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1 INTRODUCTION

In 1960 Z. Opial [12] proved a slightly less general form of the following
inequality.

* Corresponding author. E-mail: dicbrown@bama.ua.edu.
' Opial required that y’ be continuous and y>0. Also he did not characterize the
extremals. The version we give is due to C. Olech [10].
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THEOREM A If y is absolutely continuous on the interval [a, b], —oo <
a<b< oo, and y(a)=y(b)=0 then

b b—a b )
[ i1ax <222 [ an (1.1)

Equality holds in (1.1) if and only if

_[cx—a), fa<x<(a+b)/2,
‘{c(b—x), if (a+b)/2<x<b.

Since 1960 there have been numerous generalizations of Opial’s
inequality. Many of these extensions contain weights on one or both
sides of (1.1), various Lebesgue norms on y or on either or both of the
two y’ terms, alternative boundary conditions on y, etc. See for example
the books of Agarwal and Pang [1] or Mitrinovi¢ et al. [9, Chapter III].
Both sources contain modern proofs of the inequality and Opial’s
original proof may also be found in [1]. There have also been recent
attempts (see e.g. [5,7]) to prove the inequality and find its best constant
when f: |y'|*dx is replaced by f: |y™[*dx under the boundary
conditions

forn>1.

Opial-type inequalities have many applications. These include the
establishment of sufficient conditions for disfocality and disconjugacy,
the determination of good lower bounds for the spacing of zeros of
solutions of a second order linear differential equation, and proofs of
Lyapunov-type or De la Vallée Poussin inequalities.

In this paper we consider a “nonhomogeneous” version of Opial’s
inequality. Specifically, we ask what can be said about the existence,
best constant C(y,, ¥5), and extremals of the inequality

b b
[ 13185 < Clum) [ (5120 (1.2)
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under the boundary conditions
y(@) =ya y(b) =ys (1.3)

where y,, y, are viewed as fixed numbers and at least one of them is
nonzero. This setting brings surprising complications and results. Our
analysis of it is summarized in Theorem 1 of Section 2. Here we are able
to determine the constants C(y,,y;) and to characterize extremals for
all choices of y,,y,. One of our results is unexpected. In the case that
Ya- Y5 <0 the extremal is not the line segment joining (a, y,) and (b, yp)
but rather a spline with a true interior knot. In Section 3 by using a tech-
nique due to Beesack we derive a new Opial-type inequality with non-
homogeneous boundary conditions. This inequality in turn yields an
alternative proof of (1.2)—(1.3) when y, -y, >0. Sections 4 and 5 con-
tain applications: we use the nonhomogeneous Opial inequalities of
Theorem 1 to derive some general extensions of the classical Lyapunov
and De la Vallée Poussin inequalities. These results may be viewed as
giving necessary conditions for interpolation of data by solutions of
second order linear differential equations.

Before proceeding further we fix notation: AC[a, b], L[a, b], £L*[a, b]
or L®[a, b] stand respectively for the classes of absolutely continuous,
Lebesgue integrable, Lebesgue square integrable, or essentially bounded
real functions on the finite interval [a, b]. We denote the corresponding
norm of a function y (or strictly speaking the equivalence class of func-
tions a.e. equal to y) in these Lebesgue spaces by ||y||1,1a.51 |[¥l|2,1a.5 OF
13|l o,1a,5- Lastly, in the two point case our generalized Opial inequal-
ities will be defined on the domain D( y,, y») Where

D(Ya,ys) = {y € AC[a,b]: y' € L*[a,b]; y(a) = y and y(b) = y;}.

2 EXISTENCE AND PROPERTIES OF EXTREMALS

It will be convenient to reduce the Opial inequality (1.2)—(1.3) to the
solution of a certain minimization problem since the best constant
C(Ya yp) of (1.2) is just K(y, ys)~" where

K(ya, yp) = inf{J(y): y € D(ya, y5)} (2.1)
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and

ICRE:
J =
) 12 yy'|dx

Moreover, y € D(y,, yp) clearly gives equality in (1.2) if and only if it is
an extremal of (2.1).

DEFINITION 1  Given an arbitrary € >0, we call a function s € D(yq, yp)
an e-approximate extremal if

K(ya,y5) <J(5) < K(yar pp) + €

It is obvious from the definition of K(y,,y») that e-approximate
extremals exist for every € > 0.

DEFINITION 2 Supposey € D(y4, yp) is such that there exists a partition
P:a=xy<x1<:--<x,=b so that y is monotone on each subinterval
[xi—1, x;]. Let |P| be the number of subintervals of P and C(y) denote the
set of all such partitions. Finally, we define

C = min |P|—1.
IC(») Prencl(ny)ll

Note that |C(y)| = 0if and only if y is monotone on [a, b]. In general
there may be more than one partition in C( y) which yields |C(y)|. For
piecewise strictly monotone functions |C( y)| may be identified with the
number of local maxima or minima of y in (a, b).

We now prove:

LEMMA 1 For any € > 0 there exists an e-approximate extremal y such
that |C($)| is either zero or one.

Proof Lety be an e-approximate extremal.
Case (i) Suppose0<y,<yp.Sincey, — y, < f: | »’| dx, there exists
¢ € (a, b] such that

c b
ya+/ |y’|dx=yb+/ |y/] dx.
a (4
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Define j on [a, b] by

H(x) vat+ [71y'1de, ifa<x<e,
X)) =
’ yot+ [01y'd, ifc<x<b.

Now

P(x)=y'(x)], a<x<e,

P(x)=-[y'(x)], c<x<b,

so that | §’(x)| = | y'(x)| a.e. Furthermore,

x X
p@I= ot | y’dt]swr/ lyldi=3(x), a<x<e
a a
b b
ly(x)| = yb—/ y'dt gy,,+/ |y'|dt = §(x), ¢<x<b.
X x
Hence,

J2199'ldx ~ [ yy'dx

Thus y must be an e-approximate extremal and |C( )| < 1.

Case (if) Suppose y, <0<y, and |y, <yp. By the intermediate
value theorem there is at least one zero of y which we call z; to the right
of a. We first apply the construction of Case (i) to y on [a, z;] and [z;, b],
i.e., define y by

ya— [F1y'dt, a<x<a,
. —[2y'ld,  a<x<az,
) = L 1y'lde, 71 <x< e,

y—[21y']dt, ea<x<b,
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where ¢, €[a, z;) and ¢, € (z;, b] are determined by

(4] Z1
h—/lﬂNx=—/|VM%
a Ct

b 2
yb+/ ly’ldx=/ [»'] dx.
%) 2

Then as in Case (i), |P;(x)| > |y(x)|, |P1(x)| = |»'(x)]|, a.e. so that
J($1) < J(p). Note also that |C( ;)| < 2.
Now define y, by

. _{5’1(0)+J71(02)—ﬁ1(~x+a+62), a<x<oc,
ﬁ](X), cp <x<b.

Then $5(x) = p{(—x + a+ ¢;) ona< x < ¢; so that

waym=L7m%t

(as a consequence of the transformation u= —x + a+ ¢,). Furthermore
Pr@h) =pi(e7) 20, 3(cp) =Pi(a") <0,

so that |C(3,)| < 1. Let y, = $,(a), ye, = J1(c1), ye, = 1(c2). Note that
the maximum of J, occurs where

—x+a+o=cax=a+c—c,
and the maximum value
j’2,max = )’)l(a) +)A)2(c2) —)A)l (cl) =Ya+ Ve, = Ver-

Then

%)
/l%%Mwﬂﬁ—ﬁVﬂﬁ%M

a

= (/22 +2[Ya+ Yo = va P =2}
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and

(]
| 1stiar= 02 = 2+ 5,
a

It follows that

2 , (%) ,
/ Iyzﬁzldt~/ |59 de
a a

= (1/2){3’3 +2[ya+ye, _yc1]2 _J’gz '|'y¢21 - 23%, “’ygz}
=295+ 2VaVe, — WaVer — Werde,
= 2(ya + ycz)(ya - yc|) >0,

since Y, + Ye, > Va+y» > 0 and y(c;) < y(@)=y,. We conclude that
J(2) < J().

To complete the proof of the lemma we reduce every other case to
either Case (i) or Case (ii) by transformations. In particular we can
always assume y, >0 and y, < y,. For if y, is negative we consider the
function y; = —). Then j, isan e-approximate extremal such that |C( ;)|
is minimal for the minimization problem (2.1) on D(—y,, —y5). And if
Ya>yp We set P5(x) = §(b+ a — x). This function is an e-approximate
extremal such that |C( §,)| is minimal for the minimization problem on
D(yp,¥a). In other words we can find e-approximate extremals for a
transformed problem in Case (i) or (ii) and then transform back to the
original problem.

We interpose the following lemma which will be required when we
prove the uniqueness of extremals to (1.2)—(1.3).

LEMMA 2 Ify is an extremal of (2.1) then |C(y)| < 1.

Proof Lety € D(y,,ys) beanextremal of (2.1) and j be constructed as
in Lemma 1. Then we must have that J( ) = J(y). Then f: | 99| dx =
f: | yy’| dx since ff(j/’)2 dx = ff(y')2 dx.

Suppose Case (i) applies and let ¢ be defined as in this case. Then
since the definition of j implies that |$’| = |y’| and || > |y| a.e. so
that with ff | 99| dx = f: | yy'| dx we conclude that

c c b b
/ 159" dx = / 1y dx, / |59/ dx = / |3’ dx.
a a C [4
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From the first of these equalities and | §| = | y'|, we have

(4
0=/ (191 = [¥l9"1dx = [[5] =yl 9'1 =0, ae. (2.2)
a

Suppose | $(x0)| > | ¥(xo)|- Then because of the continuity of | | there
isaleft neighbourhood A = (xy, xo) such that | y| > | yjon Aand y(x;) =
$(x1). Therefore from (2.2) | $'| =0 = |y’| =0 a.e. on A. This means
that j and y are constant on A so that | j(xo)| = | ¥(x0)| contrary to
assumption. Hence | | = | y| on [, ¢]and similarly on [c, b]. Hence y = y
on [a, b] as both are nonnegative. This shows that J( ) = J(y) = y = y.

In Case (ii) if y is an extremal J(;) = J(y) the above argument
shows that $, = y on [a, b]. Suppose now J(j,) = J(p). Then J(j,) =
J(3) asJ(F,) < J(J;) < J(»). Returning to the proof in Lemma 1 that
J(3,) < J(J;), we see that either y, + y., = 0 or y, — y,, = 0. However
if p(c1) < y, then y., > yp > —ya, so that j(c1) = y,. This means how-
ever that |C(7,)| = |C(9;)| < 1. (Note that the possibility that y is a line
segment (= y = J; = J,) has not been ruled out.)

Thus for both Cases (i) and (ii) of Lemma 1, if y is an extremal then
IC(y)I <L

LEMMA 3  For any € > 0 there exists an e-approximate extremal s, which
is a linear spline with at most one knot.

Proof By Lemma 1 there is an e-approximate extremal y. such that
|C(y)|is either zero or one in which case y. is monotone on the intervals
[a, c], [c., b] for some ¢, a < c. < b. If |C( )] is zero let s, be the straight
line joining (a,y,) and (b,y,). Otherwise let s. be the linear spline
interpolating y at a, b and c.. Then s, and y. are both monotone on the
intervals [a,c.] and [c.,b]. This means that both f |ses’]dx and
f | yey!| dx depend on the values of s. and y. at a, b and c.. For example,

¥ = (24 7)/2 i 0<ya <y < ye),
[ 13aliax =13 024502 3P, 050 <30 <
(2 +3D)/2+3()’, if y(€) <0< ya <y

Similar formulas are satisfied if y,>y, >0 or y,-y, <0, etc. Since y,
and s, agree at a,b and ¢, we conclude that for all configurations of
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Yas Vb and y(ce) = se(ce)

b b
/ |ses!| dx = / | yey!| dx.
a a

But from the well known fact that s, is the unique minimizer of the L?
norm of z’ over all interpolants z in D( y,, y») which agree with s at a, b

orata,b,c,,
b b
[6raxs [(ran
a a

These two facts imply that J(so) < J(y.).

Since f |ses!| dx = f |yey!|dx and s is the unique minimizer of
J2 1P dx over y € D(ya, ) such that y(cd=ye(cd, Js) <J(yd if
s. # y.. Thus it is sufficient to consider only linear splines with at most
one knot to compute K(y,, y5). Moreover, if s is an extremal of (2.1),
then by Lemma 2 |C(s)| < 1. Therefore, repeating the argument of
Lemma 3 with s playing the role of y. and the above remarks will show an
extremal if it exists must be a linear spline. We will use these observations
in Theorem 1 below to establish the existence, structure, and uniqueness
of extremals. First however, we require a simplifying lemma.

LEMMA 4 If s. is a linear spline e-approximate extremal with knot
a < c.<b there is a linear spline e-approximate extremal 5. with J(§;) <
J(s¢) and with knot ¢* = c*(s(c.)) given by

&= bA, + alp

= 2.3
Aa + Ab ( )

where A,:= |y, — sc(co)| and Ay =|yp — se(co)|. Also

. 1 Ag+ Ap)?
WG e

Proof Let s, be a linear spline e-approximate extremal with knot
a<c=c.<b. Set h.=s.(cc). We regard h. as fixed and consider the
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family F of all linear splines s, € D(y,, y5) With unique knot ¢ some-
where in [a, b] such that s, .(c) = h.. Then a direct calculation shows

_ ((ya—ho)/(c— @)(c—a)+ ((yp—h)/(b—c))*(b—¢)
J(5ce) b
S Iscesi | dx

(2.5)

As we have seen in the proof of Lemma 3 because of the monotonicity
of the s, . on the intervals (a, ¢) and (c, b) the integral f: ISc.eS | dx will
depend only on y,, y», and A.. Different configurations of y,, y, and A,
give different values for the integral, but in all cases they are independent
of the location of the knot c.

Since s, € F it follows that

K(yasyp) < min J(scc) < J(se) < K(ya, ¥p) + 6
a<c<b

also because the denominator of (2.5) is independent of ¢, the minimum
is attained at that ¢*(h.) which is the solution of

mind (222) -0+ (37E) 6 -0},

The standard calculus argument shows that c*(k.) is given by (2.3)
and it is immediate that § is an e-approximate extremal. Equation (2.4)
follows by substituting ¢* into (2.5).

THEOREM 1 Set M =max{y,, yp} and m=min{y,, y}. The values of
K(y,, yp) together with corresponding extremals are given by the following
possibilities

() If ya, ys are not both zero and y,, - y, > 0, then the line segment L,y
Joining (a, y,) and (b, yp) is the unique extremal and

2 M—-m
K(yasyb) = (b_——a) M m

In the case y,= yy there is no extremal and K(y,, y») =0.
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(i) Ify,=y»=0, K(0,0) =4/(b ~ a), and y is an extremal if and only if
y is a multiple of

(x—a), fa<x<(a+b)/2,

yo(x) = {(b_x), if (@+b)/2<x<b.

(ii) Ify, - y5<0,and y,+y, >0, then

K(ya,y5) = (b E a) (74:1%')

The corresponding extremal y which is unique is the linear spline
having a unique knot at (c*, h*) where

« _ b(M +2|m|) + ajm|
c = N
M + 3|m| (2.6)
W =M+ |m|.

(V) Ify,-y6<0,and y,+y, <0, then

o - (,2) Gz

The corresponding extremal y which is unique is the linear spline
having a unique knot at (c*, h*) where

_ bM +a(2M + |m])
- 3M + |m| ’ (2.7)
B=m-M.

X

™) If yo+y5=0 then y is an extremal if and only if it is one of the
linear splines in D(y,,yp) with a unique interior knot c*(h), for
h € R\[m, M] or the line segment L. Here

K(ya,yp) = (2.8)

b—a’

Proof First we observe that J(—y)=J(y) =J(J) where j(x)=
y(a+ b — x). Although these transformations do not leave the class
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D(ya, yp) invariant, they do allow us when computing K( y,, ys), to con-
sider fewer cases. Thus for Case (i) it is sufficient to consider only
0 <y, <y and for Case (iii) it is sufficient to consider only y, <0 < y,.
(See also Lemma 1.)

In all cases we will begin with §, the e-approximate extremal with knot
c*(h) given by Lemma 4. Let 7 be the family of all linear splines s* in
D(ya, y») having at most one knot at ¢*(h) where h € R. We think of 4 as
a parameter and write

where (cf. (2.4))

(‘ya—hl_’_ |yb_h‘)2 (29)

h =
k) 2f:|s”s”'|dx

Clearly since §. € 7T,

. 2
K(ya,y5) < min (

heR \ b — a) O(h) = :{g’,}"(sh) < J(3e) < K(yasys) + €.

In particular if #* minimizes Q(#) and s* is the corresponding spline then
K(ya,yp) < J(s") < JGe) < K(ya,y0) + €

so that s* is also an e-approximate extremal.
Case (i) As we have pointed out it suffices to suppose that
0<y,<yp. If k>0, then a calculation shows

b
/ Js"s) dx = L {12 ~ 2| + | ~ 3}; (2.10)
a

while if 4 < 0, we obtain

b
/ |s"s*| dx = 1 {2k + y2 + y2}. (2.11)

a



SOME NONHOMOGENEOUS OPIAL AND OTHER INEQUALITIES 23

Substituting (2.10) and (2.11) into (2.9) we find that Q(#) is given by

((2h=ya— )’
m, h > yp,
i”—;——i—z, Ya < h <y,
a

)=\ (yat 3y — 20 0<h<

yg+y%~2h2 b _— —ya’
(Ya + yo — 2h)*
- - h<0.

\ yi+y; -2k

To compute K(y,,y,) we need to minimize the function Q(k4). Note
that Q(k) is continuous. Examination of this function yields that

(@) Q'(h)>0forh>y,,

(b) Q'(W)=0fory,<h<y,

(© QW) <0for —[(y2+¥3)/(ya+ )] < h < ya,
(d) Q' (W >0forh < —[(y2+¥3)/(ya+ yb)l,

(&) limy_, 4o Q(h)=2.

These facts show that the minimum value of Q(h) is (y5 — y2)/(Va+ V)
giving a value

_ 2 Yo —YVa _ 2 M-m
kowm = (725 = ()i

Furthermore, the #* producing the minimum is any element of [ y,, ys)-
This seems to correspond to infinitely many e-approximate extremals
which we can take for s*, consisting of the linear splines in D( y,, y») with
an interior knot

_bh—yd) +a(ys—h)

c*(h
( ) Yo — Ya

where h€[y,, ys]. But this is an illusion since (c*(k), 4) can be easily
shown to lie on the line L. It follows that s* = L,; and since this func-
tion is independent of ¢ it is an extremal.
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In case y,=y; >0 we have always that ¢*(h)=(a+ b)/2 and for all

h>y,
J(s") = (b f a) <(zz__y;%2> = (b i a) (Z 3:)

Consequently we can let 4 — y,, obtaining that K(y,, y») = 0. Therefore
if y is an extremal f:( y! )2 dx = 0 so that y must be L,;. But then J(s*) is
undefined so there is no extremal.

Case (ii) By Lemmas 3 and 4 there is an e-approximate linear
spline extremal §, with a knot at

bh +ah. _a+b

¢(he) == 2

where A, =s(c.). By (2.4) and the fact that formulas (2.10) and (2.11)
may be used to evaluate | f S¢S dx

IG5 = (b 1 a) ((2/}:36)2> b i a

Again since J(§.) is independent of e¢ or multiplication of §, by a
nonzero constant this function or any nontrivial constant multiple
of it is an extremal.

Case (iii) As noted above it is enough to take the case y, <0 < y,.
Again let s” be the e-approximate spline extremal with knot (c*(h), h).
If h > 0 we find that

b
[ 15t dx = 48 + 2+ 2 = 53,
a
while if 2 <0

b
/ IshsH| dx = L (2 — 2] + I + 32).
a



SOME NONHOMOGENEOUS OPIAL AND OTHER INEQUALITIES 25

Again J(s") has the form (2.9) but now Q(h) is given by

( 2
(Zh_ya"yb)
e b p<yy,,
22+ 32—y} =%
(75— ya)
o(h) = § ~—=5——=—, Ya < h < s, (2.12)
vi+ 2 , ¢
(.Va+}"b"2h)
e T T h< g
(212 +y, — V3 =

Set h; =y, — y, and suppose that y,+ y, > 0. We find that

(@ Q'(h)>0if h> hy,

(b) Q(h)<0ify,<h<hy,
© Q(=0ify, <h<ys,
(d) Qh)>0if —hy <h<y,
(e) Q'(h)<0ifh< —hy,

() limy_, 100 Q(h) =2.

It follows that Q(h) has a unique minimum at #* = h; and

Yo—3Ya M —3m

n) = = ,
Q( ) Vb — Va M—-—m
so that
2 M+ 3|m
K(yaayb) = (b — a) M+ ||m|| :

Using (2.3) the interior knot (¢*, #*) is given by (2.6).

Case (iv) Again we take y, <0<y, and assume that y,+y, <0.
Q(h)is given by (2.12) but the signs of Q' (%) in (a)—(e) above are reversed.
Consequently Q has a unique minimum at A* = —h; =m— M,

=3y1,—y,,_3M—i-|m|

K - ,
Q( ) Vb — Ya M+ |m|
2 3M+ |m
K(yays) = (b_a) M+|ln]|’

and the interior knot (c*, #*) satisfies (2.7). Note that in both this case
and Case (iii) that the knot no longer lies on L, since A* > yp.
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Case (v) By examining Q(h) given in Cases (iii) or (iv) with y,+
y»=0 we see that Q(h)=2 for all k. Consequently J(s*)=4/(b—a)
for all splines in 7. Any of these splines will be an e-appproximate
extremal for all e > 0 and consequently an extremal. However, in the case
m<h< M (c*(h), h) lies on L.

We now prove uniqueness of the given extremals or classes of
extremals in Cases (i)—(Vv). Suppose s is any extremal. By the remarks
following Lemma 3 s must be a linear spline with at most one knot ¢’ €
[a, b]. Turning to Lemma 4, we think of s as a member of the family F of
linear splines s, with unique knot ¢ € [a, b] such that s, = h:=s(c’). Since
the functional J(s.) given by (2.5) is seen to have a unigue minimum at
¢ = c*, we conclude that ¢’ = ¢*. Finally, the analysis in the first part of
the proof of the present Theorem and the fact that the functional Q(k)
has a unique minimum in Cases (i), (iii), and (iv) (and is independent of
h in Cases (ii) and (v)) shows that s must be of the form stated in Cases

®H-).

We remark that Case (i) amounts to a new proof of Theorem A.* Also
as special case of (i) by assuming that y, =0 we have a well known “half
interval” form of Opial’s inequality.

COROLLARY 1  Ifyisreal and absolutely continuous on [a, b] and y(a) =0

then
b _ b
f Iyy’ldxsb—fl-/ () dx.
a 2 a

The extremals are given by y(x) = k(x — a) where k is any constant.

We illustrate Case (iii) of Theorem 1 with a simple example. Let
y.=—1,y,=2,and [a,b]=[0,1]. Then M =2, m=—1, and K(y,,ys) =
10/3. The linear spline extremal has a knot at (¢*, #*) = (4/5, 3). By way of
comparison, the line segment L, ;, yields J(L,;) = 3.6.

3 A SECOND NONHOMOGENEOUS OPIAL-TYPE INEQUALITY

By modifing a technique due to Beesack (see [1, p. 7]) when yq-y; >0 it
is possible to derive another nonhomogeneous Opial-type inequality

¥ At least six are known. See [1, Chapter 1].



SOME NONHOMOGENEOUS OPIAL AND OTHER INEQUALITIES 27

which is apparently new and may be of some independent interest.
This inequality may be viewed as a “precursor” to (1.2)—(1.3) since it
leads to a different proof of the “nonhomogeneous part” of Case (i) of
Theorem 1, i.e., the inequality

/ |yy|dx<(” ‘) 'M*""'/( Yax @)

when y, -y > 0 together with the uniquenes of the extremal L.

THEOREM 2 Let M :=max{|y.|,|ys|} and m :=min{|y,|,|ys|}. If
Y € D(Var¥b)s Ya 7 Vb, and y, - yp > 0 then the inequality

/ /] dx <™ '7')+ (b;a) (Mﬁzm)/ab(y’fdx (3.2)

holds and has a unique extremal L.

Proof We assume first that y,, y, >0 and y, < y, (so that M = y, and
m = y,). Set L(x) :={(yp— ya)/(b — a))(x — a) + y, >0 and consider the
inequality

b
[ 1= @misyar=o (33)
a
which is an equality if and only if y(x) = L(x). Equivalently,
b b b
2 [(iwmars [[o0as [ Awmte e
a a a
However, integration by parts and the identity

(L'/L) = —(L'/L)’

give
b
2 / |3/|(L/L) dx
a

- e/ [ yldx + / b ([ 1wra)@ieres 63
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(Note that the integrals exist for all y € D(y,,yp) in (3.3)-(3.5)

since L(x) #0 on [a, b].) Substituting this into (3.4) followed by rear-
rangement gives

b
L /) / 3| dx

< / b(y'f dx + / b(y(xf -2 / ) |yy'|dt) (L'/LYdx.  (3.6)

X
y(x)* < 2/ | yy'|dt + y2
a

Since

with equality if and only if y is monotone, (3.6) becomes
Vb — Va 1 b ’ /b "2 2/b TRy
LA | <
G=2)(5;) [ e s [onanest @i es
—Ja\ (1 __l_
/ (») dx+ya( - )(ya yb)

(3.7)

which is equivalent to (3.2). That L, is an extremal is obvious. If there is
equality in (3.7), then (3.6) must hold with the inequality “<” reversed
and the same is true for (3.4) and (3.3). However, in the case of (3.3) this is
impossible unless there is equality, i.e., y = L(x).

Suppose 0 <y, <y, Or ¥4, yp<0. Then as in the proof of Lemma 1
or Theorem 1 we use the transformations y = y(a+ b — x) or j = —
to transform the problem to the previous case. Thus (3.1) is true for
9 € D(yp,ya)0ry € D(| yal, | ¥s|) if and onlyifitistruefory € D(y,, yp)-

COROLLARY 2 Ify € D(Yas ¥b)s YaF Vb, and ¥4 - yp > 0 then (3.1) holds
and Ly, is the unique extremal.

Proof Since L, is known to be the unique minimizer of ||y'||2,4,5
subject to the interpolation conditions y(a) =y,, y(b) = ys, we have the

inequality
b N2
ne o (M—m)
> . .
/a ) 25— (3.8)
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Hence

iz (43 ) 7

When this is substituted into (3.2) we obtain

b b—a\M+m [?
[ iwiars (450 5 [ es

which is equivalent to (3.1) since y,, ¥, have the same sign. Since L,
gives equality in (3.8) and (3.2) which shows that L, is an extremal for
(3.1). Further if there is equality in (3.1) then either (3.8) or (3.2) must
hold as reversed inequalities if they are not equal which is impossible.
But equality in either (3.8) or (3.2) is attained only by L.

4 APPLICATIONS TO LYAPUNOV-TYPE INEQUALITIES
Consider the differential equation

V' +4q(x)y=0, a<x<b, (4.1)

where q is real and g € L(a, b). The following well known inequality is
commonly attributed to Lyapunov [8].Y

THEOREM B Suppose y is a nontrivial solution of (4.1) such that y(a) =
y(b)=0. Then

4 b
m<‘/a |q|dx (42)

The inequality is sharp in the sense that 4 cannot be replaced by a larger
number.

¥1n [8] Lyapunov, however, used the reverse of (4.2) to prove a stablity result for (4.1)
with ¢ > 0 and periodic. The first statement and proof of “Lyapunov’s inequality” in more
or less its present setting seem due to Borg [2]. Borg attributes the equivalent inequality
f: |"y~!|dx > 4/(b — a) to Beurling but gives no reference. For the history of this
inequality and its relation to [8) see Cheng [6].
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Many extensions and variants of this inequality are known (see e.g.
[9,13]). For example it is shown in [4] that under the same hypotheses of
Theorem B (4.2) can be replaced by the assertion that there exist points

t1, t €[a, b] such that
t
/ gdx
13}

In this section we will use Theorem 1% to prove some generalized
Lyapunov inequalities. First let D*(y,,¥5) C D(yaq,y5) consist of all
¥ € D(ya,yp) such that (yy")(a) = (yy")(b) and if at least one of y,, ys is
nonzero then y, # yp.

< . 4.3)

b—a

THEOREM 3  Suppose y is a nontrivial solution of (4.1) in D*(ya, yb).
Then the following inequality holds

x b
1 < max / qu——/ qul
x€labl| Jq x
X [0(¥a> ¥o) L™ (Ya ¥5) + K(3ar ) '] (4.4)
where
1’ if}’a,yb 3& 03
N(Yasyp) =S 3, if ya=0o0ry, =0,
0, ifya =y =0.
and
4 i y(@) = y(5) = 0
b—a’ yya)=yo)="5
2 . .
L(Yoys) =3 5—o° if y has a zero in [a,b], (4.5)

(ya - yb)2
max{y2, y;}(b — a)

, Otherwise and y, # Vp.

$ Theorem 2 can also be used, but the results are the same.
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Alternatively, there exist points t,, t; in [a, b] such that

5]
/ qdx
n

Furthermore, if q is nonnegative then t; = a and t, = b.

1< [1(Yas )L™ (Y 0) + K(¥ar 16) '], (4.6)

Before proving this, we require a lemma.

LEMMA 5 Ify € D(Ya, ¥)s YaF V5 0r Ya=y5=0,andy’ € L?[a,b], then

b
1212 sy < L(resys) ™" / ()% dx. @)
a

Furthermore, in all cases the constant L(y,, y»)~" is sharp.

Proof Suppose y(¢) =||¥|lco,[a,6) a0d yo=y»=0. Since

b b
/ lyy'ldx > / yy'dx
a 4

2
= ”y“oo,[a,b]’

(4
yy'dx| +
a

we have using Opial’s inequality that

b "2 b, N2
d d
L(ya,yp) = 4 = min f‘z(y) XSL(yz) x.
b—a  yeD(yays) fa | yy'|dx I|y]|°o,[a’b]

If 7 is an extremal of Opial’s inequality, for example, a linear spline
with a knot at (a + b)/2 such that j(a) = j(b) = 0 then there is equality
in (4.7) which shows that L(y,, y»)~" is sharp in this case. If y(¢) =0 for
some ¢ € [a, b], then

[ ez [(ia= 2””y”” oledl

from which the result follows by the argument of the previous
case. Here too L(y,, y;)~ " is the best constant; for if say ¢ =a, then the
extremal of Corollary 1 gives equality in (4.7).
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Suppose that y, # y; and there is no zero of y in [a, b]. For e < 0 let y,
be an e-approximate extremal of

b 2
_ Jo(¥') dx
L(yg,ys) = inf J =S
(¥a> ys) YED(Yaryb) (%) “y”oo,[a,b]

in the sense of Definition 1. If y.(c) = ||¥el|oo,ia,5 and s is the linear spline
with a knot at c interpolating y,, y. and ys, then ||Se||co,ia,60 = ||Vl co.[a,6]
and f: (s/)*dx < ff( y!)*dx so s, is also an e-approximate extremal of
J- By the argument of Lemma 4, there is another linear spline e-
approximate extremal §. with “optimal knot” c* given by (2.3) such that
5:(*) = 115 oo oy = hand

A 2
Joo(Ge) = (bi ) ((Aa-lz- b) )
@)\ |1sell,jap)
If h > max{|yal, [s|} then

_ 2
Jls) = (bia) ((2h e +20) )

A calculus argument shows that the minimum occurs at the boundary
max{y,, yp} or min{y,, y»} in which case §. = L, and

-\ (J"a — yb)2
0 = i A6 @)

Calculations similar to those of Theorem 1 show that for any of the
Se such that min{y,, y»} <h<max{y,, y»} that J(5.) is also given by
(4.8). Since L, is an extremal of (4.7), L(y,, y5)~ " is sharp in this final
case as well.

Proof of Theorem 3 If y is a nontrivial solution of (4.1) with the
property yy'(a) = yy'(b), then multiplying (4.1) by y and integrating by
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parts twice yields that
b b b
0= [+ abmlydr=- / (VP dr+ [ gy ex
b b
— - [[6"7+ 01 6) - Qap*(@) -2 / 0(x)yy’ dx
b b
<- / (y'>2+g[3§]|g(x>|{<y2(b>+y2(a>)+2 / lyy'ldx}, 4.9)

where Q is any antiderivative of g. Next rearrangement of (4.9) fol-
lowed by application of Lemma 5 and Theorem 1 gives

b
/a (52 < 210w oy 1 Ve 76 L Yar 75) ™"

b
+ KGayn) ™ / (') dx.

After canceling f:( y')* dx, taking

o= () [0 )

and rearranging we obtain (4.4). To prove (4.6), we choose Q(x) =
f; g dx + p where p is some constant. Set

X 19
M= max/ qu:/ gdx,
x€la,b] Jq4 a

X h
m = min / qu:/ qdx,
x€la,b] J, a

and choose p = —(M + m)/2. Then since [ gdx € [m, M] we have that

* M+m M-m
— <
/aqu > ’_ 3

1 t t
([ oex- [ o)
153
=5 ([ o0x)

(4.5) follows at once.
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If y(a) = y(b) =0, n(y4 ys) =0 and K(0,0) =4/(b — a) by Theorem A.
Hence the classical Lyapunov inequality or (4.3) are immediate
corollaries of our theorem. Note also that the strict inequality in (4.2)
or (4.3) is also implied although it is not present in the general inequal-
ities (4.4) and (4.6). This is because the extremal of Opial’s inequality
has a discontinuity at (@+ b)/2 and therefore cannot be a solution of
the equation (4.1).

COROLLARY 3 If there is a solution of (4.1) such that
y(@) +y(®)=0, y'(a)+y'(b)=0, y(a)#O0.

Then we have the inequalities

2 < m';lxxela,b] |f7gdx — ffqu|,
b—a~ |ft.2‘1dx|

where t1, t, are as in Theorem 3.

Proof Theorem 3 applies since yy'(b)=yy(a) and n(ysyp)=1.
By (2.8) of Theorem 1 and (4.5) K(y,,ys) =4/(b — a)= L(y4 ¥p). The
inequalities follow if we substitute this into (4.4) or (4.6).

COROLLARY 4  If there is a solution of (4.1) such that y(a)=y'(b) =0,

4 { maX,elop | [ qdx — jf qdx|,

b-a) | I adx]

where t, t are as in Theorem 3.

Proof Again this is an application of Theorem 3 using the value
K(0, y,) =2/(b— a) = L(0, y) in Theorem 1 (i) and (4.5). Strict inequal-
ity holds because the extremals of the Opial-type inequality in (i) are
straight lines which cannot satisty the boundary conditions y(a)=

y'(6)=0.
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COROLLARY 5 If there is a solution y of (4.1) such that y'(a) = y'(b) =0
while y(a), y(b) # 0 and are of different signs, then

1 max | [ gdx — [} gdx],
< { xelap] a *
b=a | |1"qdxl

where t,, t, are as in Theorem 3.

Proof We can suppose that y(a) > 0. Examination of either (iii) or (iv)
of Theorem 1 and (4.5) shows that

_ b—a _
K(yayp)™' < —— = L(3a3) "

Also since there is a zero of y in (a, b) we then substitute these bounds
into (4.4) or (4.6) as in the two previous Corollaries.

5 APPLICATIONS TO DE LA VALEE POUSSIN INEQUALITIES

De la Valée Poussin proved the following result.

THEOREM C Let y be a nontrivial solution of the second order two point
boundary value problem with zero endpoint conditions

V' +g(t)y' +f()y =0,

¥(@) = y(b) = 0. G-

Then

b —a)?
1< 2”g”oo,[a,b](b —a)+ ”f“oo,[a,b]( 2 ) :

This inequality has been improved by many writers in various ways.
In particular Z. Opial [11] showed that

™ < 48l oo ar) & — @) + | flloo sy (b — @) (5.2)

For additional discussion of De la Valée Poussin inequalities see [9,
Chapter VI]. Some variant inequalities of this type are also given in [3].
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Just as for Lyapunov inequalities Theorem 1 and Lemma 5 allow us to

derive De la Valée Poussin inequalities for other than zero boundary
conditions.

THEOREM 4 Lety € D(ya,y5)" be a nontrivial solution of (5.1). Then

1< ”g”oo,[a,b]K(ya,yb)_] + “f“l,[a,b]L(ya’yb)—] (53)

or
1< lgloosarrK(¥as8) ™ + 1S Mooy (b = OL(yays) . (54)

Proof Multiplication of (5.1) by y, followed by integration by parts,
obvious Holder estimates, Theorem 1, and Lemma 5 gives successively

b b b
[ 05 < Ul [ 11+ [ 1710151
a a a
b
< oK )™ [ (510
a
b 1 b 2
+ [ 1N Lm ™ [P ex
a a
or
-1 b -1
1< elaganK )™+ ([ 17108) 200
a
From which (5.3) and (5.4) follow by cancelation and Hélder’s

inequality.
In particular if y(a) = y(b) =0 we have

4 < el -+ ( [ "I ax) (b~ a).

This may be improved using the Sobolev/Wirtinger-type inequality
(see [3])

[Pae<® [iyas
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to bound fffy2 dx < || fll oo fap f:(y’)z dx after multiplying (5.1) by y
and integrating by parts, etc. We get

< “g”:o,[a,b] (b ) ”f” [ab] (b )

which is a better inequality than either the original De la Valée Poussin
inequality or (5.2).

The inequality corresponding to the boundary conditions of either
Corollary 3 or 4is

2< ”g”oo,[a,b](b - a) + |lf”°o7[a’b](b - a)z.
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