,m)(m,p) 132(p, m)

and the inequality (3.7) is proved.
The inequality (3.8) follows by (3.7).

The following result employing Chebychev’s inequality on an infinite
interval holds [4].

THEOREM 2
p>k>-m. If

Let m,p and k be real numbers with m,p >O and

k(p m k) >_ (<_)O, (3.9)

then we have

r(p)r(m) > (<)r(p k)r(m + k) (3.10)

and

(p,m) >_ (<) (p k,m + k) (3.11)

respectively.

Proof Consider the mappingsf, g, h [0, ) [0, z) given by

f(x) xp-k-m, g(x) xk, h(x) xm-le-x.

If the condition (3.9) holds, then we can assert that the mappingsfand
g are synchronous (asynchronous) on (0, c) and then, by Chebychev’s
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inequality for I [0, ), we can state

xm-l e-x dx xP-k-mxkxm-l e-x dx

>__ (<__) xP-k-mxm-le-x dx xkxm-le-x dx,

Xm-1 e-x dx Xp-1 e-x dx

>_ (<_) xP-k-le-x dx xk+m-le-x dx. (3.12)

Using the integral representation (2.5), (3.12) provides the desired result
(3.10). On the other hand, since

(p,m)
r(p)r(m)
r(p+ m)

and

(p k,m + k)
r(p k)r(m + k)

r(p +m)

we can easily deduce that (3.11) follows from (3.10).

The following corollary is interesting.

COROLLARY 2 Letp > 0 and q E N such that Iql < p. Then

r2(p) _< r(p q)r(p + q) (3.13)

and

/3(p,p) </3(p q,p + q). (3.14)

Proof Choose in Theorem 2, rn p and k q. Then

k(p- m- k) _q2 <_ 0
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and by (3.10) we get

FV(p) <_ F(p q)F(p + q).

The second inequality follows by the relation (2.28).

Let us now consider the following definition [4].

DEFINITION The positive real numbers a and b may be called similarly
(oppositely) unitary if

(a- 1)(b- 1) _> (_<) 0. (3.15)

THEOREM 3 Let a, b > 0 and be similarly (oppositely) unitary. Then

1-’(a + b) > (<_)abr(a)r(b) (3.16)

and

/3(a,b) >_ (<) a--- (3.17)

respectively.

Proof Consider the mappingsf, g, h :[0, cxz) --. [0, cxz) given by

f(t) a-l, g(t) b-I and h(t)= te-t.

If the condition (3.15) holds, then obviously the mappings f and g
are synchronous (asynchronous) on [0, ), and by Chebychev’s integral
inequality we can state that

te-t dt ta+b-le-t dt >_ (<) tae-t dt the-t dt

provided (a- 1)(b 1) > < )0; i.e.,

r(2)I"(a + b)> (<)l"(a + 1)l-’(b + 1). (3.18)

Using the recursive relation (2.3), we have F(a + 1)= al’(a), F(b + 1)=
bP(b) and P(2)= 1 and thus (3.18) becomes (3.16).
The inequality (3.17) follows by (3.16) via (2.28).
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The following corollaries may be noted as well:

COROLLARY 3 The mapping In F(x) is superadditivefor x > 1.

Proof If a, b E [1, cx), then, by (3.16),

In r(a + b) _> In a + In b + In r(a) + In r(b) > In r(a) + In r(b)

which is the superadditivity of the desired mapping.

COROLLARY 4 For every n N, n _> and a > 0, we have the inequality

r’(na) > (n- 1)!a2(n-1)[F(a)]". (3.19)

Proof Using the inequality (3.16) successively, we can state that

l(2a) _> a2r(a)F(a)

l(3a) _> 2a2r(2a)r(a)

l(4a) > 3a2r(3a)r(a)

r(na) >_ (n 1)aP[(n- 1)alF(a).

By multiplying these inequalities, we arrive at (3.19).

COROLLARY 5 For any a > 0, we have

22a-1 ()F(a) _<
x/a2 1-’ a + (3.20)

Proof We refer to the identity (2.10) from which we can write

22a-ly’(a)Y’(a-t-) v/-’(2a), a>0.
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Since F(2a) > a2F2(a), we arrive at

22a-lp(a)F(a+)>_ V/- aZF2 (a)

which is the desired inequality (3.20).

For a given rn > 0, consider the mapping F-am [0, oo) ---+ ]1,

rm(X) P(x + m)
F(m)

The following result holds.

THEOREM 4 The mapping Fm(" ) is supermultiplicative on [0, o).

Proof Consider the mappings f(t)=t and g(t)=ty which are
monotonic non-decreasing on [0, o) and h(t) := tm-le-t is non-negative
on [0, o).
Applying Chebychev’s inequality for the synchronous mappings f, g

and the weight function h, we can write

tm-le-t dt tx+y+m-le-t dt >_ tx+m-le-t dt ty+m-le-t dr.

That is,

r(m)r(x + y + m) >_ F(x + m)F( y + m)

which is equivalent to

rm(X + y) >_ Pm(X)Pm( y)

and the theorem is proved.

3.2 Inequalities via H/lder’s Inequality

Let I C_ be an interval in and assume that fLp(I), g Lq(I)
(p > 1, lip + l/q-- 1), i.e.,

lf(s)lp ds, fI Ig(s)lq ds <
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Thenfg E LI(I) and the following inequality due to H61der holds:

flf(s)g(s)dsl (fI If(s)lP ds
/P (f Ig(s)lq ds)1/q" (3.21)

For a proof of this classic fact using a Young type inequality

xy <_ -xp +-xq, x,y >_ O, -+-=1; (3.22)
P q P q

as well as some related results, see the book [3].
Using H61der’s inequality we point out some functional properties of

the mappings Gamma, Beta and Digamma [5].

THEOREM 5 Let a, b >_ 0 with a + b and x, y > O. Then

r(ax + by) <_ [r(x)]a[r( y)]b, (3.23)

i.e., the mapping ’ is logarithmically convex on (0, cxz).

Proof We use the following weighted version of H61der’s inequality:

f(s)g(s)h(s) ds <-(fi If(s)l’h(s) ds)/ (fz Ig(s)lqh(s) ds)
1/q

(3.24)

for p > 1, 1/p + 1/q and h is non-negative on I and provided all the
other integrals exist and are finite.
Choose

f(s) s a(x-1), g(s) Sb(y-1) and h(s) e-s,

in (3.24) to get (for I-(0,) andp 1/a, q 1/b)

o
Sa(x-1) sb(y-1)e-S ds

(fOCX )a(o.Z
_

Sa(y-1)’l/ae-S ds sb(y-1)’l/be-s ds
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which is clearly equivalent to

cx (f0o)a(f0o)bSax+by- e-S ds <_ sy- e-S ds sy- e-S ds

and the inequality (3.23) is proved.

Remark Consider the mapping g(x) := In l(x), x E (0, ). We have

r’(x)g’(x)
F(x)

and g"(x) r"(x)r(x)- [r(x)]
r (x)

for x E (0, o). Using the inequality (2.25) we conclude that g"(x) > 0 for
all x (0, ) which shows that F is logarithmicallyconvex on (0, cx).

We prove now a similar result for the Beta function [5].

THEOREM 6 The mapping/3 is logarithmically convex on (0, o)2 as a

function oftwo variables.

Proof Let (p, q), (m, n) (0, )2 and a, b _> 0 with a + b 1. We have

[a(p,q) + b(m,n)] (ap + bm, aq + bn)

tap+bm-l(1 t) aq+bn-1 dt

a(p-1)+b(m-1) (1 t)a(q-1)+b(n-i) dt

[tP-l(1--t)q-1] x[tm-l(1--t)n-1]b dt.

Define the mappings

f(t) [tP-1 (l t)q-1] a
G (0, 1),

g(t) It l(1 t)n-1] b
m- (0, 1),

and choosep- 1/a,q= lib(l/p+ 1/q=a+b= 1,p> 1).
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Applying H61der’s inequality for these selections, we get

_< tP-l(1 t)q-ldt x tm-l(1 t)n-ldt

/3[a(p, q) + b(m, n)] < [fl(p, q)]a[/3(m, n)]b

which is the logarithmic convexity of/3 on (0, o)2.

Closely associated with the derivative of the Gamma function is the
logarithmic derivativefunction, or Digammafunction defined by [1, p. 74]

d r’(x)(x) log F(x) r(x)

The function (x) is also commonly called the Psifunction.
THEOREM 7 The Digamma function is monotonic non-decreasing and
concave on (0, c).

Proof As I is logarithmically convex on (0, ), then the derivative of
In F, which is the Digamma function, is monotonic non-decreasing on
(0, o).
To prove the concavity of 9, we use the following known representa-

tion of [6, p. 21]:

"1 x-1
dt- "7, x > 0, (3.25)(x)

-t

where "7 is the Euler-Mascheroni constant (see (2.14)).
Now, let x, y > 0 and a, b > 0 with a / b 1. Then

ax+by-1

(ax / by) + "7 dt

fl a(x-1)+b(y-1)

Jo 1-t
dt. (3.26)
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As the mapping x ax E (0, c) is convex for a E (0, 1), we can
state that

a(x-1)+b(y-1) <_ at x-1 + bty-1 (3.27)

for all (0, 1) and x, y > 0.
Using (3.27) we can obtain, by integrating over (0, 1),

fo ll-tax+by-ll-t
dt >_ o"ll-(atx-+bty-1)dtl-t

[1 a(1 x-) + b(1 y-)
dt

J0 1-t

f01 1-tx-1 f011 ty-1
dt+b-a

-t -t

a[(x) + 7] + b[(x) + 7]
aq(x) + bq(y) + 7.

dt

(3.28)

Now, by (3.26) and (3.28) we deduce

(ax+by)>_a(x)+b(y), x,y>O, a,b>_O, a+b= 1;

i.e., the concavity of.
3.3 Inequalities via GrQss’ Inequality

In 1935, G. Griiss established an integral inequality which gives an esti-
mation for the integral of a product in terms of the product of integrals
[3, p. 296].

LEMMA 2 Letfandg be twofunctions defined and integrable on [a, b]./f

<_f(x) <_ e, 7 <_g(x) <_ r for each x [a,b]; (3.29)

where , , 7 andF are given real constants, then

]b ’1_
a fbf(x)g(x) dx

(0 )(F ’7)

fab abb a f(x) dX b a
g(x) dx

and the constant 1/4 & the best possible.

(3.30)
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The following application of Griiss’ inequality for the Beta mapping
holds [7].

THEOREM 8 Let m, n,p and q be positive numbers. Then

I/3(m +p + 1,n+ q+ 1) -/3(m + 1,n+ 1) /3(p + 1,q+ 1)1
pPqq mmnn

4 (p + q)P+q (m + n)m+n" (3.31)

Proof Consider the mappings

lm,n(X) :-- xm(1 x)n, lp,q(X) :- xP(1 x)q, x E [0, 1].

In order to apply Grtiss’ inequality, we need to find the minima and the
maxima of la,b (a, b > 0).
We have

d
dxla,b(X) axa-l(1 x)b bxa(1 x)b-1

xa-1 (1 X)b-1 [a(1 x) bx]
xa-1 (1 x)b-1 [a (a + b)x].

We observe that the unique solution of l’a,b(X 0 in (0, 1) is Xo=
a/(a+ b) and as l’a,b(X)> 0 on (O, xo) and la,b(X)<0 on (Xo, 1), we
conclude that Xo is a point ofmaximum for la,b in (0, 1). Consequently

ma,b inf la,b(X) 0
xE[O,1]

and

Mab :-- sup la,b(X) :=lab( a )= aabb
xE[O,1] a + b (a q- b)a+b"

Now, if we apply Griiss’ inequality for the mappings lm,,, and lp,q,
we get

lm,n(X) lp,q(X) dx lm,n(X) dx lp,q(X) dx_
1/4 Mm,n mm,n Mp,q mp,q
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which is equivalent to

lm+p,n+q(X dx lm,n(X dx lp,q(X) dx

mmnn pPqq
4 (m + n)m+n (p + q)P+q

and the inequality (3.31) is obtained.

Another simpler inequality that we can derive via Grtiss’ inequality is
the following.

THEOREM 9 Let p, q > O. Then we have the inequality

/3(p + 1,q+ 1) (p + 1)(q+ 1)
< (3.32)

or, equivalently,

3-pq-p-q} <_fl(p+l q+l)_<max 0,
4(p+ 1)(q+ 1)

5 +pq +p + q
4(p+ 1)(q+ 1)"

(3.33)

Proof Consider the mappings

f(x) xp, g(x) (1 x)q, x [0, 1], p,q>O.

Then, obviously

inf f(x)= inf g(x)=O;
xG[O,1] xe[O,1]

sup f(x)= sup g(x)= 1;
x[O,1] xe[O,1]

and

lf(x) dx
p/ 1’ g(x) dx

q+l
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Using Griiss’ inequality we get (3.32). Algebraic computations will show
that (3.32) is equivalent to (3.33).

Remark 2 Taking into account that /3(p, q) F(p + q)/(F(p)F(q)),
the inequality (3.32) is equivalent to

I(p + 1)I(q + 1)
I’(p + q + 2) (p + 1)(q + 1)

I(P+ 1)F(p + 1) (q+ 1)r(q + 1) F(p +q+ 2)1

< 1/4 (p + 1)(q + 1)r(p + q + 2)

and as (p + 1)l(p + 1) l(p + 2), (q + 1)r(q + 1) F(q + 2), we get

]r(p+q+2)-I(p+2)F(q+2)[ <_1/4(p+ 1)(q+ 1)r(p+ q+ 2).
(3.34)

Griiss’ inequality has a weighted version as follows.

LEMMA 3 Let f, g be as in Lemma 2 and h:[a, b] [0, o) such that

fba h(x) dx > O. Then

f
b

fba h(x) dx
f(x)g(x)h(x) dx

fba h(x) dx
f(x)h(x) dx

_<-l(r- )(- ).

fba h(x) dx
g(x)h(x) dx

(3.35)

The constant 1/4 is best.

For a proof of this fact which is similar to the classical one, see the
recent paper [8].

Using Lemma 3, we can state the following proposition generalizing
Theorem 8.
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PROPOSITION Let m, n, p, q > 0 and r, s > 1. Then we have

[/3(r + 1, s + 1)/3(m +p + r + 1, n + q + s + 1)
-(m+r+ 1,n+s+ 1)/3(p + r + 1,q+s+ 1)[

mmnn PPqq /32(r + s + 1)<
4 (m + n)7n+" (p + q)P+q (3.36)

The proof follows by the inequality (3.3 5) by choosing

h(x) l,s(x), f(x) Im,n(X) and g(x) lp,q(X), x e (0,1).

Now, applying the same inequality, but for the mappings

h(x) l,(x), f(x) xp and g(x) (1 x)q, x e (0, 1),

we deduce the following proposition generalizing Theorem 9.

PROPOSITION 2 Let p, q > 0 and r, s > 1. Then

I/3(r + 1,s+ 1)/3(p + r + 1,q+s+ 1)
-/3(p + r+ 1,s+ 1)/3(r + 1,q + s+

_< 1/4/52(r + 1,s + 1). (3.37)

The weighted version ofGriiss’ inequality allows us to obtain inequal-
ities directly for the Gamma mapping.

THEOREM 10 Let a,/3, 7 > O. Then

3a+5+7+1 r(c +/3 + 7 + 1)r(7 + 1)

2a+/+2v+2 1(c -+- "), + 1):P(/ + " + 1)

<- 41 oe’ /3i"2("/e + 1). (3.38)

Proof Consider the mappingf(t) te-t defined on (0, ). Then

fta(t ota-le-t tae-t e-tta-l(o t)
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which shows thatf is increasing on (0, a) and decreasing on (0, ) and
the maximum value isf(a)= a/e.

Using (3.35), we can state that

fooXfa(t)f(t)f(t) dt fooXf.(t) dt fooXfa(t)f.(t) dt fooXf(t)f.(t) dt

l(max f(t)- min f(t)) (max f(t)- min f(t))\/E[0,x] tE[0,x] \t[0,x] t[0,x]

for all x > 0, which is equivalent to

ta++’e-3t dt e’e-t dt ta+’e-2t dt- t+’e-2t dt

(/0
x

< e--’ft" e-- e’e-t dt

for all x > 0.
As the involved integrals are convergent on [0, ), we get

ta++’e-3t dt e’e-t dt ta+’e-2t dt +’e-2t dt

loO
<

e" e ee-tdt (3.39)

Now, using the change of variable u 3t, we get

t++e-3t dt du

3++.+ F(c + + - + 1)

and, similarly

ta+’e-2t dt
2+-+1
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and

t+’Ye-2t dt
2+,+ 1-’(/3 + -y + 1)

and then, by (3.39), we deduce the desired inequality (3.38).

INEQUALITIES FOR THE GAMMA AND BETA FUNCTIONS
VIA SOME NEW RESULTS

4.1 Inequalities via Ostrowski’s Inequality for
Lipschitzian Mappings

The following theorem contains the integral inequality which is known in
the literature as Ostrowski’s inequality (see for example [9, p. 469]).

THEOREM 11 Letf: [a, b] -. I be continuous on [a, b] and differentiable
on (a,b), whose derivative is bounded on (a,b) and let [[f’ll’-
supt(a,b If’(t)l < . Then

f
b

f(x) b a f(t) dt (x- (a + b)/2)2]< +
(b a)2

(b a)llf’ll

(4.1)

for all x E [a, b]. The constant 1/4 is sharp in the sense that it cannot be
replaced by a smaller one.

The following generalization of (4.1) has been done in [10].

THEOREM 12 Let u" [a, b] -- be a L-Lipschitzian mapping on [a, b], i.e.,

lu(x)- u(y)l < Llx- Yl for all x,y [a, b].

Then we have the inequality

’bu(t) dt- u(x)(b a)
(x- (a + b)/2)2]<_ L(b a)2 + ( -- 7 j (4.2)

for all x [a, b]. The constant 1/4 is the best possible.
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Proof Using the integration by parts formula for the Riemann-
Stieltjes integral, we have

fa
x

(t a) du(t) u(x)(x a) u(t) dt

and

fx (t- b)du(t) u(x)(b- x) u(t) dt.

Ifwe add the above two equalities, we get

u(x)(b a) u(t) dt (t a)du(t) + (t b)du(t). (4.3)

v-(n) Xn
(n)Now, assume that An: a x0(n)< xn)< < n-1 < d is a

sequence of divisions with u(An)0 as noo, where u(An):=

(.(n) ) and E Ix} .(n)] If p N ismaxia{0,.. ,n-l} "i+1 xn) .(tn) n) "[c, d]"i+1

Riemann integrable on [c, d] and v’[c, d] I is L-Lipschitzian on
[a, b], then

fcdp(x) dv(x)

n-1

(/x,)0/__0plim(ff)) [v (x_l) v (xn))]

lim
n-1

(/(n)i (Z Xn)
(n) xn)i+1

<L
n-1

U(n)--O

d

L Ip(x)l dx. (4.4)
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Applying the inequality (4.4) on [a, x] and [x, b] successively, we get

fa
x

fx
b

(t a) du(t) + (t b) du(t)

/a
x

Ifx< (t a) du(t) + (t b) du(t)

[/ax /x< L I al dt + It b dt- [( ) + (b )

--( /- +2 (b a)
(4.5)

and then, by (4.5), via the identity (4.3), we get the desired inequality
(4.2). To prove the sharpness ofthe constant, assume that the inequality
(4.2) holds with a constant C > 0, i.e.,

b

u(t) dt u(x)(b a) (x- (a + b)/2)2]< L(b a)2 C + i/ 7 -j (4.6)

for all x E [a, b].
Consider the mappingf: [a, b] I,f(x) x in (4.6). Then

a+bl<[C+2 (x- (a + b)/2)21(b a)2
(b a)

for all x E [a, b], and then for x a, we get

b-a<2 (C+)(b-a)
which implies that C > 41-, and the theorem is completely proved.

The best inequality we can get from (4.2) is the following one.
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COROLLARY 6 Let u" [a, b] --, IR be as above. Then we have the inequality

fab (a+b)(b-a)u(t) dt u
2

1
L(b a)2 (4.7)

The previous results are useful in the estimation of the remainder for
a general quadrature formula of the Riemann type for L-Lipschitzian
mappings as follows: Let In: a x0 < xl <... < xn-1 < xn b be a divi-
sion of the interval [a, b] and i E [xi, xi+ 1] (i 0, 1,..., n 1) a sequence
of intermediate points for In. Construct the Riemann sums

n-I

Rn(f, In, ) f(i)hi
i=o

where hi Xi+l Xi (i 0, 1,..., n 1).
We now have the following quadrature formula.

THEOREM 13 Let f: [a, b] be an L-Lipschitzian mapping on [a, b]
and In, i (i=O, 1,..., n- 1) be as above. Then we have the Riemann

quadratureformula

bf(x) dx Rn(f In, ) + Wn(f In, ) (4.8)

where the remainder satisfies the estimate

Wn (f, In, ) <_ L h2i + y i
xi + Xi+l.

i=0 i=0
2

n--1

< L h/2 (4.9)
i=0

for all i (i O, 1,..., n 1) as above. The constant 1/4 is sharp.

Proof Apply Theorem 12 on the interval [xi, xi+l] to get

Xi+’f(x) dx f(i)hi _(t [hAt (i--xiqt-xi+l,)212
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Summing over from 0 to n-1 and using the generalized triangle
inequality, we get

n-1

i=0

x/’f(x) dx f(()h

LZ h2i -- i-xi i+1
2

i=0

Now, as

Xi At- Xi+ 2

) < h2i2 --for all (i E [Xi + Xi+l] (i 0, 1,..., n 1), the second part of (4.9) is also
proved.

Note that the best estimation we can obtain from (4.9) is that one for
which (i (xi + xi+1)/2, obtaining the following midpoint formula.

COROLLARY 7 Letf, I,, be as above. Then we have the midpoint rule

bf(x) dx Mn(f, In) + Sn(f In)

where

n-1

Mn(f,!n) -f(X’i -r- Xi+l
2 )hi

i=0

and the remainder Sn(f, In) satisfies the estimation

n-1

ISn (f, I,,)l < LZ h/E"
i=0

Remark 3 Ifwe assume thatf: [a, b] IR is differentiable on (a, b) and
whose derivative f’ is bounded on (a, b), we can put instead of L the
infinity norm IIf’ll obtaining the estimation due to Dragomir-Wang
from [11].

We are now able to state and prove our results for the Beta mapping.
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THEOREM 14 Let p, q > 2 and x E [0, ]. Then we have the inequality

]/3(p, q) xP-1 (1 x)q-1

<max{p_1 q_l}(P_2)P-2(q_2)q-2[ ((p + q 4)P+q-4
/ x (4.10)

Proof Reconsider the mapping la,b’(O 1)I, la,b(X)--xa(1--X)b.
For p, q > 1, we get

l_l,q_l(t lp-2,q-2(t)[(p 1) (p / q 2)t], E (0, 1).

If (0, (p 1)/(p + q 2)), then /fi-l,q-1 (t) > 0. Otherwise, if
((p-1)/(p/q-2),l), then l_l,q_l(t < 0, which shows that for
to (p 1)/(p / q 2), we have a maximum for lp_l,q_l and

sup lp-l,q-l(t) lp-l,q-l(tO)--
(p- 1)P-l(q-- 1)q-1

te(0,1) (p + q 2)p+q-2
p,q > 1.

Consequenlty

11_1,q_1(t)[ [lp-2q-2(t)[ max [(p 1) (p / q 2)t[
tO[O,1]

< (P- 2)P-2(q- 2)q-2

(p / q 4"P+q-4 max{p 1, q 1}

for all E [0, 1], and then

II/fi-l,q-l(t)llo max{p- 1,q- 1}
(p- 2)p-2(q_ 2)q-2

(p + q 4)P+q-4
p,q > 2.

(4.11)

Applying now the inequality (4.2) for f(x)--lp-l,q-l(X), X [0, 1] and
using the bound (4.11), we derive the desired inequality (4.10).

The best inequality we can get from (4.10) is the following.
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COROLLARY 8 Letp, q > 2. Then we have the inequality

/3(p, q) 2p+q_2 max{ 1 }P- ,q-
(p- 2)p-2 (q- 2)q-2

(p + q 4)P+q-4
(4.12)

The following approximation formula for the Beta mapping holds.

THEOREM 15 Let In" 0--x0 < x <... < Xn_ < Xn-- be a division of
the interval [0, 1], iE[xi, xi+l] (i=0, 1,...,n- 1) a sequence of inter-

mediate pointsfor In andp, q > 2. Then we have theformula
n-1

/3(p,q) ’f-1(1 i)q-lhi .qt_ Tn(p,q)
i=0

where the remainder T,, (p, q) satisfies the estimation

[Tn(p, q)[ _< max{p 1, q }
(p- 2)p-2 (q- 2)q-2

(p + q 4)P+q-4

X Zh2i ---- i
=o /=o

2

< max{p- 1,q- 1)
(p- 2)p-2(q- 2)q-2 n-1

(p + q 4)P+q-4 Zi=0 h.
In particular, ifwe choosefor the above

Xi-[- Xi+l (i O, 1,..., n 1);i= 2

then we get the approximation

n-1

)p-1 (2 Xi )q-1/3(p, q) 2p+q-2 -(xi At- Xi+l Xi+l
i=o

+ V,,(p, q),

where

max{ 1)
(p 2)P-2(q 2)q-2 n-1

IVn(P,q)l <_ - P- ’q-
(P+q 4)p+q-4 h/2"i=o
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4.2 Some Inequalities via Ostrowski’s Inequality
for Mappings of Bounded Variation

The following inequality for mappings of bounded variation [15] holds.

THEOREM 16 Let u [a, b] -/I be a mapping of bounded variation on

[a, b]. Thenfor all x E [a, b], we have

b

u(t) dt u(x)(b a) [ a+b< (b-a)+ x
2 ba/(u (4.13)

where Vba(U) denotes the total variation of u. The constant 1/2 is the best
possible.

Proof Using the integration by parts formula for Riemann-Stieltjes
integral, we have (see also the proof of the Theorem 11) that

u(x)(b a) u(t) dt (t a)du(t) / (t b)du(t) (4.14)

for all x E [a, b].
(n)

X
n)Now, assume that An: c x0

(n) < x(n) <... < "n-1 < d is a
sequence of divisions with (An)0 as n---o, where u(An):=

(n) (n) /(n) [x{,),x{_]. If p: [c, d] ismaxi{0 n_l}(Xi+l-Xi )and
continuous on’[c, d] and f: [c, d] is bf bound6d variation on [a, b],
then

dp(x) dv(x) lim
-’ (n)Iv(x:U(An)___0/=Op

n-1

sup
x[c,d] An "=

d

sup Ip(x)l V(v). (4.15)
x[c,d] c
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Applying (4.15), we have successively

X(t a)du(t)
x

< (x- a)V(u)
a

and

b(t-b) du(t)
b

<_ (b- ) V(u)
x

and then

(t a)du(t) + (t- b)du(t)

l/x< (t a) du(t) + (t- b)du(t)

x b

< (x- a)V(u) + (b- x) V(u)
a x

_< max{x- a, b x} (u) + (u)

b

max(x- a, b x} V(u)
a

a
x

2
(u).

Using the identity (4.14), we get the desired inequality (4.13).
Now, assume that the inequality (4.13) holds with a constant

C> 0, i.e.,

b

u(t) dt u(x)(b a) < [C(b a) + x-
2

(u), (4.16)

for all x [a, b].
Consider the mapping u’[a, b] --. given by

r 0
u(x) ,{

t.

if x [a,b]\{(a + b)/2},
if x (a + b)/2
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in (4.16). Note that u is of bounded variation on [a, b] and

b b

V(U)=2’ f u(t) dt=0
a

and for x (a + b)/2 we get by (4.16) that < 2C which implies C > i
and the theorem is completely proved.

The following corollaries hold.

COROLLARY 9 Let u :[a, b] --. be a L-Lipschitzian mapping on [a, b].
Then we have the inequality

fa
b

u(t) dt u(x)(b a) < I(b-a)+ 2-If(b)-f(a)l
(4.17)

for all x [a, b].

The case of Lipschitzian mappings is embodied in the following
corollary.

COROLLARY 10 Let u [a, b] -- be a L-Lipschitzian mapping on [a, b].
Then we have the inequality

b

u(t) dt u(x)(b a) _< L (b a) + x
2

(b a)

(4.18)

for all x [a, b].

The following particular case can be more useful in practice.

COROLLARY 11 IfU: [a, b] --. N is continuous anddifferentiable on (a, b),
u’ is continuous on (a, b) and Ilu’lll :- J’ff lu’(t)l dt then

b

u(t) dt u(x)(b a) I a+b
<L (b-a)/x 2 Ilu’ll (4.19)

for all x [a, b].
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Remark 4 The best inequality we can obtain from (4.13) is that one for
x (a + b)/2, obtaining the inequality

fab (a+b)(b-a)u(t) dr- u
2

b

< (b- a)V(u). (4.20)
a

Now, consider the Riemann sums

n-1

Rn(f, In, ) f(i)hi
i=0

where In: a x0 < Xl <’’" < Xn--1 < Xn b is a divison ofthe interval [a, b]
and (i E [xi, xi+ 1] (i 0, 1,..., n 1) is a sequence ofintermediate points
for In, hi :-- xi+ Xi (i O, 1,..., n 1).
We have the following quadrature formula.

THEOREM 17 Letf: [a, b] be amappingofboundedvariation on [a, b]
and In, {i (i=0, 1,... ,n-1) be as above. Then we have the Riemann

quadratureformula

bf(x) dx Rn(f In, ) + Wn(f In, ) (4.21)

where the remainder satisfies the estimate

Iw,(f, In, )l < sup hi-+- i
xi + xi+l V(f)

i=0,1 ,n-1 2 a

< u(h) + sup i-
Xi + Xi+l V(f)

i=0,1,...,n-1 2 a

b

< u(h)V(f),
a

(4.22)

for all i(i =0, 1,... ,n 1) as above, where u(h) :-- max/= o, n-l{hi}.
The constant 1/2 is sharp.
Proof Apply Theorem 16 in the interval [xi, xi+l] to get

X’+lf(x) dx f(i)hi < hi - i-
xi + Xi+l

2 V(f). (4.23)
xi
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Summing over from 0 to n- and using the generalized triangle
inequality, we get

Wn(f, In, )l < Z f(x) dx -f(i)hi
i=0 xi--- Z hi + i

xi + Xi+ (f
i=0

2
xi

< sup Ihiq-Ii-i=0,1,...,n-

Xi + Xi+l (f)
2

i=0 xi

sup hi + i
xi nt- xi+l (f

i=0,1,...,n- 2

The second inequality follows by the properties of sup(. ).
Now, as

i
xi -]" Xi+l < hi2 --for all i[xi, x+] (i=O, 1,...,n-1), the last part of (4.22) is also

proved.

Note that the best estimation we can get from (4.22) is that one for
which i (xi+ xi+l)/2 obtaining the following midpoint quadrature
formula.

COROLLARY 12 Letf, I,, be as above. Then we have the midpoint rule

bf(x) dx mn(f In) + Sn(f In)

where

n-1

Mn(fIn) f(xi -qt-Xi+l.)h2
i=0

and the remainder Sn(f, In) satisfies the estimation

b

(h) V(f)ISn(f, Zn)l <- 5
a

We are now able to apply the above results for Euler’s Beta function.
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THEOREM 18 Let p, q > and x E [0, 1]. Then we have the inequality

113(p, q) x,-1 (1_ x)q-11
_< max{p 1, q }/3(p 1, q 1) [1/2 + Ix 1/21]" (4.24)

Proof Consider the mapping lp_ 1,q- l(t) p- 1(1 x)q- 1, [0, ]. We
have for p, q > that

l_l,q_ (t) lp-2,q-2(t)[p (p + q 2)t]

and, as

[p- 1-(p-+-q- 2)tl _< max{p- 1,q- 1}

for all [0, 1], then

lp_2,q_2(t)]p (p + q 2)t] dt

< max{p- 1,q-

=max{p-l,q-1}/3(p-l,q-1), p,q > l.

Now, applying Theorem 16 for u(t) lp_l,q_l, we deduce

fO lp_l,q-l(t) dt- xp-1 (1 x)q-1

_< max{p-1,q-1}(p-1,q-

for all x E [0, 1], and the theorem is proved.

The best inequality that we can get from (4.24) is embodied in the
following corollary.

COROLLARY 13 Let p, q > 1. Then we have the inequality

/(P, q) 2p+q-2 lmax{ }/3(p 1)_< p- ,q- ,q- (4.25)
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Now, if we apply Theorem 16 for the mapping lp_l,q_l, we get the
following approximation of the Beta function in terms of Riemann
sums.

THEOREM 19 Let In: a Xo < Xl <... < xn-1 < xn b be a division of
the interval [a,b], iE[xi, xi+l] (i=0, 1,...,n- 1) a sequence of inter-
mediate pointsfor In, andp, q > 1. Then we have theformula

n-1

/3(p, q) Z (/P-1 (1 i)q-1 hi + Tn(p, q) (4.26)
i=o

where the remainder Tn(p, q) satisfies the estimation

/3(p- 1,q- 1)

_< max{p 1, q )u(h)3(p 1, q 1).

In particular, if we choose above (i=(xi+xi+l)/2 (i-0,1,...,n-1),
then we get the approximation

n-1

)p-1 (2 X )q-13(p, q) 2p+q-2 (xi q- Xi+l xi+ + Vn(p, q)
i=o

where

IV,(p,q)l <_ 1/2max{p- 1, q- 1)u(h)fl(p- 1,q- 1).

4.3 Inequalities via Ostrowski’s Inequality for
Absolutely Continuous Mappings whose
Derivatives belong to p-Spaces

The following theorem concerning Ostrowski’s inequality for absolutely
continuous mappings whose derivatives belong to Lp-spaces hold (see
also [12]).
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THEOREM 20 Letf: [a, b] -, be an absolutely continuous mappingfor
whichf’ E Lp[a, b], p > 1. Then

fabf(t) dtf(x)
b a

I(x-a)q+l(bb-Xa)q+l]l/q(q + 1)l/q b ’a

< (b a)l/q[[ft[lp (4.27)
(q + 1) 1/q

for all x [a, b], where

(TabliT’lip :- IT’(t)[ p dt (4.28)

Proof Integrating by parts, we have

fa
x

fa
x

(t a)f’(t) dt (x a)f(x) f(t) dt

and

fa fx(t b)f’(t)dt (b x)f(x) f(t) dr.

If we add the above two equalities, we get

(t a)f’(t)dt + (t b)f’(t)dt (b a)f(x) f(t) dt.

From this we obtain

f(x)
b a

f(t) dt b--L---da p(x, t)f’(t) dt (4.29)

where

p(x, t) :=
t-b

if [a, x],
(t, x) 6 [a, b] 2.

if (x, b],
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Now, using H61der’s integral inequality, we have

f(x)
b a

l j’ab<
b a

p(x, t) llf’(t)l dt

(fa t)/q(fa t)blP(x, t)[ q d If’(t)[ p d<-b-a
(4.30)

A simple calculation show that

fab fa
x

fx
b

[p(x, t)q dt It- a[ q dt -k- [t- b[ q dt

/x(t- a)q dt q- (t- b)q dt

(X- a)q+l + (b x)q+l

q+l

[(x--a)q+l (bb-Xaa)
q+l

q+l b a
b-a)

q+l

Now, using the inequality (4.30), we have

faf(t) dtf(x)
b- a

[ [(xb-a)q+l (-Xalq+ll 1
1/q

<b a q+l a
+ (b a)q+l IIf’[ p

[ x--a q+l (b-xq+l] 1/q

-(q+ 1)l/q (b-a) +\-aJ J (b-a)l/qllf’llP

and first inequality in (4.27) is proved.
Now, for s _> and a </3, consider the mapping h’[a,/3] /R defined

by h(x) (x a) + (- x). Observe that

and so h’(x) < 0 on [a, (a +/3)/2) and h’(x) > 0 on ((a +/3)/2,/3].
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Therefore, we have

inf h(x)=hia+/3]/\
xe[,] 2\ / 2s--1

and

sup h(x) h(a) h(/3) (/3 a).
Consequently, we have

(b x)q+l -+- (x a)q+l _< (b a)q+l x E [oz,/1

and the last part of (4.27) is thus proved.

The best inequality we can get from (4.27) is embodied in the following
corollary.

COROLLARY 14 Under the above assumptionsforf, we have

If(a + b fabf t) dt (b a)1/q<
(q + 1)1 [If’lip. (4.31)

We now consider the application of (4.27) to some numerical quad-
rature rules.

THEOREM 21 Let f be as in Theorem 20. Then for any partition
In: a xo <Xl <’" <xn-1 < xn b of [a, b] and any intermediate point
vector =(o,(1,---,n-1) satisfying (iE[xi, xi+l] (i=0,1,...,n-1),
we have

bf(x) dx AR(f In, ) + RR(f In, ) (4.32)

where AR denotes the quadrature rules ofthe Riemann type defined by

n-1

AR(fIn,) f(i)hi, hi := Xi+l xi,
i=0
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and the remainder satisfies the estimate

< IIf’ll, [(i_xi)q+l_p(Xi+l_i)q+l](q + 1) l/q
\i=0

(q + 1)l/q \ i=o

where hi:--xi+ -xi(i=O, 1,... ,n- 1).

(4.33)

to get

for all {0, 1,..., n ).
Summing over from 0 to n-1, using the generalized triangle

inequality and H61der’s discrete inequality, we get

IRR(f,I.,()l < f(i)hi- f(t)dt
i=0

< (i- "+- (Xi+l i)q+l
(q q- 1) 1/q

i=0

(iXiXi+’ )
lip

II’(t) I’ at

< (i- xi)q+l + (xi+l i)q+l
llq q

(q + 1) lq t.i=o
p

If’(t)l"dt
L i=0 u xi

IIf’ll.  [(ei .i)q+l
(q + l) l/q

i=o

+ (xi+l fi)q+

and the first inequality in (4.33) is proved.

f Xi+l

f(i)hi b---S-a f(t) dt

(q + 1) l/q hi

If’(t) I’ at
\d Xi

CXi+l () q+l]
1/q

l+l/q

Proof Apply Theorem 20 on the intervals [Xi, Xi+l] (i 0, 1,..., n- 1)
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The second inequality follows from the fact that (i--Xi)q+l--
(Xi+I /)q+l < h+l for all E {0, 1,... ,n- 1}, and the theorem is thus
proved.

The best quadrature formula we can get from the above general result
is that one for which i (xi+ xi+1)/2, 0, 1,..., n- 1, obtaining the
following corollary.

COROLLARY 15 Letfand In be as in the above theorem. Then

bf(x) dx AM(f, In)+ RM(f, In) (4.34)

where AM is the midpoint quadrature rule, i.e.,

n-1

AM(f, In) -f(Xi 4-Xi+l)h2
i=0

and the remainder RM satisfies the estimation

[RM(f, ln)[
[[ft[[p (h+l)

1/q

(q + 1) 1/q k, i:0

(4.35)

We are now able to apply the above results for Euler’s Beta mapping.

THEOREM 22 Let s > 1, p, q > 2 1/s > 1. Then we have the inequality

I/3(P, q) xp-l (1 x)q-11
/+1 (1 x)t+l]l/l<

(l+ 1) 1//
X 4- max{p- 1,q- 1}

x [/3(s(p- 2) + 1,s(q- 2)+ 1)] 1/s (4.36)

provided 1/s + 1/l- 1.

Proof We apply Theorem 20 for the mappingf(t)= tp-l(1- t)q-1--

lp_ 1,q- l(t), [0, to get

I/(P, q) lp-l,q-1 (x)l
1+1 ][ll_l,q_l[Is, x [0, 1], (4.37)<

(t 4- 1)1/t
x 4- (1 x)t+l 1/t

where s > and 1/s + 1/l 1.
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However, as in the proof ofTheorem 18,

l_l,q_ (t) lp_2,q-2(t)[p (p -+- q 2)t]

and then

I[/-,q-lll l_2,q_2(t)[ p (p + q 2)1 ds

ts(p-:) (1 t)s(q-2)lp (p + q 2)1 ds

< max{p- 1,q- 1}[/3(s(p- 2)+ 1,s(q- 2)+ 1)] 1/s.

Using (4.37) we deduce (4.36).

We can state now the following result concerning the approximation
of the Beta function in terms of Riemann sums.

THEOREM 23 Let s> l, p,q>2-1/s>l. If In: 0=x0<x<...<
Xn- <x,--1 is a division of [0, 1], i[xi, xi+l] (i-O, 1,...,n-1) a

sequence ofintermediate pointsfor In, then we have theformula

n-1

/3(p, q) Z (/P-l(1 i)q-lhi -- Zn(p, q) (4.38)
i=0

where the remainder Tn(p, q) satisfies the estimate

ITn(P,q)]

<max{p-l’q-1} 2)+1 s(q 2)+1)] 1/s

(l -+- 1) 1// [/3(s(p

\ i=0

< max{p- 1,q- 1}
hi

(l + 1) 1/
[(s(p 2) + 1,s(q 2) + 1)]/ t+

k i=0

where hi Xi+ Xi (i 0, 1,..., n 1) and 1/s + 1/l 1.



146 S.S. DRAGOMIR et al.

The proof follows by Theorem 21 applied for the mapping f(t)=
tp-l(1 t)q-l, E [0, 1], and we omit the details.

4.4 An Ostrowski Type Inequality for Monotonic Mappings

The following result of the Ostrowski type holds [13].

THEOREM 24 Let u [a, b] IR be a monotonic non-decreasing mapping
on [a, b]. Thenfor all x [a, b], we have the inequality

u(t) dtu(x)
b a

[2x- (a + b)]u(x) + sgn(t- x)u(t)dt<-b-a
< b-a [(x- al(u(x) u(a)) + (b x)(u(b) u(x))]

Ix- (a + b)/2<- + b-a (4.39)

The inequalities in (4.39) are sharp and the constant 1/2 is the best possible.

Proof Using the integration by parts formula for Riemann-Stieltjes
integral (4.14), we have the identity

u(t) dt p(x, t) du(t) (4.40)u(x)
b a b a

where

t-a ift[a,x],p(x,t):= t-b if t(x,b].

Now, assume that An: a x0(n)< xn)<’’’< xn(n) < X(nn)= b is a
sequence of divisions with t,(An)--+0 as n--+oo, where t,(An):=
maxie{o n-l} (x_- x/(n)) and /(") [x[n),x[_].
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Ifp is Riemann-Stieltjes integrable by rapport of v, and v is monotonic
non-decreasing on [a, b], then

bp(x) dv(x) lim "-(i(n)) (x:l) (xn))(,x, )--,o i=o p v v

n-1

lim
.(zx)-,o .=

p@i(n)) v(::) v(:)
n-1

lim
,(zx,)--,0 .=

p@i(n)) (v(::) v(x:n))
b

Ip(x)ldv(x). (4.41)

Using the above inequality, we can state that

bp(x,t) du(t)
b

<_ Ip(x, t)[ du(t). (4.42)

Now, we observe that

[p(x, t)[ du(t) It a[ du(t) -t- It b[ du(t)

Ja"x /x(t a) du(t) + (b t)du(t)

/a
x

(t- a)u(t)lXa- u(t) dt- (b- t)u(t)lbx u(t) at

[2x (a + b)]u(x) u(t) at + u(t) dt

[2x (a + b)]u(x) + sgn(t x)u(t)dt.

Using the inequality (4.42) and the identity (4.40), we get the first part
of (4.39).
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We know that

sgn(t x)u(t) dt u(t) dt + u(t) dt.

As u is monotonic non-decreasing on [a, b], we can state that

XU(t) dt > (x a)u(a)

and

bu(t) dt <_ (b x)u(b)

and then

b

sgn(t- x)u(t) dt <_ (b x)u(b) (x- a)u(a).

Consequently, we can state that

b

[2x (a + b)]u(x) + sgn(t- x)u(t) dt

_< [2x- (a + b)]u(x) + (b x)u(b) (x a)u(a)

(b x)(u(b) u(x)) + (x- a)(u(x) u(a))

and the second part of (4.39) is proved.
Finally, let us observe that

(b x)(u(b) u(x)) + (x a)(u(x) u(a))
< max{b x, x a}[u(b) u(x) + u(x) u(a)]

[b-al2 + x-
2 (u(b)-u(a))

and the inequality (4.39) is proved.



INEQUALITIES FOR BETA AND GAMMA FUNCTIONS 149

Assume that (4.39) holds with a constant C > 0 instead of 1/2, i.e.,

u(t) dtu(x)
b a

[2x (a + b)]u(x) + sgn(t- x)u(t)dt<-b-a
_< b--S_a [(x- a)(u(x) u(a)) + (b x)(u(b) u(x))]

[ ,x-(a+b)/2,] (u(b)-u(a)).< C+
b-a (4.43)

Consider the mapping u0" [a, b] given by

-1 ifx a,u0(x) 0 ifxE(a,b].

Putting in (4.43) u u0 and x a, we get

u(x) u(t) dt
b-a

[2x (a + b)]u(x) + sgn(t x)u(t)dt

[(x a)(u(x) u(a)) + (b x)(u(b) u(x))]

Ix (a + b)/2[]-----a- j
(u(b) u(a)) C +-,

which proves the sharpness of the first two inequalities and the fact
that C should not be less than .
The following corollaries are interesting.

COROLLARY 16

2 b-afa u(t) dt sgn<-b a

_< [u(b) u(a)].

Let u be as above. Then we have the midpoint inequality

a + b u(t) dt
2

Also, the following "trapezoid inequality" for monotonic non-
decreasing mappings holds.

(4.44)
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COROLLARY 17 Under the above assumption, we have

u(t) at < [u(b) u(a)]2 b-a -- (4.45)

Proof Let us choose in Theorem 24, x a and x b to obtain

u(t)dt <u(a) b- a b a
-(b a)u(a) + a’b u(t) dtJ

and

u(t) dtu(b) b a
(b a)u(b) / u(t) dt<-b-a

Summing the above inequalities, using the triangle inequality and
dividing by 2, we get the desired inequality (4.45).

INEQUALITIES OF THE OSTROWSKI TYPE IN
PROBABILITY THEORY AND APPLICATIONS
FOR THE BETA FUNCTION

5.1 An inequality of Ostrowski’ Type for
Cumulative Distribution Functions and
Applications for the Beta Function

Let X be a random variable taking values in the finite interval [a, b],
with the cumulative distribution function F(x) Pr(X_< x).
The following result of Ostrowski type holds [14].

THEOREM 25 Let XandFbe as above. Then

Pr(X _< x) b-E(X)

[ /a[2x (a + b)]Pr(X < x) + sgn(t- x)F(t)d<- b"a
_<

b_--S--
[(b x)Pr(X > x) + (x a)Pr(X _< x)]

Ix (a + b)/2l<-+-2 b-a
(5.1)
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for all x E [a, b]. All the inequalities in (5.1) are sharp and the constant
is the best possible.

Proof We know, by Theorem 24, that for a monotonic non-decreas-
ing mapping u [a, b] /R, we have the inequality

u(x)
b a

u(t) dt

{ ja }[2x- (a + 6)]u(x) + sgn(t- x)u(t)at<-b-a
-< -a [(x a)(u(x) u(a)) + ( x)(() u(x))]

Ix- (a + )/21< + (u() u(a)) (.2)-2 b-a

for all x 6 [a, b].
Apply (5.2) for the monotonic non-decreasing mapping u(x)= F(x)

and take into account that F(a)= O, F(b)= 1, to get

F(t) dtF(x)
b a

[[2x (a + b)]F(x) + sgn(- x)F()de<-b-a
<_ b---L_ a [(X a)F(x) + (b x)(1 F(x))]

Ix- (a + b)/21 (5.3)< -+ b- a

However, by the integration by parts formula for the Riemann-Stieltjes
integral, we have

E(X) := dF(t) tF(t)
a

F(t) dt

bF(b) aF(a) F(t) at b F(t) dr,

and

F(x) Pr(X >_ x).

Then, by (5.3), we get the desired inequality (5.1).
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To prove the sharpness of the inequalities in (5.1), we choose the
random variable X such that F: [0, 1] /R

F(x) { O ifx=O,
ifx E (0,1].

We omit the details.

Remark 5 Taking into account the fact that

Pr(X _> x) Pr(X _< x)

then, from (5.1), we get the equivalent inequality

Pr(X > x) E(X) a

b-a

[2x- (a + b)]Pr(X _< x) + sgn(t- x)F(t)dt<b-a
<- b a

[(b x)Pr(X _> x)+ (x a)Pr(X _< x)]

Ix- (a + 6)/2<- -+ b a
(5.4)

for all x E [a, b].

The following particular inequalities can also be interesting

Pr(X _<a+2 b) b
-b aE(X) fa

t’

(a--b) F(t) dt<l_< sgn t-
2 -and

Pr(X > a.+ E(X)
a

b a + F(t) dt <_< sgn t-
2 - (5.6)

The following corollary may be useful in practice.
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COROLLARY 18 Under the above assumptions, we have

b a 2 E(X <_Pr X<_ 2

[a+b E(X)] +<b-a 2
(5.7)

Proof From the inequality (5.1), we get

b-E(X) <_ Pr(x<a+b) <1 b- E(X)
2 b-a 2 --+ b-a

But

b-E(X) -b+a+2b-2E(X)
2 b-a 2(b- a)

_-lb_a[a+b2 E(X)

and

-1+
b-a

=1+

b-a 2
2b 2E(X) b + a

=l+b a

2(b a)
a+b
2

-E(X)

and the inequality (5.7) is thus proved.

Remark 6 (a) Let _> e _> O, and assume that

E(X) > a+b + (1 e)(b a),

then

(5.9)
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Indeed, if (5.8) holds, then by the right-hand side of (5.9), we get

2 -b-a
a+b E(X)] +1

< (e- 1)(b-a)
+1= e.

(b) Also, if

a+b
E(X) <_

2
e(b- a), (5.10)

then, by the right-hand side of (5.7),

> e(b a)
e.

b-a

That is,

Pr(x<a+b) >e’eE(O’I)-2
(5.11)

The following corollary is also interesting.

COROLLARY 19
the inequality

Under the above assumptions of Theorem 25, we have

fab[l+sgn(t-x).]F(t)dt>Pr(X>xb-x 2

sgn(t2 x).] F(t) dt

for all x [a, b].
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Proof From the equality (5.2), we have

Pr(X G x) b-E(X)

[ /a[2x (a + b)]Pr(X _< x) + sgn(t x)F(t)dt

which is equivalent to

(b a)Pr(X _< x) -[2x- (a + b)]Pr(X _< x)
b

<_ b- E(X) + sgn(t- x)F(t) dt.

That is,

b

2(b- x)Pr(X <_ x) < b E(X) + sgn(t- x)F(t) dt.

Since

b

b E(X) F(t) dt,

then from the above inequality, we deduce the first part of (5.12).
The second part of (5.12) follows by a similar argument from the

inequality

Pr(X G x) b-E(X)

[ /a[2x (a + b)]Pr(X _< x) + sgn(t- x)F(t)dt

and we omit the details.



156 S.S. DRAGOMIR et al.

Remark 7 Ifwe putx=(a+b)/2 in (5.12), then we get

lab [ ( a-b)l+sgn t- F(t)dt
b-a 2

> Pr(X> ab)
1-sgn t-

2

We are able now to give some applications for a Beta random variable.
A Beta random variable Xwith parameters (p, q) has the probability

density function

xp-1 (1 -x)q-1

0 ( x ( 1,f(x;p, q) :=
/3(p, q)

where- ((p, q): p, q > O) and/3(p, q) :-- fd tP-1 (1 t)q-1 dt.
Let us compute the expected value of X. We have

E(X) if’/3(p, q)

/3(p+ 1,q) p
/3(p, q) p + q

x xP-’ (1 X)q-1 dx

The following result holds.

THEOREM 26 Let X be a Beta random variable with parameters
(p, q) E f. Then we have the inequalities

Pr(X _< x)
q

P+q

and

Pr(X _> x)
p

P+q
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for all x E [0, 1] and, particularly,

Pr X< -p .+ q -and

p+q -2

The proof follows by Theorem 25 applied to the Beta random
variable X.

5.2 An Ostrowski Type Inequality for a Probability
Density FunctionfE Lp[., hi

The following theorem holds.

THEOREM 27 Let X be a random variable with the probability density
function f: [a, b] c R R+ and with cumulative distribution function
F(x) Pr(X< x). IffE Lp[a, b], p > 1, then we have the inequality

Pr(X G x)
6- e(x)

q ,,f[lp(b-a)l/q[(Xb-al(l+q)/q<q+l -a

q
Ilfllp(b-a) 1/q

-<q+l

(b-x) (l+q)/q]+ b-a

(5.14)

for all x [a, b], where 1/p + 1/q 1.

Proof By H61der’s integral inequality we have

iF(x) V(y)l LYu(t)dt
<_ dt If(t)l p dt < Ix yl lqllfllp (5.15)
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for all x, y E [a, b], wherep > 1, 1/p + 1/q 1, and

II/llp :- If(t)l p dt
1/p

is the usual p-norm on Lp[a, b].
The inequality (5.15) shows in fact that the mapping F(. is of r-

H-H61der type, i.e.,

IF(x) F(y) <- nix ylr, Vx, y [a, b] (5.16)

with 0 < H= Ilfllp and r lip e (0, 1).
Integrating the inequality (5.15) over y [a, b], we get successively

F(y) dyF(x) b- a

<- b a
IF(x) F( y)l dy

I[fl[p ix_yll/qdy

II711 (x y)/q dy + (y x) /q dy
b-a a

ilfllp[.(x-a)l/q+l (b-x) 1/q+l]=b-a 1/q+
/

1/q+l

[If[lp [(x a) 1/q+l / (b X) 1/q+l]q
q+ b-a

[() l/q+lq
Ilfllp(b- a) 1/q x-- a

q+l b-a

1/q+l

(5.17)

for all x [a, b].
It is well known that

b

E(X) b F(t) dt

then, by (5.17), we get the first inequality in (5.14).
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For the second inequality, we observe that

(x--a)
1/q+l

+ < Vx E [a, b]

and the theorem is completely proved.

Remark 8 The inequality (5.14) is equivalent to

(5.18)

COROLLARY 20 Under the above assumptions, we have the double
inequality

b-
q

Ilfllp(b- a) l+l/q < E(X) < a + q
Ilfllp(b a) 1/q+l

q+l q+l
(5.19)

Proof We know that a < E(X) < b.
Now, choose in (5.14) x -a to get

b- E(X) < q [[fllp(b_a)l/q-q+l

b- E(X) <_ q 1+ /q

q + [[f[lp(b a)

which is equivalent to the first inequality in (5.19).
Also, choosing x b in (5.14), we get

b- E(X) < q
q + ’i Ilfll(b a) 1/q,
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E(X) a < q
IIfllp(b a) 1/q+l

-q+l

which is equivalent to the second inequality in (5.19).

Remark 9 We know that by H61der’s integral inequality

  f(t)dt <_ (b- a)l/qllfl[p

which gives

Ilfl p 2>
(b a)l/q"

Now, ifwe assume that Ilfl p is not too large, i.e.,

Ilfllp <
q+__1. (5.20)
q (b a)l/q

then we get

q 1/q+la +
q llfllp(b- a) < b
+ 1

and

q l+l/qb
q +i [[fllp(b a) > a

which shows that the inequality (5.19) is a tighter inequality than
a < E(X) < b when (5.20) holds.

Another equivalent inequality to (5.19) which can be more useful in
practice is the following one.

COROLLARY 21 With the above assumptions, we have the inequality

a+b
E(X)-

2 <(b-a)[ q
[[fllp(b a)l/q -lq+l

(5.21)
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Proof From the inequality (5.19) we have

a+b

<_ e(x)

q
Ilfllp(b-a) l+l/q

q+l
a+b q +l/qa +__b < a + [[fllp(b a)

2 2 q+l

That is,

a+bq
Ilfllp(b- a) l+l/q < E(X)

q+l 2
b-a q l+l/q-< -----+ q / [[fllp(b a)

which is equivalent to

E(X)
a +2 b] -q+l< q

Ilfl p(b a)l+l/q b -2 a

=(b-a)[ q
Ilfllp(b a)l/q

+

and the inequality (5.21) is proved.

This corollary provides the possibility of finding a sufficient condi-
tion in terms of Ilfllp (p > 1) for the expectation E(X) to be close to the
mean value (a + b)/2.

COROLLARY 22 Let Xandfbe as above and > O. If

q+l (q+ 1)
Ilfllp < 2q (b a)/q+ q(b_a)+/q

then

a+b
E(X)- 2

The proof is similar, and we omit the details.
The following corollary of Theorem 27 also holds.
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COROLLARY 23 Let Xandfbe as above. Then we have the inequality

Pr(X< a - b)
q

Ilfllp(b a) 1/q +<-- 21/q(q + 1)
a ,,bl’
2 ["

Proof Ifwe choose in (5.14) x (a + b)/2, we get

Pr(X<_ a +2 b) b -b aE(X) q<
21/q(q + l) Ilfllp(b-a) 1/q

which is clearly equivalent to

IPr(x<a+b) (E(X)-2 -+b a
q

[Ifllp(b a) 1/q<-- 21/q(q -+- 1)

Now, using the triangle inequality, we get

IPr(X_<, 2

21/q(q + 1)

+ b a
E(X)

a + b) (E(X)2’ --+ b-a
(E(X)a+b)b-a 2

Pr (x < a + b) 15 (E(X)2 -,.+b a

a + b[
+ b a

E(X)
2

q Ilfl[p(b_a)l/q
a+b
2

and the corollary is proved.

Finally, the following result also holds.
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COROLLARY 24 With the above assumptions, we have

E(X)
a + b] <2

q [[fllp(b_a)l+l/q21/q(q + 1)

+ (b a) Pr(X < a + b) 12

The proof is similar and we omit the details.
A Beta random variable X with parameters (s, t)E f has the prob-

ability density function

xS-1 (1 __X) t-1

f(x; s, t) := 0 < x < 1,
(s,t)

where

:= {(s, t): s, > 0)

and

fl(s, t):-- f01 "F-1 (1 7") t-1 d’r.

We observe that, forp > 1,

1/p

(folIlf(;s,t)llp (s,t)
7-P(S-l) (1 T)p(t-1) d-

(,/o.fl(S, t)
TP(S-1)+I-1 (1 7")p(t-l)+l-1 dT

t---v[(p((,- 1) + 1,p(t 1) + 1)]/

provided

p(s-1) + l, p(t-1) + >O,

s> and t>l--.
P P

Now, using Theorem 27, we can state the following proposition.
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PROPOSITION 3 Let p > and X be a Beta random variable with the
parameters (s, t), s > 1 1/p, > 1/p. Then we have the inequality

Pr(X < x)

< q [x(l+q)/q+(1-x)(l+q)/q][fl(p(s 1)+ 1,p(t-1)+ 1)] 1/p

q + t)
(5.22)

for all x E [0, 1].
Particularly, we have

( ) q [fl(p(s-1) + l,p(t-1) + l)] 1/pPr X <_ <- 21/q(q -k- 1) fl(s, t)

The proof follows by Theorem 27 choosing f(x) =f(x; s, t), x E [0, 1]
and taking into account that E(X) s/(s + t).
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