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1 INTRODUCTION

In 1952, Hersch and Pfluger [10] generalized the classical Schwarz lemma
for analytic functions to the class QCK(B) of K-quasiconformal
mappings of the unit disk B into itself with the origin fixed, for K> 1.
They showed that there is a strictly increasing function qoK" [0, 1] [0, 1]
such that

If(z)l _< (1=1), (1.1)
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for each fE QCK(B) and z E B (Cf. [12, Theorem 3.1, p. 64]). This
distortion function is defined by [12, p. 63]

pK(r) #-’ (#(r)/K),
,’C r’

#(r). 2 1C(r)
r/2 dx

/C =/C(r)
V/1 r2 sin2x

(1.2)

for rE(0, 1)and KE (0, oo), OK(0)-- qgK(1) =0, where r’= v/1 -r2

and #(r) is the modulus of the Gr6tzsch ring B\[0, r], 0 < r < 1. We also
denote/C’ =/C’(r) =/C(r’). These are called the complete elliptic integrals
of the first kind [7,8]. For later reference, we recall that the complete
elliptic integrals of the second kind are defined by

g g(r) V/1 r: sin2 x dx, U e’(r) g(r’),
d0

(1.3)

r’ x/1 r2, 0 _< r _< (cf. [8, p. 17]).
It is well known that the Hersch-Pfluger function qoK(r) plays a very

important role in quasiconformal theory [1,4,12,13,22,23]. It has also
found applications in other mathematical fields such as number theory.
In number theory, with different notation, pK(r) occurs in Ramanujan’s
work on modular equations and singular values of elliptic integrals
[5,7,22,24]. Ramanujan’s modular equations provide numerous alge-
braic identities satisfied by pK(r) (see 3.2 below for further references).

In recent papers [13,15,16,18,22], many new properties and applica-
tions were obtained for qoK(r). However, some open problems on this
function are still to be settled. Among them, the following two con-
jectures appear in [22, Conjectures 2.19]"

(C1) For KE [1, ) and r E (0, 1),

th(d(K)arth(rl/K)) < K(r) <_ th(c(K)arth(r’/K)), (1.4)

where c(K) max{K, 41-1/K} and d(K) min{K, 41--l/K}. The
equalities hold iffK 1 or K= 2.
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(C2) For KE [1, o) and r E (0, 1),

qo/(r) _> th(22-1/K arth(A(r)l/:)),
where A(r) r/(1 / r’), r’ x/’l r2.

We observe that o/(r) satisfies the conditions qo:(0)= qo:(1)-
l(r)-r=limror(r)-1 =0, for rE(0,1), K> 1. The lower and
upper bounds in (1.4) also satisfy the same boundary conditions.
On the other hand, some properties of or(r), especially the sharp

bounds for /(r), depend on those of the function m(r) + log r, where

2
m(r) =_-(r’)lC(r)lC’(r), (1.6)

for r E (0, 1). Some properties of the function m(r) appear in [2,11,19].
We need still better estimates for m(r) to accomplish our results.
The main purpose of this paper is to prove that conjectures (C1) and

(C2) are true, and to obtain some new properties for the function
m(r) + log r, including sharp lower and upper bounds, from which Sharp
bounds for qo:(r) follow. Hence, the explicit upper bound in the
quasiconformal Schwarz lemma is further sharpened.
Throughout this paper, we let r’ v/1 r2 whenever r E [0, 1]. We let

th denote the hyperbolic tangent function and let arth denote its inverse.
We now state some of our main results.

THEOREM (1) Thefunction

m(r) + log r
F(r) x/7(1 r)arthx/7

is strictly increasingfrom (0, 1) onto (log 4, 2). In particular,

(1.7)

(1 r)arthv/
x/7

log 4 < re(r) + log r < 2 (1 r)arthx/ < 2(1 r)2/3,

(1.8)

for all r (0, 1).
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(2) The function G(r) =_ r(m(r) + log r)/[(d)2(arth r)] is strictly
decreasing from (0, 1) onto (1, log 4). In particular,

(/)2 arth r
< m(r) + log r < (/)2 arth r

log 4 < (/)4/3 log 4, (1.9)
r r

for all rE(O, 1).
(3) The function

f(r) =_ m(r) + log r- 2
(1 r)arthx/7

is strictly increasing from (0, 1) onto (log 4- 2, 0).
(4) The function

g(r) =_ m(r) + log r- (rt)2arth r

is strictly decreasing from (0, 1) onto (0, log 4- 1).
(5) The function

m(r)h(r) =_
log(l/r)

is strictly increasing from (0, 1) onto (1, cxz).

Theorem improves the known bounds and some other properties ofthe
function re(r) + log r. Our next result is an application of Theorem to
the function qr(r).

THEOREM 2 For each r E (0, 1), define thefunctionsfandg on [1, c) by

f(K) qK(r)(ea(r)lr)1/K, g(K) qllK(r)(e(r)lr), (1.10)

where a(r) min{2c(x/7), c(r) log 4}, b(r) max{c(r), c(v/)log 4} and
c(r) =_ ((r’)Zarth r)/r. Then

(1) f is strictly decreasing from [1, cxz) onto (1, ca(r)]. In particular, for
r E (0, 1) andKE(1,),

K(r) < ea(r)(1-1/K)r1/K < 4(r’)4/a(1-1/K)r1/K. (1.11)
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(2) g is strictly decreasing from [1, cxz) onto (0, eb(r)]. In particular, for
r (0, 1) andK

l/K(r) < eb(r)(1-K)rK <_ 4c(x/7)(1-K)rK < 4(1-r)(1-K)rK. (1.12)

Remark 1 The proof of Theorem 2 implies some previously known
bounds of qoh-(r) such as [11

qor(r) < r exp((1 1/K)m(r)), (1.13)

where m(r) is as in (1.6). This upper bound follows, for instance, from
Corollary 1(1) if we set a(r)=m(r)+logr there. The bounds in (1.12)
significantly improve the well-known inequality [12]

Pl/r(r) <rK, rE(0,1), KE (1,cx). (1.14)

THEOREM 3 (1) For r (0, 1), define the function f on [1, cx) by
f(K)-(1/K)arth@r:)). Then, there exists a unique K1E(1,2) such
that f is strictly increasing from [1, K1] onto [arth r,f(K1)] and strictly
decreasingfrom [K1, o) onto (0, f(K1)], withf(2)= arth r =f(1).

(2) For r (0, 1), define the function F on [1, ) by F(K) 4(l/K)

arth@r(flr)). Then there exists a unique K2 (1,2) such that F is strictly
decreasing from [1, K2] onto IF(K2), arth r], and strictly increasing from
[K2, ) onto IF(K2), 1/4 arth #-1(log(I/r))) with F(2)= arthr F(1).

(3) For r E (0, 1) and K [1, cx),

th(d(K)arth(rl/l)) <_ qor(r) < th(c(K)arth(rl/r)), (1.15)

where c(K) max{K, 4l-l/K} and d(K) min{K, 41-l/K}. The equalities
hold iffK= or 2. Thus, the Conjecture (C1) is true.

THEOREM 4 Forrq(O, 1)andK[1,o),

(1) th(22- /Iarth(A(r) m)) < oi(r) < th(2Karth(A(r) m)),
(2) (th((1/K)arth(x/7))}2to < o/r(r) < {th(2(1//)-larth(x/7)) }2t,
where A(r) r/(1 + r’). Equalities hold iffK= 1. Inparticular, Conjecture
(C2) is true.
The next result [4, Theorem 1.25] is a monotone analogue of

l’Hospital rule and is very useful in our proofs.
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LEMMA 1 For a, b E R with a < b, let f, g: [a, b) - R, be differentiable
functions such that g’(x) O, for all x (a, b). Iff’(x)/g’(x) is increasing
(decreasing) on (a,b), then so is (f(x)-f(a))/(g(x)- g(a)). Analogous
result holds on (a, b].

2 PRELIMINARY RESULTS

In this section, we obtain results which are needed for the proofs of the
theorems stated in Section 1. We shall frequently employ the following
well-known identities, which include some formulas [2, Lemma 2.1, 7,9]
for the derivatives of the special functions defined in formulas (1.2)
and (1.3):

dE g- (r’)2K dg g-/C
(2.1)dr r(r,)2 dr r

/C
+ rJ (1 + r)IC(r), lC’

\1 + rJ (1 + r)E’(r),
(2.2)

Os

2x/’ 2g(r) (r’)2/C(r) g,( 2q7’ if(r) + rlC(r).
1+;] l+r l+r] l+r

Eg’ + E’g- EE’
2’

d

Or Kr(r)21C(r)2’
Os 2 2

0-2 72s(s

(2.3)

(2.4)

(2.5)

where s qor(r), 0 < r < 1, 0 < K<.
LEMMA 2 Thefunction

f(r) =_ (r)’ (r) (2.6)

is strictly increasing on [0, 1/x/-] and decreasing on [1/x/, 1] with
f([O, 1])= [rr/2, c], where c g(1/x/)2 1.824...

Proof Differentiation yields

f, r
/C’ g’ /C(r) g(r)

7 ()=(r)(r)-(r), (2.7)
(r’) 2

(r) r2



HERSCH-PFLUGER DISTORTION FUNCTION 121

which, by (1.2) and (1.3), is strictly decreasing from (0, 1) onto (-,
with r 1/x/ as its unique zero and hence, the result follows.

LEMMA 3 (1) Let c > O. Then the function f(r) =_ (r’)c (arth r)/r is de-
creasing on (0, 1)iffc > .

(2) The function g(r)=_ (arth r)/[r + log(1 + r)] is strictly increasing

from (0, 1) onto (1/2, o
(3) The function h(r)=_arthr-arth(r2) is strictly increasing and

concave, while k(r)--r arth r- arth(r2) is strictly increasing and convex

from [0, 1) onto [0, 1/2log 2). In particular, for r E (0, 1),

1max -r arth(r2)’ arth(r) -4- r log 2 < arth r < arth(r2) + log 2.

(2.8/

(4) The function H(r) =_ [(1 4- r2)arth r r]/r is strictly increasing
and convex from (0, 11 onto (4,

Proof (1) Differentiation gives

r2(r’)(2-c)
r

r

)sf’( crY. + (r,)2
arth r,

which is negative iff c >_ [r- (/)Earth r]/(r2arth r), for all r E (0, 1).
Now,

d--d [r2arth r]/ rrd [r-(r’):arth r] 1 + [r/(2(r’)2arthr)].

Next,

/dd-- [(r’)2arth r]/ r [r] 2r arth r,

which is clearly decreasing. Hence the result follows by Lemma 1.
(2) The function g has the form 0/0 at r=0. Denote gl(r)= arth r,

g2(r)=r+log(1 +r). Then g’l(r)/g’2(r) 1/[(1 r)(2 + r)], which is
clearly increasing, so that g gl/g2 is also increasing by Lemma 1. The
limiting values are clear.
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(3) Differentiation gives

lmr r
k’ (2.9)if(r)=(l+r)(l+r2) (r)=arthr

l+r2’

from which the assertions follow.
(4) This follows easily from differentiation.

LEMMA 4 (1) The function f(r) =_ lC(r) + log r’ is strictly decreasing
from (0, 1) onto (log 4, re/2).

(2) The function g(r)= K.(r)- arth r is decreasing from (0, 1) onto

(log 2, rr/2).
(3) The function F(r) [E(r) (rr/2)]/log(1/r’) is strictly increasing

from (0, 1) onto (rr/4, 1). In particular, for r E (0, 1),

(rr/4) log(1/r’)+ (rr/2) </C(r) < log(1/r’) + (rr/2). (2.10)

Proof The assertion (1) was proved in [2, Theorem 2.2]. The result (2)
follows from (1). For (3), let G(r) =/(r) rr/2 and h(r) log(1/r’). Then

G’(r)/h’(r) (r) (r’)2/C(r)
r2

which, by (1.2) and (1.3), is strictly increasing on (0, 1) and, hence, the
result follows from Lemma 1.

LEMMA 5 (1) The function g(r) =_ r2(K7 ff)/(r’)2is strictly increasing

from (0, 1) onto (0, rr/4).
(2) The function h(r) =_ ff/v/7 is strictly decreasing from (0, 1) onto

(rr/2,
(3) The function F(r) =_ (v/-)lC’ is strictly increasingfrom (0, 1) onto

(0, rr/2).
(4) For all r (0, 1),

rr( r= (r’)= arth r)ff(r)[g(r)-(r’)2/C(r)] < + r
(2.11)

Proof (1) This follows from [18, Theorem 2.1 (6)].
(2) This follows from [3, Theorem 1.3].
(3) This follows from [2, Theorem 2.2(3)].



HERSCH-PFLUGER DISTORTION FUNCTION 123

(4) Let

4,( (/)2/6) r+f(r)

Then,

(r’)2arth r
-1, for r E (0, 1).

4}f’(r) =f (r)
7r(r’)2

(/C’- ’)(- (r’)2/C)

4 r- (1 + rZ)arthr
2.+ -/C’ +

71 r3

By [3, Theorem 2.1 (7)] and [18, Theorem 2.1 (6)], the function

/C’- ff
(e (r’)2/C) (r2)(KT’ e’). e (r’)2/C

(2.12)

is strictly increasing on (0, 1). Hence, by Lemma 3(4),

fl(r) <
4 {E’(b) ’(b) 9-1C }g (b’)2

[(b) -(b’) (b)] + 1C(b)ff(b)

a (1 + a2)arth a
+ a3

2 =-f2(a,b),

for r E (a, b] C (0, 1). Since

f2(0 +, sin 38) -0.001...,

(2.13)

f2(sin 38, sin 42) -0.05...,

it follows from (2.12) and (2.13) that

f(r) < f(0+) 0, for r (0, sin 42]. (2.14)

Next, by (1.2) and (1.3), we have

4r 4
f’(r) rfl(r) > 7r(r,)2 (/C’-’)(g-(r’)2/C)+-rfflog27r

-(1 4 r3 ) r2)arth
7rl ---r2g’

(1 + r

r2
2r +-r

4
> 213 (r) r( (r’)2/C) + r’ log 2

rr r
4/(l+r2)arthr 4 l+r2

1,
71"

(2.15)

for r (0, 1).
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Let

71" rg’ and fs(r)--r’f4(r) 4 l+r2

Thenf4(1) =fs(1) 0 and

By (1.2), (1.3), and part (2), the function

3+r2ff
+ r2 r2 (r,)2

is strictly decreasing on (0, 1). Since

d {’ r3r’ " r2(3- 2r4- 3r2)
d- ,1 + r2,] r’(1 + r2)2

r3r’/(1 + r2) is strictly decreasing on [91- v/v/- 3, 1). Since

1/2 v/v/ 3 < sin 56,f6 is strictly decreasing -n [sin 56, 1), and hence,
so isfa(r)/fs(r) by Lemma 1.
By Lemma 3(1), r’(1 + r2) (arth r)/r2 is decreasing on (0, 1). Therefore,

f3 is strictly increasing on [sin 56, 1). Since f3(sin 64) 0.06... > 0, it
follows from (2.15) thatfis strictly increasing on [sin 64, 1) and, hence,

f(r) < f(1-) 0, for r E [sin 64, 1). (2.16)

On the other hand, it is clear that

4 g,f(r) < f7(a,b) =-- (b)[g(b) (bt)2K(b)]-+- (a’)2arth a
a2 1,

(2.17)

for r E [a, b] C (0, 1). Computation gives

f7 (sin 42, sin 46) -0.01...,

f7 (sin 50, sin 54) -0.003...,

f7 (sin 57 sin 60 -0.01...,

f7 (sin 62, sin 64) -0.03...

f7 (sin 46, sin 50) -0.01...,

f7 (sin 54, sin 57) -0.02...,

f7 (sin 60, sin 62) -0.04...,
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Hence, it follows from (2.17) that

f(r) < 0, for r E [sin 42, sin 64].

Finally, the inequality (2.11) follows from (2.14), (2.16) and (2.18).

THEOREM 5 (1) The function f(r) =_ [(1 + r2)(r) (1 / r4)IE(r)]/r2 is
strictly decreasing from (0, 1) onto (-o, 7r/4), and has a unique zero

r0 E (sin 34, sin 35).
(2) The function g(r) =_ r- 2{1C’(r)[(r) (r’)2/E(r)] + (r)’(r) 7r/2}

is strictly decreasing from (0, 1) onto (7r/2, o).
(3) The function F(r) =_ (1 / r2)[m(r) / log r] is strictly decreasing

from (0, 1) onto (0, log 4).
(4) The function G(r) F(r)/(d) (4/Tr)lE(r)’(r) is strictly &creas-

ing from (0, 1) onto (- 1, log 4 2). In particular, for all r (0, 1),

4_ 1C(r)ff(r)- < (1 + r2) 4
(m(r) + log r) <-/C(r)e’ (r) + log4- 2.

(2.19)

Proof (1) Since

f(r) g(r) r2/E(r)-/C(r) (r)
r2

it follows from (1.2) and (1.3) that f is decreasing on (0, 1) with
f(0+) 7r/4 and f(1-)=-. Hence, f has a unique zero r0 (0, 1).
Since f(sin 34)= 0.0001... >0 and f(sin 35) -0.01... <0,
r0 (sin 34, sin 35),

(2) Let g(r) =_ 1E’( (r’)2/E) +’ (7r/2) and g2(r) --- r2. Theng (r)/g2(r) e(1E’ ff)/(r’),
which is strictly decreasing on (0, 1) by [3, Theorem 2.1 (7)], and hence,
so is g by Lemma 1. The limiting values are clear.

(3) By differentiation,

F’(r)/(2rlC’) Fl(r) f(r) (log(1/r))/1C’,
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where f is as in part (1). Since (log(1/r))/1C’ is strictly decreasing on
(0, 1) by Lemma 4(1),

Fl(r) < FE(a,b) =- (2f(a)/rr) + (logb)/IC’(b),

for r E (a, b] c (0, 1) by part (1). By computation, we get

F2(0 / ,sin 14) <_ 0.5 + (log sin 14)/2.83275 -0.00097...,

FE(sin 14, sin21) -0.002..., FE(sin 21, sin27) -0.04

F2(sin 27, sin 35) -0.08...

Hence, Fl(r)< 0 for r E (0, sin 35]. On the other hand, by part (1),
Fl(r) < 0 for r E [sin 35, 1). Hence, the result follows.

(4) By differentiation,

rr(r’)4G’(r) Gl(r) -rrlogr-(r’)2/C’ + (r’)2
2’-

4r 2r9-

r3G’l (r) G2(r) =- rr(r’) 2 2g(,f,’- r21C’) (rr’)2

x (.(/C )(’ r2/C’) )r. +/C

S() 3() -+ (c e)(e’

+ 2r)’g +--
Using Legendre’s relation (2.3) we can write

(,)2 g’(c e)G3(r) 2(r’)2/C’(/C- ,f,) 2g(g’ r21C’) + T-
and, hence,

ff r2G’2(r) G4(r) (2r2/C + ")/C g_
2r(r,)2 rE (r,)2

which is strictly increasing from (0, 1) onto (-37r/4,)by (1.2), (1.3), and
Lemma 5(3). Therefore, G4 has a unique zero r0E(0, 1) such that
G4(r) < 0 for r E (0, ro) and G4(r) > 0 for r E (r0, 1). This implies that
G2 is strictly decreasing on (0, to] and increasing on [to, 1). Since
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o:(1-) 0,

G2(r) < 0 for all r E (0, 1)

so that G1 is strictly decreasing on (0, 1). Clearly, G1(1)=0. Hence
Gl(r) >0 for all rE(0, 1), and the monotonicity of G follows. The
limiting values of G are clear.
Our next result shows how the bounds for qah-(r) are related to the

functions m(r) + log r and #(r) + log r.

THEOREM 6

define thefunctionsfandg on [1, o) by

f(K) g(r) (ea(r)/r) 1/K
and g(K) l/K(r) (eb(r)/r) K.

Then

(1) fis decreasing on 1, o) iff
m(r) / log r < a(r), for all r E (0, 1),

(2) g is decreasing on [1, o)/ff

Let a(r) and b(r) befunctions on (0, 1). For each r E (0, 1),

(2.21)

re(r) / log r >_ b(r), for all r E (0, 1), (2.22)

(3) g is increasing on [1, cx)/ff

#(r) + log r < b(r), for all r E (0, 1). (2.23)

Proof For (1), put s qoc(r). By logarithmic differentiation, we get

/E’(r)K2f(K)f(K) 2
(s’/E(s))27r/Cir + log r- a(r),

which is strictly decreasing in K on [1, o) by Lemma 5(3). From this
formula, one can easily see that the result is true.
For (2) and (3), put u- l/K(r). Then,

g’(K) (u,)2/E(u)2 (r) b(r) (2.24)g(K)-- /E(r)
+logr +

which is decreasing in K. Hence (2) and (3) follow.
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From Theorem 6, the next result follows immediately.

COROLLAP. Let a(r) and b(r) befunctions on (0, 1). Then

(1) Theinequality

qoK(r) < rl/ge(1-1/K)a(r)

holdsfor all r"E (0, 1) andK (1, o),/ff(2.21) holds.
(2) The inequality

qal/K(r) < r:e(1-I)b(r)
holdsfor all r (0, 1) andK (1, ),/ff(2.22) holds.

(3) The inequality

qal/r(r) > rre(1-I)b(r)

holdsfor all r (0, 1) andK (1, ),/ff(2.23) holds.

Proof The "if" parts are clear. We need prove the "only if" part of(l),
since the others are similar. Denote s K(r). In (1), taking logarithm,
raising to power K/(K- 1) and letting K 1, we get

lim[Klog s log r]/(K 1) < a(r).

By l’Hospital rule and (2.5), we get

lim[Klog s log r]/(K- 1) lim[log s + K(1/s)(ds/dK)]
lim[log s + m(s)] m(r) + log r,

hence (2.21) follows.

By Corollary 1, in order to obtain the bounds for K(r), K> 0,
0 < r < 1, we need only to obtain bounds for m(r) + log r and #(r) + log r.

LEMMA 6 For r E (0, 1), as afunction ofK, s s(K) =_ p:(r:) is strictly
increasingfrom [1,) onto [r, #- 1(log(I/r))).

Proof Since #(s)= #(r:)/K, we get making use of (2.5)

ds s(s)2/C(s)2 [m(rr) + logrtc
d-= (1 rEC)/C(rr)EK2 ], (2.26)

which is positive by Theorem 5(3), yielding the monotonicity of s(K).
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Clearly, s(1) r. By l’Hospital’s rule,

lim s(K) lim #-1(#(s)) #-l(lim #(/)) #-1(log(I/r)).
K---c K--me K---o

LEMMA 7 (1) Thefunction

=_ +
71-2 log r

4(r’)E/C(r)2

is strictly decreasing and concave from (0, 1) onto (0, log 4). In partic-
ular,for r E (0, 1),

1
log(1/r) + (1 r) log 4

< 4(r,)E/C(r)2
log(1/r) + (1 r) log 4

log(i/r) + log 4 (2.28)< #(r) < 4(r,)2/C(r)2
(2) The function g(r) =_ [’ 1CU + r21CIC’]/r2 is strictly decreasing

from (0, 1) onto (7r/2, cx3).

Proof (1) Differentiation gives

f’(r)
7r
2 /C- rlog(1/r)
2 r2 (rt)2K (rt)2

It is easy to verify that (rlog(1/r))/(r’)2 is strictly increasing on (0, 1) by
Lemma 1. Hence, by (1.2), (1.3), and Lemma 5(3), we see that f’ is
negative and strictly decreasing on (0, 1). Therefore the monotonicity
and concavity offfollow.

Clearly,f(1 -) 0, and the second and third inequalities in (2.28) hold.
The first inequality in (2.28) follows from Lemma 5(3). By l’Hospital’s
rule,

7
2 =--.
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Hence

f(O’-) r-+olim {[#(r) 4. log r] 4.

log 4,

(7r2/4) (r’/C)2r2 r21g r}(r,/C)2

and completes the proof of (1). Part (2) was proved in [18,
Theorem 2.1 (7)].

LEMMA 8 Define thefunctionsf, g on [0, 1) by

f(r) rlC(r)2/log((1 + r)/(1 r)),f(O) /8,
g(r) f(r)/1C(r).

Thenf is strictly increasing andg is strictly decreasing. In particular, for
0<r<l,

(artrh r) 1/2 2/C(r) arthr

Both inequalities are sharp as r --00. The second inequality is ofthe correct

order as r - 1.

Proof This was proved in [3, Theorem 3.10].

3 PROOFS OF MAIN THEOREMS

In this section, we prove the main theorems stated in Section 1.

Proof of Theorem For part (1), put x-2x/7/(1 4.r). Then
r (1 x’)/(1 4- x’) and

F(r) 2 (2/Tr)xlC(x)tC’ (x) x(arth x’)Ix’
arth x

=_ F (x), (3.1)

by (2.2). It is sufficient to prove that F1 is strictly increasing on (0, 1). For
this purpose, let F2(x) (2/Tr)xlEE’ x(arth x’)/x’ and F3(x) arth x.
Then F2(0+) F3(0) 0 and

F(x) 2 4 arth x’
F(x) F4(x) -Tr (x’)2/C/C’ + -Tr K’8 x------7-
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Put x’, and let Fs(t) Fa(t’ ). Then

(t’)2artht 2t(t’)2F(t) 4’(t)[(t) (t’)2KT(t)] +
7r

which is negative for all (0, 1), by Lemma 5(4). Hence F4 is strictly
increasing on (0, 1), and so is F by Lemma 1.
The limiting values and the first two inequalities in (1.8) are clear,

while the third inequality in (1.8) follows from Lemma 3(1).
For part (2), let Gl(r) r[m(r) / log r]/(r’)2 and GE(r) arth r. Then

GI(0+) G2(0)= 0 and, by (2.3)

G, (r)/G2(r)=1 {(1 + r2)[m(r)+ logr]- 4 (r,)2/C,(/C g))
(1 + r2) [m(r) + log rl- 4/Cg’ + 2,

which is strictly decreasing on (0, 1) by Theorem 5(4). Hence, the
monotonicity of G follows from Lemma 1.
The limiting values G(0+)=log4, G(1-)= and the first two

inequalities in (1.9) are clear. The third inequality follows from
Lemma 3(1 ).

Parts (3) and (4) follow from parts (1) and (2), respectively. Finally,
part (5) was proved in [2, Lemma 4.2(2)].

COROLLARY 2 Letf(r) =_ ((r’)2arth r)/r, 0 < r < 1. Then,for all r (0, 1),

max{f(r),f(x/7) log4}< re(r)+ logr< min{2f(x/7),f(r) log4}. (3.2)

Proof of Theorem 2 The monotoneities of f and g follow from
Theorem 6 and Corollary 2.
The limiting values f(1) ea(r), limr_ of(K) and g(1) eb{r are

clear. By (1.2), (1.6), (1.8) and (1.9)

#(r) + log r- b(r) > m(r) + log r- b(r) > 0, (3.3)

and, hence, ifwe put u qOl/r), then

lim g(K) lim{u(eb(r)/r)u(u)/u(r) }Kc u--+0

(eb(r)/r) (lg4)//(r) lim exp{ (#(r)) -1 [#(r) +log r-b(r)] log u}u----0

=0. (3.4)
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The first inequality in (1.11), the first and third inequalities in (1.12) are
clear. Since a(r) < 4c(r) and b(r) > c(v/-) log 4, the second inequality in
(1.11 ) and the third inequality in (1.12) follow from Lemma 3(1 ) and (2),
respectively.

COROLLARY 3 For r E (0, 1) andKE (1, c),

where c 4x/rlg(x/+l) 5.629087...

Proof It follows from (1.11) that

K(r)i(r’) < 4f(’)(1-11I(rr’) 11, (3.5)

where

f(r) (r,)2
arth r r2 arth r’

r
+

r---S--" (3.6)

It is easy to verify thatf is increasing on (0, 1/x/] and decreasing on

[1 /x/, 1), so that < f(r) <_ f(1 /x/) log(x/

The following result is a direct consequence of Theorem 2(1) and the
well-known quasiconformal Schwarz lemma [12, Theorem 3.1, p. 64]
(see also (1.1)). This consequence is a significant improvement upon
the existing explicit quasiconformal Schwarz lemma.

COROLLARY 4 Suppose thatfis a K-quasiconformalmapping ofthe unit

disk B into itselfwithf(O)= O. Thenfor each z B,

If(z)l _< 4(1-1zFl/(1-1/lzl 1/c. (3.7)

COROLLARY 5 Forr(O, 1)andK(1,o),

K(r) > 4(1-1/K)(1-x(r))r1/K > 4(1-1/K)a(r’K)rl/K,

l/K(r) > 4(1-K)K(r’)4/3rK > 4(1-K)b(r’K)rK,

(3.8)

(3.9)

where

a(r, K) (r’)2/l 6b(/’ho(1-x9/2, b(r, K) { (r’)1/K4r4’3(l-l/K) }4/3.
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Proof It follows from (1.11) that

qOl//(r) > 4x(r’)4/3(1-K)rK > 4(1-K)b(r’K)rK.

From (1.12), it follows that

qoK(r) > 4(1-1/l)(1-K(r))r1/. (3.10)

The second inequality in (3.8) follows from (3.9).

Remark 2 Corollary 5 improves the well-known lower bounds of
or) and Ol/r) [9, Lemma]:

qOlc(r) > rI/I and qOl/K(r) > 41-rK, (3.11)

for r E (0, 1) and KE (1, cxz).

Proof of Theorem 3 For r (0, 1) and K 1, c), set s s(K) /(r/).
(1) From (2.26), we get

2slE(s)lE’(s){ log(r:) }Kf’(K)/f(K) =f(K) + (3.12)
7r arth s m(rto)

By Lemmas 6 and 8, as a function of K, slE(s)IE’(s)/arths is strictly
decreasing on [1, c). By Theorem 1(5), as a function of K, (log(r/))/
m(rc) is strictly decreasing from [1, o) onto (-1, (log r)/m(r)]. There-
fore, fl is strictly decreasing on [1, ), with

fl(1) rim(r) + logr]/((r’)2arth r) 1,

which is positive on (0, 1) by Theorem 1(2).
On the other hand, since

qoz(r) 2x//(1 + r), 0 <_ r <_ 1,

we have by (2.2),

2fl (2) [r(m(r2) + log(r2))/((r’)2arthr)] 2,

(3.13)

which is negative on (0, 1) by Theorem (1).
Therefore, fl has a unique zero K1 (1, 2), depending on r, such that

fl(K)>0 for K[1,K1) and fl(K)<0 for KE(KI,), so that the
monotoneities off[ [1, K1) andf[ (K1, ) follow from (3.12).
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Next, by (3.13), f(2)=arthr=f(1), while limK_o f(K)=0 by
Lemma 6.

(2) Logarithmic differentiation gives

KEF’(K)/F(K)
SK(S)2 { 4

F1 (K) arths
#(rK) + 1og(rK) }(1 r2r)K(rK)2

log 4, (3.14)

by (2.26). It follows from Lemmas 6-8 that F1 is strictly increasing on
[1, ), with

FI(1) rim(r) / logr]/((r’)Earthr) log4,

which is negative for all r E (0, 1) by Theorem 1(4).
By (3.13) and (2.2), we have

Fl(2) r[m(r2) + logr2]/((r’)2arthr)- log4,

which is a positive and increasing function oft on (0, 1) by Theorem 1(3).
Hence, F1 has a unique zero K2 E (1,2), depending on r, such that
FI(K) < 0 for K [1, K2) and FI(K)>0 for K (K2, o). This yields the
piecewise monotonicity ofFby (3.14).
By (3.13) and Lemma 6, F(2)=(arth2(r2))/2=arthr=F(1), and

limr F(K) [arth(# l(log(1/r)))]/4.
(3) It follows from part (1) that, for all r (0, 1),

>_ th(K arth(r/K)),r(r) _< th(K arth(r/K)),
if _< K_< 2, (3.15)if 2 _< K < x,

with equality iff K= or 2.
By part (2), for all r (0,1),

qK(r) f <_ th(41-1/K arth (rl/K)),
_> th(41-1/K arth (rl/r)),

if _< K _< 2, (3.16)if 2_<K<,

with equality iffK= or 2.
On the other hand, it is easy to verify that

41-l/K,
c(K)=

K,
for <K<2,
for 2 < K <

(3.17)
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K, for l<K<2, (3.18)d(K) 41_l/K, for 2 < K <

Now the assertion (3) follows from (3.15)-(3.18), as desired.

Remark 3 In [22, Theorem 2.23], it was proved that, for K= 2p,
p= 1,2,... and rE[0, 1],

OK(r) <_ th(Karth(r/K) ). (3.19)

Theorem 3 shows that (3.19) holds for all K> 2 and r E [0, 1], and that it
is reversed ifKE [1,2).

COROLLARY 6 For r (0, 1) andK [1, c),

(th(dl(K)arth r))/ < qol/r(r) < (th(c (K)arth r))K, (3.20)

where

dl(K) min{1/K,4(I/r)-l}, cl(K) max{1/K, 4(1/K)-l }. (3.21)

Equality holds iffK= or K 2.

Proof Let u qo/r). Then, by Theorem 3(3),

th(d(K)arth(u/I)) < r <_ th(c(K)arth(u/I)), (3.22)

with equality iffK= or K 2, from which the result follows.

COROLLARY 7 Suppose thatfis a K-quasiconformalmapping ofthe unit

disk B onto itselfwithf(O)= O. Thenfor each z B,

l/([z]) <_ If(z)l _< oc(Izl),

{th(dl(K)arth Izl)) _< If(z)l _< th(c(K)arth(lz[1/)),
(3.23)
(3.24)

where c(K) anddl(K) are as in Theorem 3(3) and Corollary 6, respectively.

Proof These follow from Theorem 3(3), Corollary 6 and the well-
known quasiconformal Schwarz lemma [12, Theorem 3.1, p. 64].
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Proof of Theorem 4 Since

qOl/2(r) (1 r’)/(1 + r’) A(r)2 0 < r < 1

qor)=o2X.@l/2(r))=o2x(A(r)2) and the assertion (1) follows from
(3.15) and (3.16).
For (2), set r=A(t)2 and u=qol/t). Then t= o2(r) 2x/7/(1 + r),

and

991/K(r) 991/K(A(t)2) A(991/K(t))2 A(u)2.

Hence, by part (1) and (3.3),

Ol//(r) A(u) < {th(2(1/x)-2arth or(u))}2/
{th(2(1/-2arth t)
{th(2(1/_larth(v/7)) }2v, (3.26)

and

qo,/(r) A(u)2>_ {th (Karthqog(u))
{th(2arth t)
(th (arth(VT))

so that the assertion (2) follows.

(3.27)

3.1 Generalized Modular Equations

For a real number a (0, 1) define the generalized #-function or the

#-function with signature a by

7r F(a, or; 1; r2)
#(r) 2sin(Tra) F(a, a; 1;r2)

r e (0, 1), (3.28)
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where Fdenotes the classical hypergeometric series [25, 2.38, p. 24]. Then
#:(0, 1)4(0,) is a homeomorphism. Since #=#1- we may
assume that tr E (0, 1/2]; note that #1/2(0 #(r). The generalized modular
equation or modular equation ofsignature cr and degree p is the equation

#(s) p#(r). (3.29)

For the particular case or= 1/2 we get the classical modular equations
considered in [5,7]. The general case was first considered by Ramanujan
in his notebooks. Obviously, the solution of (3.25) is given by

S-" #1 (p#r(r)) --= l%p(r). (3.30)

As far as we know there are no estimates for the function lp(r) defined
in (3.30). It is a very interesting open problem to extend the inequalities

r r (0,for K(r)in this paper to the case of /p(), tr E 1/2 )

3.2 Ramanujan’s o, fl-Notation
Ramanujan has derived dozens of algebraic identities satisfied by the
solutions of modular equations of prime degree for several small prime
numbersp (and cr 1/2) He uses the notation a r2,/ l/p(r)2 andproves
for the solution of the classical degree 7 modular equations, e.g.

(ceil) 1/8 + ((1 ce)(1 -/))1/8 1, ce r2, / qOl/7(r)2

for rE(0, 1) [5, p. 314, Entry 19(i)]. Berndt et al. [6, Theorem 7.1(i)]
recently proved for the solution of the generalized modular equation of
degree 2 with cr 1/2 that

/3 )(a/) 1/3 + ((1 c)(1 -/))1/3 1, c r2, fl ,1/2(r)

for rE(0, 1) along with many similar results, stated originally by
Ramanujan without proofs in his notebooks.

OPEN PROBLEM For K> 1 and r E (0, 1) let

g(K,r)
arth K(r)
arth(rl/r)
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Is it true that g(K, r), as a function of r, is decreasing onto (K, 41 -l/K)
when < K< 2 and increasing onto (41 l/K, K) when K> 2?

An affirmative answer to this problem would provide another proof
ofTheorem 3(3).
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