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1. INTRODUCTION

If1,is a non-empty set, we shall denote by 2xthe family of all non-empty
subsets of X. If X and Y are topological spaces and T: 1,--* 2 ’, then
the graph of Tis the set G(T):= {(x,y)E 1,x Y: y E T(x)}. Throughout
this paper, denotes either the real field or the complex field C.

Let E be a topological vector space over , F be a vector space over
ff and (,) :F E ff be a bilinear functional. If 1, is a non-empty sub-
set of E, then a map T: X 2F is called (i) F-monotone (i.e., monotone
with respect to the bilinear functional (,)) if for each x, y 1,, each
u T(x) and each w T(y), Re(w u, y x) > 0 and (ii) F-semi-mono-
tone (i.e., semi-monotone with respect to the bilinear functional (,)) if
for each x, y X, infur(x) Re(u, y x) <_ infwr(y Re(w, y x}. Note
that when F= E*, the vector space of all continuous linear functionals
on E and (, is the usual pairing between E* and E, the F-monotonicity
and F-semi-monotonicity notions coincide with the usual definitions
of monotonicity and semi-monotonicity (see, e.g., Browder [4, p. 79]
and Bae et al. [2, p. 237] respectively). But for simplicity of notions we
shall use the terms monotone and semi-monotone instead of F-mono-
tone and F-semi-monotone. Note also that T:X 2F is monotone if
and only if its graph G(T) is a monotone subset of i" x F; i.e., for all
(x, y), (x2, Y2) E G(T), Re(y2 y,x2 x) > O.
For each xoE, each non-empty subset A of E and each

e>0, let W(xo;e):={yF: I(y, xo}l<e} and U(A;e):={yF:
SUpxeA I(Y, X)[ < e}. Let or(F, E) be the (weak) topology on F generated
by the family ( W(x; e): x E and e > 0) as a subbase for the neighbor-
hood system at 0 and 6(F, E) be the (strong) topology on F generated
by the family (U(A; e): A is a non-empty bounded subset ofE and e > 0)
as a base for the neighborhood system at 0. We note then that F, when
equipped with the (weak) topology or(F, E) or the (strong) topology
6(F, E), becomes a locally convex topological vector space which is not
necessarily Hausdorff. But if the bilinear functional (,) F x E--. ff
separates points in F, i.e., for each y E F with y 0, there exists x E
such that (y, x) - 0, then F also becomes Hausdorff. Furthermore, for
a net (Y)er in F and for y F, (i) y--+ y in cr(F,E) if and only
if (y, x) --. (y, x) for each x E and (ii) y --. y in 6(F, E) if and only
if (y,x)-- (y,x) uniformly for x A for each non-empty bounded
subset A of E.
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Let X be a non-empty subset of E. Then X is a cone in E if X is con-
vex and AXc X for all A > 0. If X is a cone in E and (,)" F E is
a bilinear functional, then " {w E F: Re(w, x) > 0 for all x E X} is
also a cone in F, called the dual cone of X (with respect to the bilinear
functional (,)).
The following result is Lemma ofShih and Tan in [13, pp. 334-335]"

LEMMA A Let X be a non-empty subset of a Hausdorff topological
vector space E and S" X 2E be an upper semicontinuous map such that
S(x) is a boundedsubset ofEfor each x X. Thefor each continuous linear
functionalp on E, the mapfp X---. definedbyfp(y) SUpxs(y) Re(p, x)
is upper semicontinuous; i.e., for each A E, the set {yEX: fp(y)=
SUpxs(y) Re(p, x) < A} is open in X.

The following result is Lemma 3 of Takahashi in [15, p. 177] (see
also Lemma 3 in [14, pp. 71-72]"

LEMMA B Let Xand Ybe topological spaces,f: X be non-negative
and continuous and g" Y be lower semicontinuous. Then the map
F" X x Y , defined by F(x, y) f(x)g( y) for all (x, y) E X x Y, is

lower semicontinuous.

We now state the following result which follows from Theorem 3.1 of
Chowdhury and Tan in [9] (see also Lemma 2.1 of Tarafdar and Yuan
[17] and Theorem 2.2 of Tarafdar in [16]) and is a generalization of
the celebrated 1972 Ky Fan’s minimax inequality in [11, Theorem 1]:

THEOREM A Let E be a topological vector space, andX be a non-empty
compact convex subset ofE. Suppose that f, g" X x X I {-, +o}
are two mappings satisfying thefollowing conditions:

(i) for each x X, g(x, x) < 0 andfor each x, y X, f(x, y) > 0 implies
g(x, y) > 0;

(ii) for eachfixedx X, the mapy f(x, y) is lower semicontinuous on X;
(iii) for eachfixedy X, the set {x X: g(x, y) > 0} is convex;

Then there exists a point Xsuch thatf(x,) <_ Ofor all x X.

We shall need the following Kneser’s minimax theorem in [12,
pp. 2418-2420] (see also Aubin [1, pp. 40-41 ])"

THEOREM B Let X be a non-empty convex subset ofa vector space and
Y be a non-empty compact convex subset of a Hausdorff topological
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vector space. Suppose thatf is a real-valuedfunction on X x Y such that

for each fixed x E X, the map y Hf(x, y) is lower semicontinuous and
convex on Y and for each fixed y Y, the map xf(x, y) is concave
on X. Then

min sup f(x, y) sup min f(x, y).
yE Y xEX xX YY

2. GENERALIZED BI-QUASI-VARIATIONAL INEQUALITIES
FOR QUASI-SEMI-MONOTONE AND BI-QUASI-
SEMI-MONOTONE OPERATORS

In this section we shall obtain some existence theorems of generalized
bi-quasi-variational inequalities for quasi-semi-monotone and bi-quasi-
semi-monotone operators. Our results will extend and or generalize the
corresponding results in [6] and [14].

Let E and F be Hausdorff topological vector spaces over the field
let (,) F x E-+ (b be a bilinear functional, and let X be a non-empty
subset ofE. Given a set-valued map S"X 2xand two set-valued maps
M, T:X---+ 2F, the generalized bi-quasi-variational inequality (GBQVI)
problem is to find a point 33 Xand a point E T() such that 33
and Re(f- if, j3-x) < 0 for all x E S(33) and for allfE M(33) or to
find a point .f E X, a point T(.f) and a point j E M(33) such that

f E S(.f) and Re(a- ,.f- x) < 0 for all x E S(.f). The above defini-
tion ofGBQVI problem was given in [6, p. 1 39] which is a slight modifi-
cation of the original definition of GBQVI problem of Shih and Tan
in [14].
The following definition is Definition 4.4.2 in [6] and generalizes

Definition 2.1 (b) in [9]:

DEFINITION Let E be a topological vector space over , Fbe a vector
space over andX be a non-empty subset orE. Let (,) F x E-- b be a

bilinear functional and M: X- 2F be a map. Then M is said to be upper
hemicontinuous on X if and only if for each pE, the function
fp X-+ IR tO {+oo} defined by

fp(z) sup Re(u,p) for each z X,
uM(z)
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is upper semicontinuous on X (if and only iffor each p E E, the func-
tion gp X I tA {-c} defined by

gp(Z) inf Re(u,p) for each z X,
ut(z)

is lower semicontinuous on X).

The following result is Proposition 4.4.3 in [6] and generalizes
Proposition 2.4 in [9]:

PROPOSITION Let E be a topological vector space over b, Fbe a vector

space over a9 and X be a non-empty subset ofE. Let (,) F x E a9 be a

bilinear functional such that for each p E, u (u,p) is tr(F,E)-con-
tinuous on Fwhen Fis equipped with the or(F, E)-topology. Let M:X2r

be upper semicontinuousfrom the relative topology on Xto the weak topol-
ogy or(F, E) on F. Then M is upper hemicontinuous on X.

Note that the converse of Proposition is not true as can be seen in
Example 2.5 of[9] which is Example 2.3 in [18, p. 392]:
The following definition is a generalization of (3) and (4) of the

Definition 2.6 in [9, p. 31].

DEFINITION 2 Let E be a topological vector space and X be a non-
empty subset ofE. Let Fbe a vector space over b and (,) F x E b be a
bilinearfunctional. Let M: X-- 2F be a map. Suppose h X-- I1. Then M
is said to be h-quasi-semi-monotone iffor each x, y X,

inf Re(w,y- x) + h( y) h(x) > 0
weM(y)

whenever

inf Re(u,y- x) + h( y) h(x) > O.
uM(x)

M is said to be quasi-semi-monotone ifM is h-quasi-semi-monotone with

We shall now introduce the following definition:

DEFINITION 3 Let E be a topological vector space and X be a non-

empty subset orE. Let Fbe a vector space over b and (,) F E-+ b be a
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bilinear functional. Let M, T’X 2F be two maps. Suppose h’X-- IR.
Then M is said to be h-bi-quasi-semi-monotone iffor each x, y E X and
each finite set {/3f j O, 1,..., n} of non-negative real-valuedfunctions
on X,

(Y) I gt(y)inf wer(y)inf Re(g w, y x) + h( y) h(x)l
+ /3(y)Re(p,y- x) > 0

k=l

whenever

/3o(y) [l_ft(x)inf wET(y)inf Re(f- w, y x) + h( y) h(x)]
n

+ Z/31(y)Re(pk,y- x) > O,
k=l

wherePk E’for k 1,..., n.

M is said to be bi-quasi-semi-monotone if M is h-bi-quasi-semi-
monotone with h--0. If "each finite set {/3: j=0, 1,...,n) of non-
negative real-valued functions on X" is replaced by "each family {/30,
p E*) of non-negative real-valued functions on X" and T=0, M
becomes a generalized h-quasi-semi-monotone operator as defined in
[7, Definition 4, p. 296].

Clearly, a semi-monotone operator is also an h-bi-quasi-semi-
monotone (respectively, a generalized h-quasi-semi-monotone) opera-
tor. But the converse is not true; because if T-- 0,/3o and/3k 0 for
each k 1,2,..., n (respectively, if/3o and for each p E*,/3p 0),
then an h-bi-quasi-semi-monotone (respectively, a generalized h-quasi-
semi-monotone) operator is an h-quasi-semi-monotone operator which
is not necessarily a semi-monotone operator. The following example,
which is Example 2.8 in [9] shows that an h-bi-quasi-semi-monotone
operator Tneed not be a semi-monotone operator.

Example 1 Define T: 2 by

=[x’l/x]’ if0<x< 1;T(x) [1Ix, x], if x_> 1.
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It is shown in [9, pp. 3 1-32] that T is not semi-monotone although it
is quasi-monotone.
The following example, which is Example 2.9 in [9] shows that an h-

bi-quasi-monotone operator Tneed not be a quasi-monotone operator.

Example 2 Define T:II--. 2 by

[0,2x], if x>0;
T(x)=

[2x,0], if x<0.

It is shown in [9, p. 32] that T is not quasi-monotone although it is
semi-monotone (as shown in [2, p. 241]) and therefore an h-bi-quasi-
semi-monotone operator need not be a quasi-monotone operator.

These examples justify the validity of bi-quasi-monotone operators.
The following result is Lemma 4.4.4 in [6]:

LEMMA Let E be a topological vector space over 69, X be a non-empty
compact subset ofEandFbe a Hausdorfftopological vector space over 69.
Let (,): F x E 69 be a bilinear functional and T: X--- 2F be an upper
semicontinuous map such that each T(x) is compact. LetMbe a non-empty
compact subset ofF, Xo E Xandh X I be continuous. Define g: X I
by g(y) [inffeM infwer(y)Re(f- w, y x0)] + h(y)for each y X. Sup-
pose that (,) is continuous on the (compact) subset [M- yx T(y)] x X
ofF x E. Then g is lower semicontinuous on X.

When h 0 and M {0}, replacing Tby T, Lemma 1 reduces to the
Lemma 2 of Shih and Tan in [14, pp. 70-7 1].
The following result is Lemma 4.4.5 in [6] and generalizes Lemma 4.2

in [9]:

LEMMA 2 Let Ebe a topological vector space over 69, Fbe a vector space
over 69 andXbe a non-empty convex subset ofE. Let (,) F x E 69 be a
bilinear functional. Equip F with the a(F, E)-topology. Let D be a non-

empty a(F, E)-compact subset ofF, h X---, I be convex and M: X 2F

be upper hemicontinuous along line segments in X. Suppose f; X is such
that inffM(x) infgD Re(f g, x) <_ h(x) h()for all x X. Then

inf inf Re(f g,- x) < h(x) h() for all x X.
feM() geD
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We shall now establish the following result:

THEOREM Let E be a locally convex Hausdorff topological vector

space over , X be a non-empty compact convex subset of E and F be
a Hausdorff topological vector space over . Let (,):F x E be a

bilinear functional which is continuous on compact subsets of F x X.
Suppose that

(a) S X2x is an upper semicontinuous map such that each S(x) is

closed convex;
(b) T:X2F is upper semicontinuous such that each T(x) is compact

convex;
(c) h X li is convex and continuous;
(d) M X--- 2e is upper hemicontinuous along line segments in X and

h-bi-quasi-semi-monotone (with respect to (,)) such that each M(x)
is compact convex and

(e) the set

=yEX" sup inf inf Re(f-w,y-x)
xeS(y) feM(x) wET(y)

+ h(y) h(x) > O
)

is open in X. Then there exists a point f Xsuch that
(i) 33 S(33)and
(ii) there exist a point M( f) and a point v T( f) with

Re(j2- v,;f x) < h(x) h(29) for all x S().

Moreover, ifS(x) Xfor all x X, E is not required to be locally convex
and if T=_ O, the continuity assumption on (,) can be weakened to the
assumption thatfor eachfE F, the map xH (fix) is continuous on X.

Proof We divide the proof into three steps:
Step 1 There exists a point p E X such that p E S(p) and

sup | inf inf Re(f-w,:f-x)+h()-h(x)| < 0.
xeS(p) LfeM(x) wET(p) I

Suppose the contrary. Then for each y X, either y. S(y) or there
exists x S(y) such that inffeM(x)infwer(y) Re(f- w, y x) + h(y)
h(x) > 0; that is, for each y X, either y S(y) or y E. If y S(y),
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then by a separation theorem, there exists p E E* such that

Re(p,y)- sup Re(p,x) >0.
xaS(y)

For eachp E E*, let

(
V(p) y X: Re(p,y)- sup Re(p,x) > 0}.

xeS(y)

Then V(p) is open by Lemma A. Since X= Z] td peE, V(p), by compact-
ness of X, there exist pl,p2,... ,pn E* such that X )2 tA I,.Ji"=l V(pi).
For simplicity of notations, let V0 :- E and Vi- V(pi) for 1, 2,..., n.
Let {/30,/31,...,/3n} be a continuous partition of unity on X subordi-
nated to the coveting { V0, V1,..., V}. Then/30,/31,...,/3, are contin-
uous non-negative real-valued functions on X such that/3i vanishes on
Jf\Vi, for each i=0, 1,... ,n and Ein=o 3i(X)-- for all x X. Define
,:Xx X--> I by

(x,y) &Cy)/ inf inf Re(f- w,y- x) + hCy) hCx)
[feM(x) weT(y)

+ fli(y)Re(pi, y x),
i=1

and

(x, y) &CY)/ inf inf Re(g- w, y x) + hC y) h(x)
[. geM(y) weT(y)

+ i(y)Re(pi,y- x),
i=1

for each x, y X. Then we have the following.

(1) For each x E X, (x, x)= 0 and for each x, y X, since M is h-bi-
quasi-semi-monotone, b(x, y) > 0 implies (x, y) > 0.

(2) For each fixed x X, the map

y H inf inf Re(f-w,y-x)+h(y)-h(x)
feM(x) weT(y)
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is lower semicontinuous on Xby Lemma 1; therefore the map

y H /3o(y)| inf inf Re(f- w,y x) +h(y) hCx)[
LfM(x) wT(y)

is lower semicontinuous on X by Lemma B. Hence for each fixed
x E X, the map y (x, y) is lower semicontinuous on X.

(3) Clearly, for each fixed y E X, the set {x E X: (x, y) > 0} is convex.

Then and satisfy all the hypotheses of Theorem A. Thus by
Theorem A, there exists 33 X such that (x, 33) < 0 for all x X, i.e.,

/30(33)[ inf inf Re(f- w,f x) + h(33) h(x)[
[feM(x) weT(y,)

+ /3i(.f,)Re(pi,- x) <_ 0 (2.1)
i=1

for all x X.
Choose 2 E S(33) such that

inf inf Re(f- w,)3- ) + h() h(2) > 0
feM() wer(.)

whenever f10(33) > 0;

it follows that

/30()3) [ inf inf Re(f- w,33 ) + h(33) h()
LfeM(2) weT()

whenever/3o() > O.

>0

If { 1,..., n} is such that/i(J3) > 0, then )3 V(pi) and hence

Re(p/,)3) > sup Re(p/, x) > Re(p/,.2)
xeS()

so that Re(pi, 33- 2) > 0. Then note that

fli(..f,)Re(pi,.f- 2) > 0 whenever fli(J3) > 0 for i= 1,...,n.
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Since/3i(33) > 0, for at least one E {0, 1,..., n}, it follows that

/30(33)[ inf inf Re(f- w,33- ) + h(33) h()]LfeM() weT(p)

q- 13i(fz)Re(pi, f; 2) > 0,
i=1

which contradicts (2.1). This contradiction proves Step 1.
Step 2

inf inf Re(f- w,.f x) < h(x) h(f;) for all x E S(33).
feM(p) weT(p)

Indeed, from Step 1,33 S(33) which is a convex subset of X, and

inf inf Re(f- w, f; x) <_ h(x) h(f;) for all x E S(33). (2.2)
feM(x) weT(p)

Hence by Lemma 2, we have

inf inf Re(f- w,f; x) < h(x) h(.f) for all x S(33).
feM(p) weT(p)

Step 3 There exist a point f M(j3) and a point E T(j3) with
Re(j- v,.f x) < h(x) h( f) for all x
From Step 2 we have

sup inf inf Re(f-w, j3-x/+h(J3)-h(x)| <0;
xeS(p) LfeM(P) weT(p)

sup inf Re(f- w, f x) + h( f;) h(x) < O,
xeS(p) f,w)eM(fi)xT(p)

(2.3)

where M(j3) x T(p) is a compact convex subset of the Hausdorff
topological vector space F x Fand S(33) is a convex subset of X.

Let Q M(p) x T(j3) and the map g S(p) x Q be defined
by g(x,q) g(x, (f, w)) Re(f- w,f x) + h(f;) h(x) for each
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x E S(33) and each q (f, w) E Q M(33) x T())). Note that for each
fixed x S(33), the map (f, w) g(x, (f, w)) is lower semicontinuous
from the relative product topology on Q to IR and also convex on Q.
Clearly, for each fixed q (f, w) Q, the map x g(x, q) g(x, (f, w))
is concave on S(33). Then by Theorem B we have

min sup g(x, (f, w)) sup min g(x, (f, w)).
(f,w)eQ xeS(p) xeS(.,9) (f,w)EQ

Thus

min sup Re(f- w,p- xl 4- h(p) h(x) <_ 0, by (2.3).
(f,w)eQ xeS()

Since Q M(.f) x T(33) is compact, there exists
such that

sup Re(- v,- x} + h() h(x) <_ O.
xeS()

Therefore

Re(j- v,. x) <_ h(x) h( f) for all x

Hence there exist a pointE M(33) and a point E T(33) with

Re(j- v,f, x) < h(x) h(f:) for all x S().

Next we note from the above proof that E is required to be locally
convex when and only when the separation theorem is applied to the
case yS(y). Thus if S:X 2x is the constant map S(x)=J( for all
x X, E is not required to be locally convex.

Finally, if T= 0, in order to show that for each x X, y 4(x, y) is
lower semi-continuous, Lemma is no longer needed and the weaker
continuity assumption on (,) that for eachfE F, the mapx (f,x) is
continuous on Xis sufficient. This completes the proof.

When M is h-quasi-semi-monotone instead of h-bi-quasi-semi-
monotone, the result follows immediately from Theorem 1.
Note that if the map S" X 2x is, in addition, lower semicontinuous

and for each y E, M is upper semicontinuous at some point x in S(y)
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with inffet(x/infwer(x/Re<f- w, y x) + h(y) h(x) > 0, then the set
E in Theorem is always open in X.

THEOREM 2 Let E be a locally convex Hausdorff topological vector

space over d, X be a non-empty compact convex subset ofE and F be a
vector space over d. Let (,) F x E- be a bilinearfunctional such that
(,) separates points ifF andfor eachfE F, the map x (f, x) is contin-

uous on X. Equip F with the strong topology 6(F, E). Suppose that

(a) S X-- 2x is a continuous map such that each S(x) is closed and
convex;

(b) T: X-- 2F is upper semicontinuous such that each T(x) is strongly
compact and convex;

(c) h: X--. is convex and continuous;
(d) M:X-- 2F is upper hemicontinuous along line segments in X and

h-bi-quasi-semi-monotone (with respect to (,)) such that each
M(x) is 6(F, E)-compact convex; also, for each y E {y X:
supxsy)[inffetx) infwry) Re(f- w, y x) + h(y) h(x)] > 0}, M
is upper semicontinuous at some point x in S( y) with

infftx infwry) Re(f- w, y x) + h(y) h(x) > O.

Then there exists apoint f Xsuch that

(i) 9 S(33)and
(ii) there exist a point M(f:) and a point

Re(j- v,-x) < h(x)- h()for allx S().
with

Moreover, ifS(x) Xfor all x X, E is not required to be locally convex.

Proof As (,):F xE ff is a bilinear functional such that for each

f F, the map x (f, x) is continuous on X and as F is equipped with
the strong topology 6(F, E), it is easy to see that (,) is continuous on
compact subsets of F x X. Thus by Theorem 1, it suffices to show that
the set

sup[ inf inf
xES( y) "fEM(x) wET(y)

Re(f- w, y x) + h(y) h(x)] > 0}
is open in X. Indeed, let Y0 E E; then by the last part of the hypo-
thesis (d), M is upper semicontinuous at some point x0 in S(yo) with
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inffeM(x0) infwer(yo) Re(f w, yo xo) + h(yo) h(xo) > 0. Let

a := inf inf Re(f- w, yo xo) / h(yo) h(xo).
fM(xo) wT(yo)

Then a > 0. Also let

W:= {w F: zSUp,z2X [(W’Zl Z2)[ < ce/61"
Then W is an open neighborhood of 0 in F so that Ua := T(yo) + W is
an open neighborhood of T(yo) in F. Since T is upper semicontinuous
atYo, there exists an open neighborhood N1 ofyo in Xsuch that T(y) C U1
for all y E N1.

Let U2 := M(xo) + W, the U2 is an open neighborhood ofM(xo) in F.
Since M is upper semicontinuous at Xo, there exists an open neighbor-
hood Va ofXo in X such that M(x) C U2 for all x E V1.
As the map x-- inff(x0)infwer(yo) Re(f- w, xo x) + h(xo) h(x)

is continuous at Xo, there exists an open neighborhood V2 of x0 in X
such that

inf inf Re(f- w, xo x) + h(xo) h(x)
feM(xo) wT(yo)

for all x V2.

<a/6

Let Vo := VIA Vz; then Vo is an open neighborhood of Xo in X. Since

Xo Vo N S(yo) - and S is lower semicontinuous at Yo, there exists an
open neighborhood N2 ofYo in X such that S(y) Vo for all y Nz.

Since the map y-- inffM(x0)infwr(yo) Re(f- w,y Yo) + h(y)-
h(yo) is continuous at Yo, there exists an open neighborhood N3 of Yo
in X such that

inf inf Re(f- w,y Yo) + h(y) h(yo)
feM(xo) wT(yo)

for all y E N3.

< a/6
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Let No N1 fq N2 fq N3. Then No is an open neighborhood of Yo in X
such that for each y E No, we have

(i) T(yl) C U1 T(yo) / Was Yl E N1;
(ii) S(yl) fq Vo as Yl N2; so we can choose any Xl S(yl) N Vo;
(iii) infff(x0)infwr(yo) Re(f- w, yl Yo) + h(yl) h(yo)l < a/6 as

Yl N3;
(iv) M(Xl) C U2 M(Xo) + Was x V1;
(v) inffM(xo) infweT(yo) Re(f- w, xo Xl) + h(xo) h(xl)[ < a/6 as

Xl E V2;

it follows that

inf inf Re(f- w,y Xl) + h(yl) h(Xl)
fM(x) weT(y)

> inf inf
[feM(xo)+W] [weT(yo)+W]

Re(f- w, yl x + h(yl) h(xl)

(by (i)and (iv)),
> inf inf Re(f- w, yl Xl) + h(yl) h(xl)
fM(xo) wT(yo)

+ inf inf Re(f- w, Y X
f6Ww6W

inf inf Re(f- w, yl Yo) + h(y,) h(yo)
fM(xo) wT(yo)

+ inf inf Re(f- w, yo xo) + h(yo) h(xo)
fM(xo) wT(yo)

+ inf inf Re(f- w, xo Xl) - h(xo) h(xl)
fM(xo) wgT(yo)

+ inf Re(f, yl Xl) -- inf Re(-w, yl Xl)
few wW

>_ -a/6 + a a/6 a/6 a/6 a/3 > 0

(by (iii)and (v));

therefore

sup inf inf Re(f- w, yl x) + h(yl)- h(x)| > 0
xS(y) If6M(x) wT(y)

as X S(yl). This shows that Yl G for all Yl No, so that E is open
in X. This proves the theorem.



78 M.S.R. CHOWDHURY AND E. TARAFDAR

When M is h-quasi-semi-monotone instead of h-bi-quasi-semi-
monotone, the result follows immediately from Theorem 2.

Since a semi-monotone operator is also an h-quasi-semi-monotone
operator and an h-bi-quasi-semi-monotone operator, Theorems and 2
are extensions ofTheorems 4.4.6 and 4.4.7 respectively in [6]. The proof
ofTheorem here is obtained by modifying the proof ofTheorem 4.4.6
in [6]. Although M is h-quasi-semi-monotone or h-bi-quasi-semi-
monotone instead of semi-monotone, there is no difference between the
proof of Theorem 2 here and the proof of Theorem 4.4.7 in [6]. But for
completeness we have included the proof ofTheorem 2 here.

In Sections 3 and 4, we shall present out main non-compact con-
tribution of this paper.

3. NON-COMPACT GENERALIZED BI-QUASI-VARIATIONAL
INEQUALITIES FOR QUASI-SEMI-MONOTONE AND
BI-QUASI-SEMI-MONOTONE OPERATORS

Let X be a topological space such that X Une=l Cn where {Cn}n=l is
an increasing sequence of non-empty compact subsets of X. Then a
sequence {Xn}n=l in Xis said to be escaping from Xrelative to { Cn }n=l [3,
p. 34] if for each n E 1, there exists m E lt such that xk C for all
k>m.

In this section, we shall apply Theorem 2 together with the concept
of escaping sequences to obtain existence theorems on non-compact
generalized bi-quasi-variational inequalities for quasi-semi-monotone
and bi-quasi-semi-monotone operators.
We shall now establish the following result:

THEOREM 3 LetEbe a locally convex Hausdorfftopological vector space
over b, X be a non-empty (convex) subset ofE such that X ,= C,,
where {C}, is an increasing sequence of non-empty compact convex
subsets ofXandFbe a vector space over e;. Let (,) F x E---, b be a bilinear

functional such that (,) separates points in F andfor eachfE F, the map
x (f, x) is continuous on X. Equip F with the strong topology 5(F, E).
Suppose that

(1) S X 2x is a continuous map such that
(a) for each x X, S(x) is a closed convex subset ofXand
(b) for each n I1, S(x) c Cnfor all x Cn;
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(2) T:X 2F is upper semicontinuous such that each T(x) is 6<F,E)-
compact convex;

(3) h X-- IR is convex and continuous;
(4) M:X’---+ 2r is upper hemicontinuous along line segments in X and

h-bi-quasi-semi-monotone (with respect to (,)) such that each
M(x) is 6(F, E)-compact convex; also, for each y E { y X:
SUPxS(y)[inffM(x) infwr(y) Re(f w, y x) + h( y)-h(x)] >0},M
is upper semicontinuous at some point x in S( y) with

infft(x) infwr(y) Re(f w, y x) + h( y) h(x) > 0 and M is

upper semicontinuous on Cnfor each n N;
(5) for each sequence {Yn)nC=l in X, with Yn C. for each n N, which

is escaping from X relative to {C.)nl, either there exists noN
such that Yno - S(Yno) or there exist no N and Xno S(Yno) such that

minfM(y.o minwT(y.o Re(f- W, Yno Xno) + h(Yno) h(xno) > O.

Then there exists a point 29 Xsuch that

(i) S() and
(ii) there exist a point M() andapoint v T(p) with

Re(j- v,:- x) <_ h(x) h() for all x S().

Moreover, ifS(x) Xfor all x X, E is not required to be locally convex.

Proof Fix an arbitrary n N. Note that C, is a non-empty com-
pact convex subset of E. Define S,: Cn 2c", h,: Cn R and M,
T: Cn 2e by S(x)= S(x), hn(x) h(x), M(x) M(x) and T(x)
T(x) respectively for each x C; i.e., S Sic, hn hick,M MIc
and T, Tic respectively. By Theorem 2, there exists a point 3, Cn
such that

(i)’ fn S. (fn) and
(ii)’ there exists a poin@. M(33.) M.(fin) and a point 1n T(fin)

Tn(n) withRe(n n,.fn x) < h(x) h(n) forallx Sn(fn).

Note that { n}.=l is a sequence in X I..J.=l Cn with p. E C. for each
nEN.

Case 1 {Pn}nC=l is escaping from J/relative to
Then by hypothesis (5), there exists no EN such that 33n0

S(f.o) Sno (fno), which contradicts (i)’ or there exist no N and
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Xno S( )no) Sno ()no) such that

min min Re(f- w,). Xno) + h(Pno) h(xno) > O,
fEM()n wET()no)

which contradicts (ii)’.

Case 2 (f;n}n=l is not escaping from Xrelative to (Cn}n=l.
Then there exist nlEN and a subsequence {)3nj)= of (Yn)n=l

such that 33n E Cnl for allj l, 2,... Since Cnl is compact, there exist a
subnet {2,},r of {f;nj}j=l and 33 Cn C Xsuch that 2 33.
For each a F, let 2 33n., where n oc. Then according to our

choice ofJ3n. in Cn., we have

(i)" ,,, Sn.()n.) S(Pn.) and
(ii)" there exist a point Jn. M. (.f,e) M(fn.) and a point

v,, Tn.(Pno) T(/o) with Re(fn. -%,)no- x)+ h(Pn.)-
h(x) <_ 0 for all x Sno ()n.) S(.fno). Since n , there exists

a0 F such that n_> n for all a _> a0. Thus C c C., for all
a >_ a0. From (i)" above we have (33n., 33.) G(S) for all a F.
Since S is upper semicontinuous with closed values, G(S) is closed
in X x X; it follows that 93 S(93).

Moreover, since {9?,. }-_>-0 and {ffno }_>0 are nets in the compact sets

[.JxC. M(x) and [.Jxc., T(x) respectively, without loss of generality,
we may assume that the nets {f,.},r and {,.}Er converge to some

[..JxC. M(x) and some [.Jxc. T(x) respectively. Since M and T
have closed graphs on Cn, M(f:) and ff T(33).

Let x S(33) be arbitrarily fixed. Let na _> n be such that x
Since S is lower semicontinuous at 93, without loss of generality we may
assume that for each a F, there is an x,. S(93n.) such that Xn, x.
By (ii)" we have, Re(jo lfl;na,;na Xna AI- h(Pn. h(xno) < 0 for all
a F. Note that Jn. .. f- in 6(F, E) and {33,o x..}r is a
net in the compact (and hence bounded) set Cn: -I.Jyc.: S(y). Thus,
we have for each e > 0, there exists al > a0 such that [Re(o n.--
(-- l),n Xn.)[ < e/2 for all a > a. Since (j- #,33n
(j-#,p- x), there exists a > al such that [Re(?-V, Pno- Xn)-
Re(j- #, 33 x)l < e/2 for all a > az. Thus for a _>

IRe(L. %,;n Xn,) Re(j’- ,, 33 x)[

+ [Re(f fv,.fn. Xn. (- x))[
< e/2 + e/2 e.
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Thus

lim Re(L Vn,Pn Xn) Re(j- ,33- x).

By continuity of h, we have

Re(j- v,- x) + h() h(x)

lirn[Re(L na, na Xna) -}- h(na) h(xna)].
<0

COROLLARY Let (E, II’ll) be a reflexive Banach space, X be a non-

empty closed convex subset of E and F be a vector space over b. Let
(,) F x E d be a bilinearfunctional such that (,) separatespoints in F
andfor eachfE F, the map x f x) is continuous on X. Equip F with the
strong topology 6(F, E). Let S X-- 2x be weakly continuous such that
S(x) is closed convex for each x X, T: X 2F be weakly upper semi-
continuous such that each T(x) is 6(F, E)-compact convex, h X be
convex and (weakly) continuous and M:X 2F be (weakly) upper
hemicontinuous along line segments in X and h-bi-quasi-semi-monotone
(with respect to (,)) such that each M(x) is 6(F, E)-compact convex. Also,
for each y { y X: SUpxs(y)[inffM(x)infw-(y) Re(f- w, y x) +
h(y) h(x)] > 0), M is weakly upper semicontinuous at some point x in

S(y) with inffM(x)infwr(y)Re(f w, y-- x) + h(y) h(x) > 0 andM is

weakly upper semicontinuous on C,,for each n N. Suppose that

(1) there exists an increasing sequence {rn}nl ofpositive numbers with

r o such that S(x) c C, for each x C, and each n N where
c,,- {x e x: Ilxll _< rn};

(2) for each sequence { Y,},ZI in X, with Ily,,ll--, , either there exists

no N such that Yno q S( Yno) or there exist no N and Xno S( Yno)
such that

min min Re(f- w, Y,o Xno) -+- h(Yno) h(xno) > O.
feM(Yn weT(Y.o)

Then there exists Xsuch that

(al) 33 E S(33) and
(b,) there exist apointf M( p) and a point v e T( p) with

Re(- v,:9- x) < h(x) h(p) for all x e S().
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Proof Equip E with the weak topology. Then Cn is weakly compact
convex for each n E N such that X= UnC=l Cn. Now if {Yn)n=l is a
sequence in X, withyn E Cn for each n 1,2,..., which is escaping fromX
relative to {Cn)n=l, then Ily.ll c. By hypothesis (2), either there exists

no E 11 such that Yno - S(Yno) or there exist no E 11 and Xno S(Yno) such
that minfM(y,0 minw(y,0 Re(f- w, yno Xno) + h(Yno) h(xno) > O.
Thus all hypotheses of Theorem 3 are satisfied so that the conclusion
follows.

When M is h-quasi-semi-monotone instead of h-bi-quasi-semi-
monotone, the result follows immediately from Theorem 3.
By taking M 0 and replacing Tby T in Theorem 3, we obtain the

following result of Chowdhury and Tan in [8, Corollary 3]:

COROLLARY 2 Let E be a locally convex Hausdorff topological vector

space over , X be a non-empty (convex) subset of E such that
X= n=l Cn, where {Cn}n= is an increasing sequence of non-empty
compact convex subsets of X and F be a vector space over . Let
(,) F E be a bilinearfunctional such that (,) separatespoints in F
andfor each fF, the map xH(f,x) is continuous on X. Equip F with
the strong topology 6(F, E). Suppose that

(1) S: X---, 2x is a continuous map such that
(i)’ (b) for each x X, S(x) is a closed convex subset ofXand

(iii)’ (d) for each n II, S(x) c Cn for all x C;
(2) T: X---+ 2v is upper semicontinuous such that each T(x) is 6(F, E)-

compact convex;
(3) h X I is convex and continuous;
(4) for each sequence {Yn}n=l in X, with y C,,for each n E It, which is

escaping from X relative to {Cn}n=l, either there exists no II such
that Y,o-S(Yno) or there exist no ElI and Xno S(Yno) such that

minwr(y.o) Re(w,y,,o X,,o) + h(Yno) h(xno) > O. Thenthereexists
a point f Xsuch that
(i) 33 E S(93)and
(ii) there exists apoint v T() with Re(fv, f; x) < h(x) h( p)for

all x S( f;). Moreover, ifS(x) Xfor all x X, E is not required
to be locally convex.
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4. NON-COMPACT GENERALIZED BI-COMPLEMENTARIT
PROBLEMS FOR QUASI-SEMI-MONOTONE AND
BI-QUASI-SEMI-MONOTONE OPERATORS

In this section, we shall obtain existence theorems on non-compact
generalized bi-complementarity problems for quasi-semi-monotone
and bi-quasi-semi-monotone operators.
By modifying the proof of the result observed by S.C. Fang (e.g.

see [5, p. 213] and [10, p. 59]), the following result was obtained in

[6, Lemma 4.4.1 0]:

LEMMA 3 Let X be a cone in a topological vector space E over b andF
be a vector space over b. Let (,) F x E--. be a bilinearfunctional. Let
M, T X 2F be two maps. Then thefollowing are equivalent:

(a) There exist f; E X, M( f;) and fv T( f;) such that

Re- fv, f;- x) < 0 for all x 1,.

(b) There exist f; X, M( f;) and fv T(f;) such that

Re(?- , 33) 0 and jo_ fv .
Proof (a) =, (b):

If x=0 by (a) we have Re(- ff,33) < 0. Let x A.f, A > 1; then

A33 X. Substituting x A33 in (a) we get Re()- ,93 A33} < 0. Thus
Re(- ,(1 A)33) < 0. Hence (1 A)Re(j- ,33} < 0 so that
Re(- r?, 33) > 0. Hence Re(.- , 33) 0.
Now suppose that- . Then there exists x X such that

Re(j- b,33) < 0. But then Re(j- b,33- x) Re(j7- ,33)-
Re(j- #, x) 0 Re(j- , x) > 0, which contradicts (a). Therefore

(b) = (a):
We have Re(- ,33- x) Re(j- }},) Re(j- ,x) 0-

Re(j- ,x) < 0 for all x X.

When X is a cone in E, by applying Lemma 3 and Theorem 3 with
h--0 and S(x) I" for all x 1", we have immediately the following
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existence theorem of a non-compact generalized bi-complementarity
problem for bi-quasi-semi-monotone operator:

THEOREM 4 Let Ebe a Hausdorfftopological vector space over cb, Xbe a
cone in Esuch that X n=l Cn where (Cn )n=l is an increasing sequence

ofnon-empty compact convex subsets ofXandFbe a vector space over
Let (,) F x E b be a bilinearfunctional such that (,) separatespoints
in Fandfor eachfE F the map xH f x) is continuous on X. Equip Fwith
the strong topology 6(F, E). Suppose that

(1) T: X 2F is upper semicontinuous such that each T(x) is 6(F, E)-
compact convex;

(2) M:X--2F is upper hemicontinuous along line segments in X
and bi-quasi-semi-monotone (with respect to (,)) such that each
M(x) is 6(F, E)-compact convex; also, for each y { y X:
SUpxs(y)[infft(x) infwr(y) Re(f- w,y- x)] > 0}, M is upper semi-

continuous at some point x in S(y) with infft(xinfwr(y) Re(f w,
y x) > 0 andM is upper semicontinuous on C,,for each n 1;

(3) for each sequence { Yn}nl in X, with y,, C for each n 1I, which
is escapingfrom X relative to {Cn}n=l, there exist no 1I and Xno X
such that

min min Re f w, Yno Xno > O.
fEM(yn wET(yn

Then there exist a point f X, a point M(f;) and a point
such that Re(j- ,, 33) 0 andS- v .
COROLLARY 3 Let (E, IIll) be a reflexive Banach space, X be a closed
cone in E andFbe a vector space over g;. Let (,) F x E b be a bilinear

functional such that (,) separates points in F andfor eachfE F, the map
xH f, x) is continuous on X. Equip Fwith the strong topology 6(F, E). Let
T: X---. 2Fbe weakly upper semicontinuous such that each T(x) is 6(F, E)-
compact convex and M X-- 2F be weakly upper hemicontinuous along
line segments in X and bi-quasi-semi-monotone (with respect to (,)) such
that each M(x) is 6(F, E)-compact convex. Also,for each y { y X:
SUpxes(y)[inffeM(x) infweT(y) Re(f- w, y x)] > 0}, M is weakly upper
semicontinuous at some point x in S(y) with inffM(x)infwr(y)
Re(f-w,y- x) > 0 and M is weakly upper semicontinuous on Cn for
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each n E N. Let {rn}nC=l be an increasing sequence ofpositive numbers
with rn -’ c and Cn {x E X: IIxll <_ r,,} for each n 1%I. Suppose that

for each sequence { Yn}n=l in X, with Ily ll o, there exist no N and

Xno Xsuch thatminfM(y.o minwr(y,o Re(f- W, Yno -Xno) > O. Then
there exist X,f E M( f;) and fv T() such that

Re(j- fv, f;) 0 and j- .
Proof Equip E with the weak topology. Then Cn is weakly compact
convex for each n N such that X [.Jn=l Cn Now if {Yn}n=l is a
sequence in X, with Yn Cn for each n 1,2,..., which is escaping from
X relative to {C}n%l, then Ilyll. Hence by hypothesis, there
exist no E N and x Xsuch that

min min Re(f- w, Yno Xno) > O.
fM(yn wT(Yn

Thus all hypotheses of Theorem 4 are satisfied so that the conclusion
follows.

When M is a quasi-semi-monotone instead of bi-quasi-semi-mono-
tone, the result follows immediately from Theorem 4.

5. APPLICATIONS TO MINIMIZATION PROBLEMS

In this section, as application of Theorem 2 on generalized bi-quasi-
variational inequalities established in Section 2, we shall consider the
existence of solutions for the following minimization problem:

infF(x) (5.1)
xE

where F is the sum of two extended real-valued functions
g, h E (-, +cx] and E is a topological vector space. We shall prove
an existence theorem of solutions for (5.1). To this end we shall now
introduce the following definition on subdifferential which is obtained
by modifying the usual definition of subdifferential.

DEFINITION 4 Let E be a topological vector space over , X be a

non-empty convex subset of E and F be a vector space over dg.
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Let (,) F x E 69 be a bilinear functional. Suppose that I" X
(-c, +o] is a function with non-empty domain. Suppose E Dr, the
domain ofF. Then we define the ’F-subdifferential F-OF(p) off at p’ as
the subset ofF defined by

F-OI(:9) {p E F: l(fi) I(x) _< Re(p,)3 x) for all x X}.
(5.2)

The mapping F-O Dr F is said to be the F-subdifferential map. is
said to be F-subdifferentiable on X ifF-Oil(x) 0 for all x X. The ele-
mentsp F-OI’() are said to be F-subgradients.

PROPOSITION 2 Let E be a topological vector space over 69, X be a

non-empty convex subset ofEandFbe a vector space over 69. Let (,) F
E 69 be a bilinear functional. Suppose that I: X--+ (-oo, +oo] is F-
subdifferentiable. Let M:X2rbe defined by M(x) F-Of’(x). Then M
is F-monotone, i.e., monotone with respect to the bilinearfunctional (,).

Proof Suppose x, y X, p M(x) and q E M(y). Then we have

(p, x y) _> I(x) f’(y)

and

(q, y x) _> r(y) F(x).

Thus (p,x-y)-(q,x-y)=(p,x-y)+(q,y-x)>_O. Hence M is
F-monotone, i.e., monotone with respect to the bilinear functional (,).
We shall now give the following proposition which will show that the

existence of solutions of generalized bi-quasi-variational inequalities
guarantee the existence of the minimizers for the minimization problem
(5.1).

PROPOSITION 3 Let E be a Hausdorfftopological vector space over 69, X
be a non-empty convex subset ofE and F be a vector space over 69. Let
(,) F x E 69 be a bilinear functional. Suppose that F g + h where
g,h X-. (-cx, +cx], g is an F-subdifferential map and h is a convex

function. Then apoint f; Xminimizes F ifthere existsp F-Og( f;) such
that

sup[Re p, )3 x) + h(33) h(x)] < 0. (5.3)
xEX
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Proof Suppose there exists a point p E F-Og(.f)
Re(p, f; x) + h( p) h(x) < 0 for all x E X. Then we have

such

r(.) F(x) (g + h)( f;) (g + h)(x)
g(f;) g(x) + h(.f) h(x)

_< Re(p, :9 xl + h() h(x)
<0 for all x X.

for all x X

that

Thus F(33) _< F(x) for all x X. Hence F()3)= infexr(x). Therefore
33 minimizes F.

THEOREM 5 Let Ebe a Hausdorfftopological vector space over d2 andF
be a vector space over d. Let (,) F x E-. d9 be a bilinearfunctional such
that (,) separates points in F andfor each uEF, the map x-.(u,x) is
continuous on E. Equip F with the strong topology 6(F, E). Let F E-- 1
be afunction. Suppose that

(a) h E N is convex and continuous;
(b) M" E--- 2F, defined by M(x)= F-OF(x)for each x E is, upper

hemicontinuous along line segments in E such that each M(x)
is 6(F,E)-compact convex; also, for each yE={yE:
sup)ceE[inffeM(x) Re(f, y x) + h(y) h(x)] > 0}, M is upper semi-
continuous at some point x in E with inffeM(x)Re(f,y--x)+
h(y) h(x) > O.

Then there exist a point f; E and a point p M(f;) F-OF()3)
such that

sup[Re(p,)3- x) + h(33) h(x)] _< O,
xeE

i.e., minimizes F on E.

Proof Let S:E--. 2E be defined by S(x)= E for all x E E and T= 0
in Theorem 2. Since M is F-subdifferentiable, by Proposition 2, M is
F-monotone, i.e., monotone with respect to the bilinear functional (,).
Thus Mis h-bi-quasi-semi-monotone (respectively, h-quasi-semi-mono-
tone) with respect to (,). Then from Theorem 2 with i" E and T-- 0,



88 M.S.R. CHOWDHURY AND E. TARAFDAR

it follows that there exist a point 33 E Eand a pointp E M(33) F-Or(
such that

Re(p, x) + h( )) h(x) < 0

for all x X. Thus by Proposition 3 it follows that 33 minimizes P on E.
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