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1 INTRODUCTION

In 1960 Z. Opial [12] proved a slightly less general formt ofthe following
inequality.

* Corresponding author. E-mail: dicbrown@bama.ua.edu.
Opial required that y’ be continuous and y > 0. Also he did not characterize the

extremals. The version we give is due to C. Olech [10].
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THEOREM A Ify is absolutely continuous on the interval [a, b], -o <
a < b < , andy(a)= y(b)--0 then

b

’l
b aj(ab )2lYY dx <_ (y’ dx. (1.1)

Equality holds in (1.1) ifand only if

c(x a),
Y c(b- x),

if a < x <_ (a / b)/2,
if (a + b)/2 <_ x <_ b.

Since 1960 there have been numerous generalizations of Opial’s
inequality. Many of these extensions contain weights on one or both
sides of (1.1), various Lebesgue norms on y or on either or both of the
two y’ terms, alternative boundary conditions on y, etc. See for example
the books of Agarwal and Pang [1] or Mitrinovi6 et al. [9, Chapter III].
Both sources contain modern proofs of the inequality and Opial’s
original proof may also be found in [1]. There have also been recent
attempts (see e.g. [5,7]) to prove the inequality and find its best constant
when fblY’12dx is replaced by fbalY(")12dx under the boundary
conditions

y(a) y’(a) y(n-1)(a) O,

y(b) y’(b) y(n-1)(b) 0

forn> 1.
Opial-type inequalities have many applications. These include the

establishment of sufficient conditions for disfocality and disconjugacy,
the determination of good lower bounds for the spacing of zeros of
solutions of a second order linear differential equation, and proofs of
Lyapunov-type or De la Vallre Poussin inequalities.

In this paper we consider a "nonhomogeneous" version of Opial’s
inequality. Specifically, we ask what can be said about the existence,
best constant C(ya, Yb), and extremals of the inequality

fab fab t)2lYY’I dx <_ C(ya,Yb) (y dx (1.2)
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under the boundary conditions

y(a) Ya, y(b) Yb (1.3)

where Ya, Yb are viewed as fixed numbers and at least one of them is
nonzero. This setting brings surprising complications and results. Our
analysis of it is summarized in Theorem of Section 2. Here we are able
to determine the constants C(ya, Yb) and to characterize extremals for
all choices of Ya, Yb. One of our results is unexpected. In the case that

Ya Yb < 0 the extremal is not the line segment joining (a, Ya) and (b, Yb)
but rather a spline with a true interior knot. In Section 3 by using a tech-
nique due to Beesack we derive a new Opial-type inequality with non-
homogeneous boundary conditions. This inequality in turn yields an
alternative proof of (1.2)-(1.3) when Ya "Yb >_ O. Sections 4 and 5 con-
tain applications: we use the nonhomogeneous Opial inequalities of
Theorem to derive some general extensions of the classical Lyapunov
and De la Vall6e Poussin inequalities. These results may be viewed as
giving necessary conditions for interpolation of data by solutions of
second order linear differential equations.

Before proceeding further we fix notation: AC[a, b], E[a, b], E2[a, b]
or [a, b] stand respectively for the classes of absolutely continuous,
Lebesgue integrable, Lebesgue square integrable, or essentially bounded
real functions on the finite interval [a, b]. We denote the corresponding
norm of a function y (or strictly speaking the equivalence class of func-
tions a.e. equal to y) in these Lebesgue spaces by []Y[]l,[a,b], [[Y[12,[a,b], or
IlYll,ta,b. Lastly, in the two point case our generalized Opial inequal-
ities will be defined on the domain 79(y,, Yb) where

79(Ya, Yb) {Y AC[a,b]: y’ L2[a,b]; y(a) Ya and y(b) Yb).

2 EXISTENCE AND PROPERTIES OF EXTREMALS

It will be convenient to reduce the Opial inequality (1.2)-(1.3) to the
solution of a certain minimization problem since the best constant
C(ya, Yb) of (1.2) is just g(ya, yb)-1 where

K( Ya, Yb) := inf{J( y): y 79( Ya, Yb) ) (2.1)
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and

b 2L(y dx
J( y) - .--.;-fa YY dx

Moreover, y E 7)(Ya, Yb) clearly gives equality in (1.2) if and only if it is
an extremal of (2.1).

DEFINITION Given an arbitrary e > 0, we call afunction s 7)( ya, Yb)
an e-approximate extremal if

K( Ya, Yb <-- J(s) <_ K( Ya, Yb -+- e.

It is obvious from the definition of K(ya, Yb) that e-approximate
extremals exist for every e > 0.

DEFINITION 2 Supposey 7)( ya, Yb & such that there exists apartition
: a Xo < X <... < Xn b so that y is monotone on each subinterval
[xi-l,xi]. Let [[ be the number ofsubintervals of I and C(y) denote the
set ofall such partitions. Finally, we define

[C(y) :-- min I]?[ 1.
C(y)

Note that [C(y) 0 if and only ify is monotone on [a, b]. In general
there may be more than one partition in tT(y) which yields ItT(y)l. For
piecewise strictly monotone functions [C(y)l may be identified with the
number of local maxima or minima ofy in (a, b).
We now prove:

LEMMA For any e > 0 there exists an e-approximate extrema1:9 such
that IC( f;) is either zero or one.

Proof Let y be an e-approximate extremal.
Case (i) Suppose 0 _<y _< y. Sincey Ya <_ Jba y’l dx, there exists

c (a, b] such that

fc fcYa + lY’I dx Yb q- lY’l dx.
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Define 33 on [a, b] by

f(x) { Ya + ff Y’l dt,

Yb + fb lY’l dt,

ifa<_x<_c,

ifc<x<b.

Now

Y’(x) ly’(x)l,

.’(x) -I y’(x)l,

a<_x<c,

c<x<_b,

so that 133’(x)[ [y’(x) a.e. Furthermore,

y(x)l

y(x)[

x

Ya + y dt
x

<_ Ya + y dt f(x), a<_x<_c,

Yb-- y’dt < yb + Y’ldt=f;(x), c < x < b.

Hence,

fab(’)2 dx ,fab(y’)2 dx
J()

fab I’ldx Jba yy’l dx
J(y).

Thus 33 must be an e-approximate extremal and [C(p)[ < 1.
Case (ii) Suppose Ya < 0 < Yb and lye[ -< Yb. By the intermediate

value theorem there is at least one zero ofy which we call zl to the right
of a. We first apply the construction of Case (i) to y on [a, zl] and [z, b],
i.e., define p by

y ff y’l dt, a

_
X

__
Cl,

f’ JlY’l dt, Cl x z1,
33, (x)= f [y dt, Zl _< x _< c2,

Yb--fbx ]Y’[dt, c2 <x_<b,
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where cl E [a, Z1) and t72 E (21, b] are determined by

cl fCYa ly’l dx ly’l dx,

Yb + ly’ldx- y’l ax.

Then as in Case (i), I:(x)l ly(x)l, I:(x)l- ly’(x)[, a.e. so that
J(fl) < J(Y). Note also that Ic()l _< 2.
Now define 332 by

f J31 (a) + 331 (c2) J31 (-x q-- a + c2), a<_x<_c2,
c<x<_b.

^’ (-x + a + C2) on a < x < C2 SO thatThen 33(x) Yl

^!(33; dt (Yl dt

(as a consequence of the transformation u -x + a + c2). Furthermore

^!yg^’ (a+) 33 (c-) > 0, )3(c-) Yl (a+) < 0,

so that 16(332)1 < 1. Let Ya fq(a), Yc, J31 (Cl), Yc2 )31 (c2)-Note that
the maximum of332 occurs where

--x + a + c2 cl : x a + c2 Cl,

and the maximum value

932,max )31 (a) + 332(c2) 331 (171) Ya -]- Yc2 Yc,.

Then

c=

I1 at (y2 y2)/2 + f2a 2,max

(1/2){y2a -+- 2[ya -+- Yc Ycl]2 yc22 },
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and

It follows that

c2
2 2PY [dt (Yc2 y2a)/2 + Yc,"

c2

fa c2

IP2;3ldt-

]2 2 2 2 2(1/2)(y2a + 2[ya --Yc2 -Ycl --Yc2 -+-Ya 2Ycl --Yc2}
2y2a -q- 2yaYc2 2yaYc, 2yc2Ycl

2(ya + Yc2)(Ya Yc,) >_ O,

since Ya + Yc2 > Ya + Yb > 0 and y(cl)< y(a)= Ya. We conclude that
J(P ) _<
To complete the proof of the lemma we reduce every other case to

either Case (i) or Case (ii) by transformations. In particular we can
always assume Yb > 0 and Ya <_ Yb. For if Yb is negative we consider the

function331 -33. Then331 is an e-approximate extremal such that IC(Pl)I
is minimal for the minimization problem (2.1) on D(-ya, --Yb). And if

Ya > Yb we set 332 (x) p(b + a x). This function is an e-approximate
extremal such that IC(P2)I is minimal for the minimization problem on

79(Yb, Ya). In other words we can find e-approximate extremals for a
transformed problem in Case (i) or (ii) and then transform back to the
original problem.

We interpose the following lemma which will be required when we

prove the uniqueness of extremals to (1.2)-(1.3).

LEMMA 2 lfy is an extremal of(2.1) then IC(y)[ < 1.

Proof Lety E D( Ya, Yb) be an extremal of(2.1) andp be constructed as
in Lemma 1. Then we must have that J(33) J(y). Then lab 3333’1 dx
fba YY’I dx since lab (33’) 2 dx fab(y’)2 dx.
Suppose Case (i) applies and let c be defined as in this case. Then

since the definition of 3 implies that I.f’l y’l and 1331 _> yl a.e. so
that with fab 33’1 dx fbalyy’ dx we conclude that

fa fa
c

’1 dx YY’I dx, ’1 dx YY’I dx.
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From the first of these equalities and 133’1 [y’[, we have

0- [IPl- lYl]I3’I dx = [1331- lYl]IP’I 0, a.e. (2.2)

Suppose ])3(x0)] > ly(x0)l. Then because of the continuity of 1331 there
is a left neighbourhood A (xl, x0) such that I)l > yl on A andy(Xl)
))(x). Therefore from (2.2) I’1 0 ly’l 0 a.e. on A. This means
that f and y are constant on A so that I)3(x0)l ly(xo)l contrary to

assumption. Hence 1331 yl on [a, c] and similarly on [c, hi. Hence 33 y
on [a, b] as both are nonnegative. This shows that J(,f) J(y) = 3 y.

In Case (ii) if y is an extremal J(fl)= J(Y) the above argument
shows that 331 y on [a, b]. Suppose now J(2) J(Y). Then J(332)
J()31) as J()32) _< J()31) _< J(y). Returning to the proofin Lemma that

J(]32) J( )31 ), We see that either Ya +Y 0 or Ya Y, 0. However
if)3(Cl) < Ya then Yc2 > Y6 >_ -Ya, so that )3(cl) Ya. This means how-
ever that Ic(=)l Ic(a)l _< 1, (Note that the possibility that y is a line

segment (= y f ,f) has not been ruled out.)
Thus for both Cases (i) and (ii) of Lemma 1, if y is an extremal then

IC(y)[ < 1.

LEMMA 3 For any e > 0 there exists an e-approximate extremal s, which
is a linear spline with at most one knot.

Proof By Lemma there is an e-approximate extremal y, such that
IC(y)[is either zero or one in which case y, is monotone on the intervals

[a, c,], [c,, b] for some c,, a < c, < b. If It(y)[ is zero let s, be the straight
line joining (a, ya) and (b, yb). Otherwise let s, be the linear spline
interpolating y at a, b and c,. Then s, and y, are both monotone on the
intervals [a,c,] and [c,,b]. This means that both fa IscsP,] dx and

fa lY,Y[ dx depend on the values ofso and y, at a, b and c,. For example,

b I y(c)2 (y2a + y)/2, if 0 < Ya <_ Yb <_ y(c),

fa ly,y[ dx (y2a + y)/2 y(c):, if 0 < y(c) < Ya <_ Yb,

(Ya + y)/2 + y(c)2, if y(c) < 0 < Ya <_ Yb.

Similar formulas are satisfied if Ya > Yb >_ 0 or Ya "Yb < O, etc. Since y,
and s, agree at a, b and c,, we conclude that for all configurations of
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Y, Yb and y(c) s(c)

b b

Is s’ dx Y,y’,I dx.

But from the well known fact that s, is the unique minimizer of the L2

norm of z over all interpolants z in 79(ya, Yb) which agree with s at a, b
or at a, b,

fa fab(s)2 dx _< (y,)2,, dx.

These two facts imply that J(s,) < J(y,).

Since fba Iss’l dx- a y,y’ldx and s, is the unique minimizer of
fbalyl2dx over y EDiya, Yb such that y(c,)=y,(c,), J(s,)<J(y,) if
s, # y,. Thus it is sufficient to consider only linear splines with at most
one knot to compute K(y,, Yb). Moreover, if s is an extremal of (2.1),
then by Lemma 2 IC(s)l _< 1. Therefore, repeating the argument of
Lemma 3 with s playing the role ofy, and the above remarks will show an
extremal ifit exists must be a linear spline. We will use these observations
in Theorem below to establish the existence, structure, and uniqueness
of extremals. First however, we require a simplifying lemma.

LEMMA 4 If S, is a linear spline e-approximate extremal with knot
a < c < b there is a linear spline e-approximate extremal g with J() <_
J(s,) and with knot c* c*(s,(c,)) given by

bAa + aAb (2.3)c
Aa+Ab

where ma :-’-lYa s,(c,)[ and mb "-lYb s,(c,)l. Also

J(e)- (b--l a)((/a "+ A’b)2’,- -=-_?,--,f’alS,s, ldx] (2.4)

Proof Let s, be a linear spline e-approximate extremal with knot
a < c--c, < b. Set h,=s,(c,). We regard h, as fixed and consider the



20 R.C. BROWN et al.

family " of all linear splines Sc,, E "D(ya,Yb) with unique knot c some-
where in [a, b] such that Sc,,(c) h,. Then a direct calculation shows

J(sc,e) ((Ya he)/(c- a))2(c- a) + ((Yb h,)/(b- c))2(b- c)

fba ISc,S’c,l dx
(2.5)

As we have seen in the proof of Lemma 3 because of the monotonicity
of the so,, on the intervals (a, c) and (c, b) the integral fba Isc, S’ , l dx will
depend only on Ya, Yb, and h,. Different configurations of y,, Yb and h,
give different values for the integral, but in all cases they are independent
of the location of the knot c.

Since s, E " it follows that

K(ya, yb) <_ min J(sc,,) < J(s,) < K(ya,yb)-+-e;
a<c<b

also because the denominator of (2.5) is independent of c, the minimum
is attained at that c*(h,) which is the solution of

min [ (ya
2

if’) (b-c))a<c<bl c-- 19--

The standard calculus argument shows that c*(h,) is given by (2.3)
and it is immediate that g, is an e-approximate extremal. Equation (2.4)
follows by substituting c* into (2.5).

THEOREM Set M max{ya, Yb} and rn min{ya, Yb}. The values of
K(ya, Yb) together with corresponding extremals are given by thefollowing
possibilities

(i) Ifya, Yb are not both zero andYa Yb >-- O, then the line segment Lab
joining (a, Ya) and (b, Yb) is the unique extremal and

2a [M m[
K(ya, Yb)= b +

In the case Ya Yb there is no extremal and K( y,,, Yb) O.
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(ii) Ifya Yb---- O, K(O, O) --4/(b- a), andy is an extremal ifand only if
y is a multiple of

(x a),
yo(x) / (b-x),

if a <_ x <_ (a + b)/2,
if (a + b)/2 <_ x <_ b.

(iii) Ifya Yb < O, andYa "k- Yb > O, then

K( ya’Yb) (b 2a)(M+3
The corresponding extremal y which & unique is the linear spline
having a unique knot at (c*, h*) where

b(M + 21m[) + aim[C*
M + 31m[ (2.6)

h* M + [m[.

(iv) Ifya Yb < O, andYa + Yb < O, then

( 2 )(3M+[mlK ya Yb b a \- [- J
The corresponding extremal y which & unique is the linear spline
having a unique knot at (c*, h*) where

bM + a(2M + Iml)C*
3M / Iml (2.7)

h*=m-M.

(V) If Ya + Yb "--0 then y is an extremal if and only if it is one of the
linear splines in 73(ya, Yb) with a unique interior knot c*(h), for
h E I\[m, M] or the line segment Lab. Here

4
(2.8)K( Ya, Yb b a

Proof First we observe that J(-y)= J(y)--J(j3) where 33(x)=
y(a + b- x). Although these transformations do not leave the class
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7)( Ya, Yb) invariant, they do allow us when computing K(ya, Yb), to con-
sider fewer cases. Thus for Case (i) it is sufficient to consider only
0 <_ Ya < Yb and for Case (iii) it is sufficient to consider only ya < 0 < Yb.
(See also Lemma 1.)

In all cases we will begin with the e-approximate extremal with knot
e*(h) given by Lemma 4. Let T be the family of all linear splines sh in
7)( Ya, Yb) having at most one knot at c*(h) where h . We think ofh as
a parameter and write

J(sh) (b 2 a) Q(h)

where (cf. (2.4))

Q(h) (I Ya hi +lYe, hi)
2 fba Ishsh’ldx

(2.9)

Clearly since g, 7-,

K(ya,Yb) <_ minheR (b -2 a)Q(h) =_ sheT-min J(s h) _< J(g) _< K(ya,Yb)+ e.

In particular ifh* minimizes Q(h) and s* is the corresponding spline then

K( Ya, Y) < J(s*) < J(g,) < K( Ya, Yb) + ,
so that s* is also an e-approximate extremal.

Case (i) As we have pointed out it suffices to suppose that
0 <_ Ya < Yb. If h > 0, then a calculation shows

IShSh’ dx 1/2 {[h Yal + h YI); (2.10)

while if h < O, we obtain

b

[shsh’[ dx 1/2 {2h2 + ya2 + y}. (2.11)
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Substituting (2.10) and (2.11) into (2.9) we find that Q(h) is given by

Q(h)

(2h Ya Yb)2

2h2 y2a y
Yb Ya
Ya -k- Yb
(Ya + Yb 2h)2

y2a + yb
2 2h2

(Ya + Yb 2h)2

Ya + Y 2h2

h>_yb,

Ya < h < Yb,

O<_h<_ya,

h<0.

To compute g(ya, Yb) we need to minimize the function Q(h). Note
that Q(h) is continuous. Examination of this function yields that

(a) Q’(h) > 0 for h > Yb,

(b) Q’(h) 0 for Ya < h < Yb,

(c) Q’(h) < 0 for -[(y2a + Y)/(Ya -+ Yb)] < h < Yo,
(d) Q’(h) > 0 for h < -[(y2a + y)/(Ya + Yb)],
(e) limh_+ Q(h)= 2.

These facts show that the minimum value of Q(h) is (Yb- Ya)/(Ya-k-Yb)
giving a value

K( ya, Yb b a Yb q- Ya b a M + m

Furthermore, the h* producing the minimum is any element of [Ya, Yb].
This seems to correspond to infinitely many e-approximate extremals
whichwe can take for s*, consisting ofthe linear splines in 73( Ya, Yb) with
an interior knot

c* (h) b(h Ya) + a( Yb h)
Yb Ya

where h E [Ya, Yb]. But this is an illusion since (c*(h),h) can be easily
shown to lie on the line Lab. It follows that s* Lab and since this func-
tion is independent of e it is an extremal.
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In case ya Yb > 0 we have always that c*(h)= (a + b)/2 and for all
h>ya

Consequently we can let h Ya, obtaining that g(ya, Yb) 0. Therefore
ify is an extremal fab(y) dx 0 so that y must be L,,b. But then J(s*) is
undefined so there is no extremal.

Case (ii) By Lemmas 3 and 4 there is an e-approximate linear
spline extremal g, with a knot at

bh, + ah, a + b

2h 2

where h,=s(c,). By (2.4) and the fact that formulas (2.10) and (2.11)
may be used to evaluate fb dx

J(g)=(bla)((2h)2) 4

h b-a

Again since J(g,) is independent of e or multiplication of g, by a
nonzero constant this function or any nontrivial constant multiple
of it is an extremal.

Case (iii) As noted above it is enough to take the case Ya < 0 < Yb.
Again let sh be the e-approximate spline extremal with knot (c*(h), h).
If h > 0 we find that

b

Ishsh’l dx 1/2 (h2 + Ya + h Y,I),

while if h < 0

a
Ishsh’l dx 1/2 (Ih9 Yal + hg + Y)"
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Again J(sh) has the form (2.9) but now Q(h) is given by

Q(h)

(2h- ya yb)2

2h2 + Ya Y
(Yb --Ya)2

Y + Ya
Ya + Yb 2h)2

2h /Y Ya

h<_yb,

Ya < h < Yb, (2.12)

h<_ya.

Set hi Yb Y,, and suppose that Ya +Yb > O. We find that

(a) Q’(h) > 0 if h > hi,
(b) Q’(h) < 0 ifyb < h < h,
(c) Q’(h) 0 ifYa , h < Yb,

(d) a’(h) > 0 if h < h < Ya,
(e) Q’(h) < 0 if h < -h,
(f) limh_ +o Q(h) 2.

It follows that Q(h) has a unique minimum at h* hi and

Q(h*) Yb- 3ya M- 3m

Yb Ya M- m

so that

2) M+3lmK( ya, Yb) b a M 4- Iml

Using (2.3) the interior knot (c*, h*) is given by (2.6).
Case (iv) Again we take Ya < 0 < Yb and assume that Ya 4- Yb < O.

Q(h) is given by (2.12) but the signs ofQ’(h) in (a)-(e) above are reversed.
Consequently Q has a unique minimum at h* -hi m M,

Q(h*)
3yb Ya 3M + [m[
Yb Ya M + [m

(2) 3M+ [m[K( ya, Yb)
b a M 4- [ml

and the interior knot (c*, h*) satisfies (2.7). Note that in both this case
and Case (iii) that the knot no longer lies on L,b since h* > Yb.
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Case (v) By examining Q(h) given in Cases (iii) or (iv) with ya +
Yb =0 we see that Q(h)= 2 for all h. Consequently J(sh) =4/(b-a)
for all splines in 7". Any of these splines will be an e-appproximate
extremal for all e > 0 and consequently an extremal. However, in the case
rn < h < M (c*(h), h) lies on Lab.
We now prove uniqueness of the given extremals or classes of

extremals in Cases (i)-(v). Suppose s is any extremal. By the remarks
following Lemma 3 s must be a linear spline with at most one knot c’ E
[a, b]. Turning to Lemma 4, we think ofs as a member of the family " of
linear splines sc with unique knot c E [a, b] such that sc h :- s(c’). Since
the functional J(s) given by (2.5) is seen to have a unique minimum at
c- c*, we conclude that c’ -c*. Finally, the analysis in the first part of
the proof of the present Theorem and the fact that the functional Q(h)
has a unique minimum in Cases (i), (iii), and (iv) (and is independent of
h in Cases (ii) and (v)) shows that s must be of the form stated in Cases
(i)-(v).

We remark that Case (ii) amounts to a new proofofTheorem A.* Also
as special case of (i) by assuming that Ya-- 0 we have a well known "half
interval" form of Opial’s inequality.

COROLLARY
then

Ify is realandabsolutely continuous on [a, b] andy(a) 0

b

t[
b a fa

b

y,)2yy dx <_
2

dx.

The extremals are given by y(x) k(x a) where k is any constant.

We illustrate Case (iii) of Theorem with a simple example. Let
Ya -1, Yb-- 2, and [a, b] [0, ]. Then M 2, rn -1, and K(ya, Yb)--
10/3. The linear spline extremal has a knot at (c*, h*) (4/5, 3). Byway of
comparison, the line segment Za,b yields J(Lab) 3.6.

3 A SECOND NONHOMOGIENEOUS OPIAL-TYPE INEQUALITY

By modifing a technique due to Beesack (see [1, p. 7]) when yo’yl >_ 0 it
is possible to derive another nonhomogeneous Opial-type inequality

At least six are known. See [1, Chapter 1].
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which is apparently new and may be of some independent interest.
This inequality may be viewed as a "precursor" to (1.2)-(1.3) since it
leads to a different proof of the "nonhomogeneous part" of Case (i) of
Theorem 1, i.e., the inequality

fab (b-a) [M+m[j/a
"b

,)2YY dx N
2 M- m

y dx (3.1)

when Ya "Yb > 0 together with the uniquenes of the extremal Lab.
TrF,OR 2 Let 29I := max{lya I, lYbl} and r := min{[yal, lYI}. If
y E D(ya, Yb), Ya 7 Yb, andYa" Y6 > 0 then the inequality

yy’l dx <_
2 + 2 (2f/I r)

(y dx (3.2)

holds and has a unique extremal Lab.

Proof We assume first that Ya, Yb > 0 and Ya < Yb (SO that A] Yb and
fit Ya). Set L(x) := ((yb ya)/(b a))(x a) + Ya > 0 and consider the
inequality

b(ly’[- _> 0 (3.3)(Z’/Z) ly[)2 dx

which is an equality if and only ify(x) L(x). Equivalently,

2 lyy’l(L’/L) dx <_ (y,)2 dx + yE(L’/L)2 dx. (3.4)

However, integration by parts and the identity

give

b

2 lyy’l(t’/Z) dx

/a
x )(2L’/yb) lYY dx + lYY’I dt (L’/L) dx. (3.5)
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(Note that the integrals exist for all y E D(ya,yb) in (3.3)-(3.5)
since L(x) 0 on [a, b].) Substituting this into (3.4) followed by rear-
rangement gives

b

(2L’/yb) YY dx

x )<_ (y dx / y(x)2 2 lYY dt (L’/L)2 dx.

Since

(3.6)

X

y(x)2 < 2 ]YY’I dt + y2a

with equality if and only ify is monotone, (3.6) becomes

( Ja" yt)2 Ya fab2 ...Yb
b

]YY’I dx < dx + (L’/L)2 dx

fa ( --ya)(a 1)dx +Ya

(3.7)

which is equivalent to (3.2). That Lab is an extremal is obvious. Ifthere is

equality in (3.7), then (3.6) must hold with the inequality "_<" reversed
and the same is true for (3.4) and (3.3). However, in the case of(3.3) this is
impossible unless there is equality, i.e., y- L(x).

Suppose 0 < Yb < Ya or Ya, Yb < O. Then as in the proof of Lemma 1
or Theorem we use the transformations 33 y(a + b x) or 33 -y
to transform the problem to the previous case. Thus (3.1) is true for

7)(yb,Ya)Orfi 7)([Ya[, [Ybl)ifandonlyifitistruefory 7)(ya,Yb).

COgOLLARY 2 Ify 7)(ya, Yb), Ya Yb, andYa" Yb > 0 then (3.1) holds
and Lab is the unique extremal.

Proof Since Lab is known to be the unique minimizer of []yt[[2,[a,b
subject to the interpolation conditions y(a)= Ya, y(b)--Yb, we have the
inequality

b

)2 (3.8)(Y’ >
b-a
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Hence

When this is substituted into (3.2) we obtain

fab (b-a) ffIq-fftfabyy’l dx <_
2 )9I - yt)2 dx

which is equivalent to (3.1) since Ya, Yb have the same sign. Since Lab
gives equality in (3.8) and (3.2) which shows that Lab is an extremal for
(3.1). Further if there is equality in (3.1) then either (3.8) or (3.2) must
hold as reversed inequalities if they are not equal which is impossible.
But equality in either (3.8) or (3.2) is attained only by Lab.

4 APPLICATIONS TO LYAPUNOV-TYPE INEQUALITIES

Consider the differential equation

y" + q(x)y O, a < x < b, (4.1)

where q is real and q E (a, b). The following well known inequality is
commonly attributed to Lyapunov [8].

THEOREM B
y(b) O. Then

Suppose y is a nontrivial solution of(4.1) such that y(a)=

4
< [q[ dx. (4.2)

b-a

The inequality is sharp in the sense that 4 cannot be replaced by a larger
number.

In [8] Lyapunov, however, used the reverse of (4.2) to prove a stablity result for (4.1)
with q > 0 and periodic. The first statement and proofof"Lyapunov’s inequality" in more
or less its present setting seem due to Borg [2]. Borg attributes the equivalent inequality
,[baly"y-lldx > 4/(b-a) to Beurling but gives no reference. For the history of this
inequality and its relation to [8] see Cheng [6].



30 R.C. BROWN et al.

Many extensions and variants of this inequality are known (see e.g.
[9,13]). For example it is shown in [4] that under the same hypotheses of
Theorem B (4.2) can be replaced by the assertion that there exist points
t, t2 [a, b] such that

b_a
< qdx (4.3)

In this section we will use Theorem to prove some generalized
Lyapunov inequalities. First let 79* (ya, Yb) C 79(ya, Yb) consist of all
y E 79(Ya,Yb) such that (yy’)(a)--(yy’)(b) and if at least one Ofya, Yb is
nonzero then Ya Yb.

THEOREM 3 Suppose y is a nontrivial solution of (4.1) in 79*(Ya, Yb).
Then thefollowing inequality holds

< max
xe[a,b] fxq dx q dx

[rl(ya,yb)L-’(ya, Yb + K(ya,Yb)-1] (4.4)

where

(Ya, Yb) := ,
0,

ifya, Yb 7 O,

if Ya 0 or Yb O,
ifYa Yb O.

and

4

L(ya, Yb) b- a’
(Ya --Yb)2

max{Ya, y}(b a)

ify(a) =y(b) =0,

ify has a zero in [a, b],

otherwise and Ya 7 Yb.

(4.5)

Theorem 2 can also be used, but the results are the same.
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Alternatively, there exist points tl, t2 in [a, b] such that

t2

q dx [l( ya, Yb)L-l ya, Yb) -+- K( ya, Yb)-l]. (4.6)

Furthermore, ifq is nonnegative then a and t2 b.

Before proving this, we require a lemma.

LEMMA 5 Ify 79(ya, Yb),YaT ybOrya---yb--O, andy .2[a,b],then

=Yllc,[a,b] L(ya, Yb)- (Y dx. (4.7)

Furthermore, in all cases the constant L(ya, Yb)-1 is sharp.

Proof Suppose y(c)- I]Yll,ta,b and Ya Yb--0. Since

b

lYY’I dx >_ Cy, dx
b

yy dx

we have using Opial’s inequality that

4
L(ya,Yb) =-- b- a

min
fba(y’)9 dx < Jab(y’)2 dx

yEZ)(ya,yb) fb yy,[ dx Yll,[a,bl

If 3 is an extremal of Opial’s inequality, for example, a linear spline
with a knot at (a + b)/2 such that j3(a) 33(b) 0 then there is equality
in (4.7) which shows that L(ya, yb)- is sharp in this case. Ify(t)= 0 for
some E [a, b], then

fa YY’I dx > YY’I dx 2[lYllo,[a,b]

from which the result follows by the argument of the previous
case. Here too L(ya, yb)-1 is the best constant; for if say a, then the
extremal of Corollary gives equality in (4.7).
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Suppose that y, 7 Yb and there is no zero ofy in [a, b]. For e < 0 let y,
be an e-approximate extremal of

L(ya, Yb) inf
yED( ya,Yb

j(y) .=fba(yt)Edx
[[Yll,[a,b]

in the sense ofDefinition 1. Ify,(c) [[Yell,[a,b] and s, is the linear spline
with a knot at c interpolating Ya, Y, and Yb, then IIsll,ta,b--IlYll,ta,b
and jafb,(s’)2- dx _< fba(y’2, dx so s is also an e-approximate extremal of

Jo. By the argument of Lemma 4, there is another linear spline e-

approximate extremal g, with "optimal knot" c* given by (2.3) such that
g(c*) [Isll,[a,b =_ h and

o,[a,b] J"\ IIs,

If h _> max{ lyal, lYbl} then

J(g,) bla h2

A calculus argument shows that the minimum occurs at the boundary
max{ya, Yb} or min{ya, Yb} in which case g Lab and

Jo(g.) (Ya --Yb)2

(4.8)max{y2a, y}(b a)

Calculations similar to those of Theorem show that for any of the
s-, such that min{ya, Yb} <h<max{y,,yb} that J(g,) is also given by
(4.8). Since L,b is an extremal of (4.7), L(ya, yb)-1 is sharp in this final
case as well.

Proof of Theorem 3 If y is a nontrivial solution of (4.1) with the
property yy’(a)=yy’(b), then multiplying (4.1) by y and integrating by
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parts twice yields that

0 [y" + q(x)y] y dx dx + q(x)y2 dx

(y,)2 + Q(b)y2(b) Q(a)y2(a) 2 Q(x)yy’ dx

< (y + max IQ(x) ((b) + y2(a)) + 2 YY’l dx (4.9)
x[a,b]

where Q is any antiderivative of q. Next rearrangement of (4.9) fol-
lowed by application of Lemma 5 and Theorem 1 gives

b

t)2(y <_ 2llQ(x)ll,[a,b][rl(ya, yb)L(ya, yb)-1

y’)+ K( Ya, Yb)-l] dx.

After canceling fab y,)2 dx, taking

Q(x)= ()(faXqdx fx
b dx),

and rearranging we obtain (4.4). To prove (4.6), we choose Q(x)--
fax q dx + # where # is some constant. Set

x

fa
t2

M max q dx q dx,
x[a,b]

m min q dx q dx,
xe[a,b]

and choose # -(M+ m)/2. Then since Jax q dx E [m, M] we have that

a

x M+m <M-m- q dx q dx

l(ftt )2
qdx

(4.5) follows at once.
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If y(a) y(b) O, 7(Ya, Yb) 0 and K(0, 0) 4/(b a) by Theorem A.
Hence the classical Lyapunov inequality or (4.3) are immediate
corollaries of our theorem. Note also that the strict inequality in (4.2)
or (4.3) is also implied although it is not present in the general inequal-
ities (4.4) and (4.6). This is because the extremal of Opial’s inequality
has a discontinuity at (a + b)/2 and therefore cannot be a solution of
the equation (4.1).

COROLLARY 3 Ifthere is a solution of(4.1) such that

y(a) + y(b) O, y’(a) + y’(b) O, y(a) O.

Then we have the &equalities

2 _< { ftt q dx[
f q dx Jbx q dxl,

where l, t2 are as in Theorem 3.

Proof Theorem 3 applies since yyt(b)=yyt(a) and l(ya, Yb)= 1.
By (2.8) of Theorem and (4.5) K(ya, Yb)=4/(b-a)= L(ya, Yb). The
inequalities follow if we substitute this into (4.4) or (4.6).

COROLLARY 4 If there is a solution of(4.1) such that y(a)-- y’(b) =0,

3(b- a)
maxx[a,6] Irax q dx- Jxb q dxI,< Ifttqdx[

where tl, t2 are as & Theorem 3.

Proof Again this is an application of Theorem 3 using the value
K(O, Yb) 2/(b a) L(O, Yb) in Theorem (i) and (4.5). Strict inequal-
ity holds because the extremals of the Opial-type inequality in (i) are
straight lines which cannot satisty the boundary conditions y(a)=
y’(b) 0.
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COROLLARY 5 Ifthere is a solution y of(4.1) such that y’(a) =y’(b) =0
while y(a), y(b) 0 and are ofdifferent signs, then

max [fax q dx fxb q dx[,
x[a,b]

fit? q dx[

where l, t2 are as in Theorem 3.

Proof We can suppose that y(a) > 0. Examination of either (iii) or (iv)
of Theorem and (4.5) shows that

K(ya, Yb) -1< L(ya, yb) -1

Also since there is a zero of y in (a, b) we then substitute these bounds
into (4.4) or (4.6) as in the two previous Corollaries.

5 APPLICATIONS TO DE LA VALISE POUSSIN INEQUALITIES

De la Val6e Poussin proved the following result.

THEOREM C Let y be a nontrivial solution ofthe second order two point
boundary value problem with zero endpoint conditions

y" / g(t)y’ /f(t)y O,
y(a) y(b) 0.

(5.1)

Then

< 211gll,[a,b](b a) + Ilfll,Ia,bl
(b-a)2

This inequality has been improved by many writers in various ways.
In particular Z. Opial [11] showed that

411gll,ia,bl(b a) + Ilfllo,ia,bl(b a)2. (5.2)

For additional discussion of De la Val6e Poussin inequalities see [9,
Chapter VI]. Some variant inequalities of this type are also given in [3].
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Just as for Lyapunov inequalities Theorem and Lemma 5 allow us to
derive De la Val6e Poussin inequalities for other than zero boundary
conditions.

THEOREM 4 Let y E 7)( Ya, Yb be a nontrivial solution of(5.1). Then

< ][g[loo,[a,b]K(ya,Yb) -1 + IIflll,[a,b]L(ya,Yb) -1 (5.3)

or

< ]]gl],[,b]g(ya,Yb)- + IIfll,[a,b](b a)L(ya,Yb) -1 (5.4)

Proof Multiplication of (5.1) by y, followed by integration by parts,
obvious H61der estimates, Theorem 1, and Lemma 5 gives successively

dx _< Ilgll,ta,bl YY’I dx + Ifl dxll Yll2o,[a,b]

< I[g[lo,[a,blg(ya, Yb)- (y dx

fab lab 2+ [fl dx L(ya, Yb)- (y’ dx

or

(/a )< [gll,[a,blK(ya, Yb)-l-+ [fldx L(ya, Yb) -1

From which (5.3) and (5.4) follow by cancelation and H61der’s
inequality.

In particular if y(a) y(b) 0 we have

(/a )4 < I[gll,[a,b](b a) + If[ dx (b a).

This may be improved using the Sobolev/Wirtinger-type inequality
(see [3])

b

y dx <_ (b a)2 b )271.2 (y’ dx
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b 2 b t)2to bound fa fY dx <_ Ilfllo,Ia,bl fa (Y dx after multiplying (5.1) by y
and integrating by parts, etc. We get

I]g[l,[a,bl
(b- a)+1<

4
Ilfllo,la,l (b a)271-2

which is a better inequality than either the original De la Val6e Poussin
inequality or (5.2).
The inequality corresponding to the boundary conditions of either

Corollary 3 or 4 is

2 < Ilgll,[a,b] (b a) + [Ifll,Ia,b] (b a)2.
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