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1. INTRODUCTION

This paper is devoted to the study of a multiplicity result for higher
order ordinary differential equations of the form

x(n)(t) +f(t, x(t)) S on J [0, 27r],
x(i) (0) X(i) (271"), 0, 1,..., n 1,

(1,)
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where s is a real parameter andf: J x R R is a Carath6odory function.
Throughout this paper, we assume that f is 2r-periodic in the first
variable. Assuming the following coerciveness condition

lim f(t, x) oc uniformly in E J, (H)

we may consider the existence of multiple solutions of (1 s), the so-called
Ambrosetti-Prodi type problem. In 1988, among their general set-up of
differential operator L, Ding and Mawhin [3] have proved under the
assumption f(t,x)-g(x)+e(t,x), where g is continuous with the
coerciveness condition and e is of Carath6odory type, uniformly
bounded by an L1-function, that there exist So and 2 with So <_ such
that (1.) has no, at least one or at least two solutions according to
s < So, s- or s > . When n is even, they require an additional
growth restriction on g. i.e. there exists 7 E (0, 1) such that

(g(x) g(y))(x y) >_ -7(x y)2, x,y E R.

In this case, assuming e(t, x)= e(t) has zero mean value, they also prove
that there exists So such that (ls) has no, at least one or at least two
solutions according to s < So, s So or s > So.

Allowing joint dependence of (t,x) in the nonlinear terms, Ramos
and Sanchez [6] deal with a number of situations in which one of the
above results can be established. Among others, when n is even andf
is continuous and coercive and the following condition holds: there
exists 7 (0, 1) such that

(f(t,x) -f(t,y))(x- y) >_ -7(x- y)2, for all J and x,y R,

they prove the second result in [3].
In this paper, we give a similar result as Ramos and Sanchez [6]

with no restriction on the order n. More precisely, iff is continuous
satisfying (H) and the following condition holds: there exists
M (0, A(n)) such that

(f(t,x) -f(t,y))(x y) >_ -M(x y)2, for all J and x, y R,

(H1)



THE METHOD OF UPPER AND LOWER SOLUTIONS 309

where A(n)-n!/Tr"(n-1)"-1, then (Is) satisfies the conclusion of the
second result in [3].
The proof is based on the method of upper and lower solutions for

higher order ordinary differential equations introduced in [2] and an

application of coincidence degree.
In what follows, J [0, 2r]. Mean value 2 of x and the function 2 of

mean value 0 will be respectively defined by 2- 1/2rfx(t)dt and
2(t)- x(t)- 2. Ck(J) will denote the space of continuous functions
defined on J into R whose derivative through order k are continuous,
C2(J) the space of 27r-periodic functions of Ck(J), LP(J) the classical
real Lebesgue space with the usual norm ]l’llp- W’I(J) denotes the
Sobolev space of all functions x of C;-1, with x(-1 absolutely
continuous and Wk (J) the space of 2r-periodic functions of W’1.

2. MAXIMUM PRINCIPLES AND THE METHOD OF UPPER
AND LOWER SOLUTIONS

Let Ln F2 -+ L (J) be defined by Ln D" + MI, where D d/dt, I is
the identity operator, M is a nonzero real constant, and

F nTr {x E Wn’l (J) x(i) (0) x(i) (27r), 0,..., n 2,

x("-’)(0) >

DEFINITION We say that Ln is inversepositive inF ifLnx > 0 implies
x _> 0, for all x E F and L is inverse negative if Lx > 0 implies x _< 0,
for all x F.
We present some maximum principles for the operator L.

LEMMA (Cabada [1]) Let A(n)-n!/r(n-1)n-1. Then the operator L
is inversepositive inF for M (0, A(n)), andL is inverse negative inF
for M (-A(n), 0).

We notice that the second statement of Lemma can be restated as
follows; D-MI is inverse negative in F’ for M (0, A(n)).

Remark 1 By Lemmas 2.1 and 2.2 in [1], we have a strict inequality
version of Lemma as follows; If M (0, A(n)) (M (-A(n), 0)), then

Lx > 0 implies x > 0 (x < 0) in F.
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Consider the periodic boundary value problem of higher order

x(’)(t) +f(t,x(t)) -0 a.e. on J,
(2)

x(0) ;(2), 0,1,..., l,

wheref: J R R is a Carathdodoryfunction, i.e. f(., x) is measurable
for each x R, f(t, .) is continuous for a.e. E J, and for every r > 0 there
exists h E L(J) such that

If(t,x)l < hr(t),

for a.e. E J and all x E R with Ix[ _< r. We define lower and upper
solutions of Eq. (2);

DEFINITION 2 a Wn’l(J) is called a lower solution of (2) if

o(n)(t) +f(t,a(t)) >_ 0

a(i) (0) a(i) (270,
o(n-1)(O) _> o(n-1)(27r).

a.e. tJ,

i- 0, 1,...,n- 2,

Similarly,/3 W"(J) is called an upper solution of (2) if

t(n)(t) +f(t, fl(t)) <_ 0

/(i) (0) --/(i) (270
/(n-1)(O)

_
/3(n-)(27r).

The following theorem is proved by Cabada [2], but here we give a
different proof for reader’s convenience, since part of the proof is useful
to continue arguments in the proof of Theorem 3 in Section 3. The
proof essentially follows Theorem 1.1 in [4].

THEOREM Assume that a and fl are lower and upper solutions of (2)
respectively with a(t) <_/3(0, for all E J. Also assume that f satisfies
that there exists M (0, A(n)) such that

f(t,a(t)) + Ma(t) <_f(t,x) + Mx <_f(t, fl(t)) + M/3(t), (H2)

for a.e. e J with a(t) <_ x <_ fl(t). Then (2) has a solution x such that
a(t) <_ x(t) <_/3(0, for all J.
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Proof Let us consider the modified problem

X(n) t) + F( t, x( t) 0

x(i) (0) x(i) (2r),
(3)

where F’J x R R is defined by

f(t, /3(t)) M(x /3(t)),
F(t,x)- f(t,x),

f(t, a(t)) M(x a(t)),

/fx
/f _< x
/f x <

M is a real constant in (0, A(n)). We claim that any solution x of (3)
satisfies a(t) < x(t) <_ fl(t), for all J so that it is a solution of (2). Let
J1 {t J: x(t) >/3(t)}, J2 {t J: a(t) < x(t) <_ fl(t)} and J3 {t J:
x(t) < a(t)}. Then on J1,

x(")(t) 3(n)(t) >_ -F(t,x(t)) +f(t,/3(t))
-f(t, 3(t)) + M(x(t) 3(t)) +f(t,/3(t))
M(x(t) 3(t)) a.e.

On J2,

x(")(t) -/3(")(t) _> -f(t,x(t)) +f(t, /3(t))
>_ M(x(t) 3(t)) a.e. by (H2).

On J3,

x(") t) -/3(’0 (t) _> -F(t, x( t) +f t, (t)
-f(t, a(t)) + M(x(t) a(t)) +f(t,/3(t))

>_ M(x(t) a(t)) M(3(t) a(t)) by (H2)
M(x(t) 3(t)) a.e.

Thus by the above three cases, we get

x(")(t) -/(n)(t) M(x(t) -/3(t)) >_ 0 a.e.J.

It is not hard to check that x-/3 F’ and thus by Lemma 1,

x(t) <_/3(t) for all J.
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Obviously, a similar argument applies to show that

a(t) <_ x(t) for all E J.

Therefore we get

<_ x(t) <_ for all E J.

It remains to prove that (3) has at least one solution. To this purpose,
consider the homotopy

X(n)(t) (1 A)Mx(t) + AF(t,x(t)) 0 a.e. on J

x(i) (0) X(i)(2zr), 0, 1,..., n 1,
(4)

where A [0, 1]. First of all, we will obtain a priori estimate for all
possible solutions of (4). Let x be a solution of (4). We do the case when
n is odd first. Multiplying both sides of (4) by x and integrating on J,

IIx( )ll (-1)(n+’)/2A fj F( t, x( t) )x’ t) dr,

where p- (n + 1)/2. Now

The integral in the last term is 0 and by the Carath6odory
condition, integrals fj, If(t,/3(t)) Ix’(t) dt, fJ2 If(t, x(t)) Ix’(t) dt and

fJ3 If(t’c(t))llx’(t)ldt are bounded by I[h,[lll[x’llo, for h,L’(J)
determined by max{[[c[]o, [[/311} in the definition of Carath6odory
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function. Thus we get

by Sobolev inequality

by Wirtinger inequality,

where M-2rMmax{]lcllo, ll/3llo}. Therefore

and by Wirtinger inequality again,

IIx’l12 + Ilhllll). (2a)

When n is even, multiplying both sides of (4) by 2 and integrating on
J, we get for p-n/2,

(-1)pllx(p)l] 2 (1 ,)M x(t)2(t)dt- , F(t,x(t))2(t)dt.

Now

j
F( t, x( t) )2( t) dt

fj (f(t,/3(0 M(x(t) /(t)))2(t) dt

+ j f(t,x(t))2(t)at + jj (f(t, oz(t))- M(x(,)- o(t)))2(t)at

fj, (f(t, (t) + M(t))2(t) dt + (f(t, x(t)) + Mx(O)2(t) dt

+ fj (f(t,c(t)+ Mc(t))2(t)dt- Mfj x(t)2(t)dr.
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Thus

(-1)PlIx(P)I[ 2 M x(t)2(t)dt- A (f(t,(t)) -4- M(t))2(t)dt

+ Sa2 (f(t,x(t)) + Mx(t))2(t)dt

and we get

IIx(/II 2 < MIIII + 3(k? + Ilh II IIX’ll oo

_< MIIII + /(J? + hlll,)llx’ll2 by Sobolev inequality

MIIx>ll +(+ Ilhl Ill)llxCP>ll2
by Wirtinger inequality.

Since 0 < M < 1, we get

IIx(,’)ll 2 <
v/-( + IIh Ill)

and by Wirtinger inequality,

IIx’ll2 _< v(+ lib1 Ill). (2b)vr(1 M)

Therefore both (2a) and (2b) imply that

xf(1 M)

for all possible solutions x of (4).
Claim that there is -J such that Ix(m)l <m+ 1, where m=

max{[Icllo, 11/3[Io}. Suppose that the claim is not true, so let x(t)>_
m + for all J. Then x(t) >/3(t) for all Jand by the fact that/3 is an
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upper solution of (2), Eq. (4) becomes

x(n)(t) (1 A)Mx(t) AF(t,x(t))
Mx(t) V(t, (t)) ,M/(t)

> Mx(t) + Afl(")(t) AM/3(t) a.e.

Thus

(x Afl)(n)(t) M(x A/3)(t) >_ O, a.e. E J.

Since x /3 E F for all A [0, 1], it follows from Lemma that

x(t) <_ A/3(t), for all J.

Thus

I/(t) < x(t) _< ,(t),

for all J and A [0, 1] and this is a contradiction. We may get a
contradiction by a similar argument for the case x(t)<-m-1, for all
E J, and the claim is verified. Now

Ix(t) Ix(-)l + Ix’(s) ds

<_ [x(’r)l + 27rllx’[I 2

< m + + 6x/--( + IIhlll) M(ha),(1 M)

and the a priori estimate is complete. For degree computations, we

reduce problem (4) to an equivalent operator form. Define L D(L) c
C(J) Ll(j) by x H x(n), where D(L)- W2"; and Na’C(J)
L (J) by

Nax(.) -(1 A)Mx(.) / AF(.,x(.))

so that (4) can be written as

Lx+NAx-O.
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By the standard argument [5], we can easily check that L is a Fredholm
operator of index 0 and Na is L-compact on for any bounded open
subset f in C02r(J). Let 20 be an open bounded subset in C2(J) with

Then by the a priori estimate, Lx + Nax =/= 0 for x E D(L)N 0f0, and
thus the coincidence degree DL(L + Na, f0) is well-defined. Since the
linear problem

x(n) t) Mx(t) 0

does not have any nontrivial 2r-periodic solutions, by homotopy
invariance property and Proposition II.16 [5], we obtain

1 DL(L- MI, 2o) DL(L + No, 2o) DL(L + N, o).

This implies that (3) has at least one solution in D(L)Nfo and the
proof is complete.

3. MULTIPLICITY RESULTS

In this section, we shall apply Theorem of Section 2 to get multiplicity
results of 2r-periodic solutions for higher order Ambrosetti-Prodi
type problems. Let us consider Eq. (1 s):

x(")(t) +f(t,x(t)) s

x(i) (0) x(i) (2r),

on J,

i=O, 1,...,n-1,

where s is a real parameter and f:J R R is a Carath6odory
function. Throughout the remainder of this paper, sometimes without
further comment, we shall assume the following condition; there exists
M (0, A(n)) such that

(f(t,x) -f(t,y))(x y) >_ -M(x y)2, for a.e. J and x, y R,

(HI’)
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where A(n) is given in Lemma 1. We notice that (H1t) implies the
condition (H2) in Theorem and if f is continuous, then (H1 t) is
equivalent to (H 1).

THEOREM 2 Assume that there exist S and r(s) > 0 such that

ess sup f(t, O) < Sl < f(t,x)
tEJ

for a.e. E J and x R with x <_ -r(sl). Then there exits So < Sl, possibly
So- -cx such that (1) has no solutionfor s < So and at least one solution

for s (So, S l].

Proof Let s* ess supt j f(t, 0), then constant functions -r(sl)
and/3 0 are lower and upper solutions of (1 s,), respectively. Thus by
Theorem 1, Eq. (1 s) has a solution for s s*. We also see that if ) has a
solution 2 for < sl, then (1) also has a solution for s [L Sl], since 2
and -r(s) are upper solution and lower solution of (1) for s [LSl],
and -r(sl) <_ 2(t) for all J by necessary adjustment for r(sl). We
complete the proof by taking s0=inf{sER: (1,0 has at least one

solution}.

For multiplicity results, we shall employ coincidence degree argu-
ments. Define L’D(L) C C(J) - Ll(j) by xxn), where D(L)
Wzn; (J), and Ns Cz(J) L (J) by

Nsx(.) f(.,x(.)) s.

Then (1) can be equivalently written as

Lx + Nsx O,

and it is well-known that L is a Fredholm operator of index 0 and N
is L-compact on ( for any bounded open subset f in C(J).

THEOREM 3 Assume that there exist s and r(s) > 0 such that

esssup f(t, O) < s < f(t,x) (3a)
tGJ

for a.e. tJ and x CR with Ixlr(s). Also assume that there
exists R--R(s,f)>O such that every possible solution x of (1),
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for s < s satisfies

(3b)

Then there exists a real number So < s such that (Is) has

(i) no solution for s < So,

(ii) at least one solution for s- So,

(iii) at least two solutionsfor s E (So,

Proof We know that for So given in Theorem 2, (Is) has no solution
for s < So and at least one solution for s E (So,

First, we show that So is finite. It follows from (3a) and f
Carath6odory that

f(t,x) --ISll- hr(t),

for a.e. and all x R, where hr is the Ll-function determined by r(sl) in
the definition of Carath6odory function. If (ls) has a solution x, then

s-- f(t,x(t))dt -Isl--llhrll.
Thus so _> -ISll- 1/27rllhrll > -o.

Second, we show existence of the second solution of (1 s) for s (so, sl].
Without loss of generality, let us assume that R > r(sl). Let f be an open
bounded subset in C2(J) such that fl D {x C(J)" Ilxllo < R};
then by (3b), the coincidence degree DL(L + Ns, f) is well-defined. Since

(ls) does not have solution for s > So, by the common argument of
Ambrosetti-Prodi type problems [3,6], we get

DL(L + N,,$2) O, fors<_sl. (3c)

Let s (so, S1], , E (So, S) and let 2 be a solution of (1) known to exist
by Theorem 2. Then -R and 2 are lower and upper solutions of
with -R < 2(t), for all J. Let ’-1 {X C027r(J) -R < x(t) < fc(t),

J}, then 21 c f. By (3b) and Remark 1, solutions of(ls) never lie on

0fl. Thus DL(L + Ns,. fl) is well-defined. To compute the degree, let us
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consider a modified problem:

x(n)(t) + F(t,x(t)) 0

x(i) (0) x(i) (2rr),

a.e. on J,

i- O, 1,...,n- 1,

where

f(t, 2(t)) s M(x 2(t)),
F(t,x) f(t,x) s,

f(t, R) s- M(x + R),

if x > 2(t),
if -R<x_<2(t),
ifx < -R,

and Mis given in (H 1’). By a similar argument as in the proofofTheorem
1, we get

DL(L + NF, Fro) +l,

for certain open bounded open subset Ft0 in C2(J), where NF is defined
by NFX(.)- F(., x(.)), and we also know that all solution x of (5) must
satisfy

-R<x(t)<2(t), for alltEJ

so that (1,0 is equivalent to (5) in FZl. Therefore, by the excision and the
additive properties of the coincidence degree together with (3c), we get

+/- DL(L + NF, o) DL(L + NF,) DL(L + N,)

and

DL(L + Ns, f \ ,) ::71.

Consequently, (1.0 has one solution in and another in 2 \ . Since
s E (So, s] is arbitrary, the second part of the proof is complete.

Finally, the existence of at least one solution at s- s can be proved
through a limiting process based upon a priori boundedness of possible
solutions as in [3].

THEOREM 4 Assume thatfis a Carathdodoryfunction and satisfies (H)
and (HI’). Moreover, assume that

ess sup f(t, O) < oo. (3d)
tJ
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Then there exists a real number So such that ( ls) has

(i) no solution for s < So,

(ii) at least one solution for s- So,

(iii) at least two solutionsfor s > So.

Proof Iff satisfies (H), then (3a) in Theorem 3 is valid for arbitrary
large Sl. Thus it suffices to show that all possible solutions of (ls) for
s < sl are uniformly bounded. Let s < sl and x a solution of (ls).
Integrating both sides of (1 s) on J, we get

t,x(t)) dt 27rs.

From the proof of Theorem 3, we know that

f(t,x) + Isal + hr(t) 0,

for a.e. and for all x E R. When n is odd, Multiplying both sides of (1 s)
by x’ and integrating on the period, we get for p- (n + 1)/2,

(- )p IIx</I1 .[,f t, x(t) )x’ t) dt

fj <f<t’Xlt))-at- I|1--hr<t))x’(t)dt- J hrlt)x’(t)dt

Thus

_< IIx’ll (27r(s + s, I) + 2llhll)

_< /(2rls[ / Ilhrll)llx"ll=, by Sobolev inequality

< M(s1)IIx<P) 112, by Wirtinger inequality,

where M(sl)= 2lsl + IIhll. Thus

IIx<>ll M(S1),
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and by Wirtinger inequality,

IIx’[[ <_ 2t().
When n is even, multiplying both sides of (1) by 2, integrating on J
and doing similar calculations, we get for p n/2,

IlxCP/ll@ < IIll .t(f(t,x(t)) + Isl + hr(t))dt + Ilhtllllll

(2ls,[ + Ilhrtl)llx’ll2, by Sobolev inequality

@m(sl)llx> 112, by Wirtinger inequality.

Thus we also get

We claim that for each possible solution x of (1) and s 6 (s0, s], there is

t0 J such that Ix(t0)] < r(s). Suppose the claim is not true, then there
exists a solution x such that

x(t)[ r(s), for all J.

So if x(t) r(sl) for all Z then by (3a),

f(t,x(t)) > Sl, a.e. in t.

Thus

s-- f(t,x(t))dt>s,

and this is a contradiction. Similarly, we may show a contradiction
for the case x(t)<_-r(s) and the claim is verified. Consequently,

Ix(t)l < Ix(t0)[ + Ix’(7-)l aT- < r(s1) -+- 27rllx’l12
2rv_< r(,) + v t(,).

The proof is complete.
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Remark 2 If the function hr determined by r in the definition of
Carath6odory is of L(J), then the condition (3d) in Theorem 4 is not
necessary.

COROLLARY Iff is continuous on J x R and satisfies (H) and (HI),
then there exists a real number So such that ls) has

(i) no solution for s < So,

(ii) at least one solution for s--So.
(iii) at least two solutionsfor s > So.

Consider the equation

xl.l(t) + g(x(t)) + h(t)
x(i) (o) x(i) (2rr),

on J,

i-- O, 1,...,n- 1,

COROLLARY 2 Ifg: R R is continuous such that

lim g(x)

and g is also such that there exists M E (0, A(n)) for which

(g(x) g(y))(x y) >_ -M(x y)2,

for all x, y R. Thenfor any given h L(J), there exists a real number So
such that (6s) has

(i) no solution for s < So,

(ii) at least one solution for s So,

(iii) at least two solutionsfor s > So.
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