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On utilizing the spectral representation of self-adjoint operators in Hilbert spaces, some
inequalities for the composite operator [f(M)1y — f(A)][f(A) - f(m)1x], where Sp(A) C [m, M]
and for various classes of continuous functions f : [m, M] — C are given. Applications for the
power function and the logarithmic function are also provided.

1. Introduction

Let U be a self-adjoint operator on the complex Hilbert space (H, (-,-)) with the spectrum
Sp(U) included in the interval [m, M] for some real numbers m < M and let {E,}, be its
spectral family. Then, for any continuous function f : [m, M] — C, it is well known that we
have the following spectral representation in terms of the Riemann-Stieltjes integral:

M
f) =1 fdEy, (1.1)

m—0

which in terms of vectors can be written as

M
(fU)x,y) =J _Of()»)d<EAx,y>, (1.2)
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forany x,y € H. The function g, (1) := (E\x, y) is of bounded variation on the interval [m, M]
and

Sey(m—=0)=0, g, (M)=(xy), (1.3)

for any x,y € H. It is also well known that g, () := (E,x, x) is monotonic nondecreasing and
right continuous on [m, M].

Utilising the spectral representation from (1.2), we have established the following
Ostrowski-type vector inequality [1].

Theorem 1.1. Let A be a self-adjoint operator in the Hilbert space H with the spectrum Sp(A) C
[m, M] for some real numbers m < M and let {E,}, be its spectral family. If f : [m, M] — Cisa
continuous function of bounded variation on [m, M], then one has the inequality

[f&)(xy) = (f(A)xy)|

< (Esx,x)1/2<Esyry>l/2\7(f)

" 12 (1.4)
+ (1l = E)x,x)"*((lu - E9)y, y) "\ (f)

< Jxllly) <%\]7(f) HVGE \%)D < IelllyIV (),

forany x,y € H and for any s € [m, M].

Another result that compares the function of a self-adjoint operator with the integral
mean is embodied in the following theorem [2].

Theorem 1.2. With the assumptions in Theorem 1.1 one has the inequalities

1 M
() 5o | FOds = (FAm )

t_
(Eex, x)"*(Ery, )" + == (L = E)x, )Xl = By, )

< \17(f) max

M-t
te[m,M]

M-m

<=l (),
(1.5)

forany x,y € H.

The trapezoid version of the above result has been obtained in [3] and is as follows.
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Theorem 1.3. With the assumptions in Theorem 1.1 one has the inequalities

‘w (x,y) - (f(A)xy)
M
< %Aéf‘nfb’\%] [(Eax, %) 2(Eay, ) + (1 = B, )1 - E*)y’wl/z]\m/(f)

1 M
< SII IV (),
(1.6)

forany x,y € H.

For various inequalities for functions of self-adjoint operators, see [4-8]. For recent
results see [1,9-12].
In this paper, we investigate the quantity

{[f (M)1 = fF(A][f(A) - f(m)1u]x, )], (1.7)

where x, y are vectors in the Hilbert space H and A is a self-adjoint operator with Sp(A) C
[m, M], and provide different bounds for some classes of continuous functions f : [m, M] —
C. Applications for some particular cases including the power and logarithmic functions are
provided as well.

2. Some Vector Inequalities
The following representation in terms of the spectral family is of interest in itself.

Lemma 2.1. Let A be a self-adjoint operator in the Hilbert space H with the spectrum Sp(A) C
[m, M] for some real numbers m < M and let {E,}, be its spectral family. If f : [m, M] — Cisa
continuous function on [m, M] with f(M) # f(m), then one has the representation

1

————————— [f(M)1u - f(A)][f(A) - f(m)1
(V) — Fom)] [f u = f(A][f f(m)1y]

2.1)

_ 1 et (" E.df (s) <E -4 >df(t)
T M) = Fm) J o\ FMY = f(m) S o '
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Proof. We observe

1 M 1 M 1
FOD = Fm) g <Et = oo (S)> (5= 51 )arc)

1 M
T FO) — f(m) o
1 M M

TFOD =7 ) YO T Fm) )

E7df (t)
E.df (t) (2.2)

1M 1M
3| EBarw+z| Edre
1 M

T FM) = f(m) J o

1 M

2
Fon = fom )P Y (t)] ’

Ezdf(t) - [

which is an equality of interest in itself.
Since E; are projections, we have Ef = E, for any t € [m, M] and then we can write

1 (" Etzdf(t)—[; M Etdf(t):IZ
FOD) =70 ) FOD) = 70 )
1 M . M 2
"D ) Y (t)‘[m moﬂdf(t)] (23)
1 M M

" T~ ) J s T [“’ i

1
FOD = ) J o Y “’]'

Integrating by parts in the Riemann-Stieltjes integral and utilizing the spectral repre-
sentation (1.1), we have

M
j  Edf(t) = FM)Ls - £(4),

(2.4)
- 1 M _ fA) - fm)1y
R~ fm e ™Y = TR0 fm) ¢
which together with (2.3) and (2.2) produce the desired result (2.1). O

The following vector version may be stated as well.
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Corollary 2.2. With the assumptions of Lemma 2.1 one has the equality
([f (M)1r = FA]F(A) = f(m)1n]x, y)
M 1 M 1
= [F(v) - fom)] m_0< <Et - o .. Esdf(5)>x, (E:- E1H)y>df<t>,
(2.5)

forany x,y € [m, M].

The following result that provides some bounds for continuous functions of bounded
variation may be stated as well.

Theorem 2.3. Let A be a self-adjoint operator in the Hilbert space H with the spectrum Sp(A) C
[m, M] for some real numbers m < M, and let {E, }, be its spectral family. If f : [m

M] — Cisa
continuous function of bounded variation on [m,

M] with f(M) # f(m), then we have the inequality
[(Lf (M) 1 = F(A)][f(A) = f(m)1u]x, )|

1

<slylilrav - f(m)l\/(f)

1

M (2.6)
FO) — Fom) fm_o Esdf(s)

X sup
te[m,M]

Etx -

< S llly [\/(f)]

forany x,y € H.

Proof. 1t is well known that if p : [a,b] — C is a bounded function, v : [a,b] — C is of

bounded variation, and the Riemann-Stieltjes integral | s p(t)do(t) exists, then the following
inequality holds:

b
(Hdo(b)| < sup |p<t>|v<v (2.7)

telab

where Vﬁ(v) denotes the total variation of v on [a, b].
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Utilising this property and the representation (2.5), we have by the Schwarz inequality
in Hilbert space H that

[(Lf (M)1h = f(A][f(A) = fm)1u]x, y)]

M
<|fv) = fm)|\/ (f)

1 M 1
g te?rl:,rl\)/l]'<<Et fM) = f(m) ) Esdf(s)>x’ (Et - §1H)y>' (2.8)

M
<|fv) = fFam)|\/ (f)

1 M
Etx - m o Esxdf(s)

1
X sup H ||Ety_ 7Y
te[m,M]

for any x,y € [m, M].
Since E; are projections, in this case we have

2
1
=l - (B ) + 2l

1
”Ety — Y
(2.9)

1 1
= (Etv.y) — By + 71yl = 5llvll®,

then from (2.8), we deduce the first part of (2.6).
Now, by the same property (2.7) for vector-valued functions p with values in Hilbert
spaces, we also have

M
H [f(M) - f(m)] Esx - J . E.xdf (s)

(2.10)

M
j (Evx - Esx)df (s)

m-0

M
<\/(f) sup ||Esx - Egx],

s€[m,M]

forany t € [m, M] and x € H.

Since 0 < E; < 1y in the operator order, then -1y < E; — E; < 1 which gives that
—||lx|]* < ((E; = Es)x,x) < ||x||%, thatis, [((E; - Es)x, x)| < ||x||* for any x € H, which implies
that ||[E;— E¢|| < 1 for any £, s € [m, M]. Therefore, SUpP ¢, py 1 Exx = Esx|| < [|x[| which together
with (2.10) prove the last part of (2.6). O

The case of Lipschitzian functions is as follows.
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Theorem 2.4. Let A be a self-adjoint operator in the Hilbert space H with the spectrum Sp(A) C
[m, M] for some real numbers m < M, and let {E, }, be its spectral family. If f : [m, M] — Cis
a Lipschitzian function with the constant L > 0 on [m, M] and with f (M) # f(m), then one has the
inequality

[ D1k = FA]f(A) = Fm)1u]x, y)]

1 M 1 M
< EL”y”V(M) ~ f(m)| Y Eix - m . Esxdf (s)||dt
<lpy ||HM |Epx - Eox||ds dt
S i) f T S (2.11)
< gLZHyH (M —m)(Ax — mx, Mx — Ax)l/2
2
< %LZHyHIIxII(M -m),

forany x,y € H.

Proof. Recall that if p : [a,b] — C is a Riemann integrable function and v : [a,b] — Cis
Lipschitzian with the constant L > 0, that is,

|f(s)-f(t)| <L|s—t| foranyt,se€[ab], (2.12)

then the Riemann-Stieltjes integral J‘Z p(t)dou(t) exists and the following inequality holds:

b b
f p(t)do() SLJ Ip()|d. (2.13)

Now, on applying this property of the Riemann-Stieltjes integral, then we have from
the representation (2.5) that

KDLk = FA][f(A) = fm)1a]x,y)]

1 M 1
(5~ e o B ) (8= g1} oo

M
<lfo-foml|

M 1 M 1
S Llf(M) —f(m)| Y Etx — m Y ES.'X'df(S) ”Ety — Ey“dt
1 M 1 M
=gt =1l ) B o= ),

(2.14)

for any x, y € H and the first inequality in (2.11) is proved.
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Further, observe that

M 1 M
| f(M) = f(m)] s Eix - FOD—fom ). o Egxdf (s)||dt
M M
= ’[ . ‘[f(M) - f(m)]Ex —J . Eqxdf (s)||dt (2.15)

M
f (Etx — Esx)df (s)

m—0

J<M
m—0

dt,

forany x € H.
If we use the vector-valued version of the property (2.13), then we have

M
Im—O

for any x € H and the second part of (2.11) is proved.
Further on, by applying the double-integral version of the Cauchy-Buniakowski-
Schwarz inequality, we have

M M
J (Etx — Esx)df (s) ||dt < LJT ||[Etx — Egx||ds dt, (2.16)
m—0

m—0

M M 1/2
Jf ||Etx — Esx||ds dt < (M —m) <J‘J‘ |Esx — Esx||*ds dt> , (2.17)
m=0 m-0

for any x € H.
Now, by utilizing the fact that E, are projections for each s € [m, M], then we have

M
” |Esx — Eox||*ds dt
m—0

m—0 m—0

[ M M 2
=2|(M-m) ||Etx||2dt-f E;xdt (2.18)

L

m-0 m-0

[ M M 2
=2|(M-m) (Eix, x)dt — j E;xdt|| |,

L

forany x € H.
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If we integrate by parts and use the spectral representation (1.2), then we get

M M
j (Eix, x)dt = (Mx — Ax, x), J Eixdt = Mx — Ax

m-0 m-0

and by (2.18), we then obtain the following equality of interest:
M
ff |Esx — Esx||*ds dt = 2( Ax — mx, Mx — Ax),
m—0

for any x € H.
On making use of (2.20) and (2.17), we then deduce the third part of (2.11).
Finally, by utilizing the elementary inequality in inner product spaces

1
Re(a,b) < flla+ b, abeH,
we also have that
1 2012
(Ax —mx, Mx — Ax) < A_L(M —m)”||x||",

for any x € H, which proves the last inequality in (2.11).

The case of nondecreasing monotonic functions is as follows.

(2.19)

(2.20)

(2.21)

(2.22)

Theorem 2.5. Let A be a self-adjoint operator in the Hilbert space H with the spectrum Sp(A) C
[m, M] for some real numbers m < M, and let {E\ }, be its spectral family. If f : [m, M] — Risa

monotonic nondecreasing function on [m, M], then one has the inequality

[ D1k = FA]f(A) = fFm)1a]x, y)]

<SIvIFAD = fm] | = zs——es | Eoxdf(s)|\df (1)
< S ILFMD) = FmI{LF ML~ AN [F(A) = Fm) 1] %)
< vl r ) - fom],

forany x,y € H.

(2.23)
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Proof. From the theory of Riemann-Stieltjes integral, it is also well known that if p : [a,b] —
C is of bounded variation and v : [a,b] — R is continuous and monotonic nondecreasing,

then the Riemann-Stieltjes integrals fs p(t)do(t) and fs lp(t)|do(t) exist and

b b
f p(t)do(t) sf |p(t)|do(t). (2.24)

Now, on applying this property of the Riemann-Stieltjes integral, we have from the
representation (2.5) that

[(Lf (M) = f(A][f(A) = f(m)1u]x, y)]

M 1 M 1

M 1 M

B F M = Fom) ) o

Eoxdf (s)

< [ - fm)] | | - o ]arco

m-0

1 M
Ex-———— |  E.xxdf(s)

FOM) = F0m) ) oo s,

. ’

= Slvlron - som) [

m-0

(2.25)

for any x, y € H, which proves the first inequality in (2.23).
On utilizing the Cauchy-Buniakowski-Schwarz-type inequality for the Riemann-
Stieltjes integral of monotonic nondecreasing integrators, we have

fm_o Eux = F(M) - f(m) fm_o Esxdf (s)||df (¢)
(2.26)
M 1/2 M 1 M ) 1/2
< [fm—o df(t)] [jm_o Etx - m J‘m_o ESde(S) df(t)] ,

forany x,y € H.
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M
J;uO

Observe that

1 M
Exx— ———— Eqsxdf (s)

2
FOD) = F0m) Jos s

" Eix|*-2Re( E ! " Esxd
N R S TN )

oo

1 M

f(M) _f(m) m-0

+ Esxdf (s)

1 M , 1 M ?
= - —_— af(t) - || =+rn——F— sxd
L) = o) | =70 fm_o |EvxlPdf (t) H A= | B
(2.27)
and, integrating by parts in the Riemann-Stieltjes integral, we have
M M M
j | Eex||*df (t) = f (Eix, Eyx)df (t) = f (Ewx, x)df (t)
m-0 m—0 m—0
M
= OO [ (B ) (229)

= FM)|Ix]I* = (f(A)x, x) = ([f(M)15 = f(A)]x, x),
M
f y Esxdf(s) = f(M)x — f(A)x,

for any x € H.
On making use of the equalities (2.28), we have

1 M ?
FM) = f(m) ) g
1 2
=——————|[fM) - fFm)]{[f(M) 1y - f(A)]x,x) — || f(M)x - f(A)x
D Fom P L0 Fem s (@)%, x) = || (M)x = f(A)x|’]
[F(M) = Fm)]{[f (M)1 - f(A)]x, x) = (f(M)x = f(A)x, f(M)x = f(A)x)
[f (M) - f(m)]?

[fF(M) = £ )| {[f (M)1n - f(A)]x,x) = (F(M)x = f(A)x, f(M)x - f(A)x)
[f(M) - f(m)]?
(f(M)x — f(A)x, f(A)x — f(m)x)
[f(M) - f(m)]? ’

M

| Ecxll*df () - Hm 0

Esxdf (s)

(2.29)

forany x € H.
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Therefore, we obtain the following equality of interest in itself as well:

1 M
Etx T Esxdf(s)

2
FOM) = F0m) ) oo s

1 M
f(M) = f(m) jm()

_ (fM)x - f(A)x, f(A)x - f(m)x)
[f(M) - f(m)]

(2.30)

_ (M1 - FA][f(A) - f(m)1n]x, x)
[f (M) - f(m)]® ’

for any x € H
On making use of the inequality (2.26), we deduce the second inequality in (2.23).
The last part follows by (2.21), and the details are omitted. O

3. Applications

We consider the power function f(t) := t”, where p € R\ {0} and ¢ > 0. The following power
inequalities hold.

Proposition 3.1. Let A be a self-adjoint operator in the Hilbert space H with the spectrum Sp(A) C
[m, M] for some real numbers with 0 < m < M.
Ifp >0, then forany x,y € H,
[((MP1y — AP) (AP = mP1y)x, )|

V2
< TB;”y”(M—m)(Ax—mx,Mx—Ax)l/2 (3.1)

V2
< Billylllixl (M - m)?,

where

MPL, ifp>1,
B, =p x
mP1, if0<p<1l, m>0,

(AP = MP1) (m P11 = AP)x, )| (32)

V2
< TC’Z,”y”(M - m)(Ax — mx, Mx — Ax)'/?

V2
< Glyllixli(M = m),
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where

Cp= pm P, m>0. (3.3)

The proof follows from Theorem 2.4 applied for the power function.

Proposition 3.2. Let A be a self-adjoint operator in the Hilbert space H with the spectrum Sp(A) C
[m, M] for some real numbers with 0 < m < M.
Ifp >0, then forany x,y € H

[((MP1y — AP)(AP —mP1y)x, )|

—IIyII(M'” —mP)((MP1y — AP)(AP — mP1p)x, )"/

2
< Lyl - mry,
(3.4)
(A = MP115) (P13 = A7) 3, )|
< 2yl (m = MPY(A ~ MPLr) (m P10~ A7), )2
< Syl v - mv?

The proof follows from Theorem 2.5.
Now, consider the logarithmic function f(t) = Int, t > 0. We have the following

Proposition 3.3. Let A be a self-adjoint operator in the Hilbert space H with the spectrum Sp(A) C
[m, M] for some real numbers with 0 < m < M. Then one has the inequalities
[{([InM)1y —In A][In A - (Inm)1x]x, v)|

V2 .
<— - - —
< 5 Iy (M = m)(Ax = mx, Mx - Ax)

V2 M\
< vl (5, 1)

[{([(In M)1p —In A][In A - (Inm)1x]x, v)|

(3.5)

—_

< - |ly|K[AnM)1g - In A][In A - (Inm)14]x, x)1/21n<1:n4>

<Gt (3]

The proof follows from Theorems 2.4 and 2.5 applied for the logarithmic function.

I\)
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