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We apply the quadratic penalization technique to derive strong Lagrangian duality property for an
inequality constrained invex program. Our results extend and improve the corresponding results
in the literature.

1. Introduction

It is known that Lagrangian duality theory is an important issue in optimization theory
and methodology. What is of special interest in Lagrangian duality theory is the so-called
strong duality property, that is, there exists no duality gap between the primal problem and
its Lagrangian dual problem. More specifically, the optimal value of the primal problem is
equal to that of its Lagrangian dual problem. For a constrained convex program, a number
of conditions have been obtained for its strong duality property, see, for example, [1–3] and
the references therein. It is also well known that penalty method is a very popular method
in constrained nonlinear programming [4]. In [5], a quadratic penalization technique was
applied to establish strong Lagrangian duality property for an invex program under the
assumption that the objective function is coercive. In this paper, we will derive the same
results under weaker conditions. So our results improve those of [5].

Consider the following inequality constrained optimization problem:

min f(x)

s.t. x ∈ Rn, gj(x) ≤ 0, j = 1, . . . , m,
(P)

where f, gj(j = 1, . . . , m) : Rn → R1 are continuously differentiable.



2 Journal of Inequalities and Applications

The Lagrangian function for (P) is

L
(
x, μ

)
= f(x) +

m∑

j=1

μjgj(x), x ∈ Rn, μ =
(
μ1, . . . , μm

) ∈ Rm
+ . (1.1)

The Lagrangian dual function for (P) is

h
(
μ
)
= inf

x∈Rn
L
(
x, μ

)
, ∀μ ∈ Rm

+ . (1.2)

The Lagrangian dual problem for (P) is

sup
u∈Rm

+

h
(
μ
)
. (D)

Denote byMP andMD the optimal values of (P) and (D), respectively. It is known that
weak duality MP ≥ MD holds. However, there is usually a duality gap, that is, MP > MD.
If MP = MD, we say that strong Lagrangian duality property holds (or zero duality gap
property holds).

Recall that a differentiable function u : Rn → R1 is invex if there exists a vector-valued
function η : Rn × Rn → Rn such that u(x) − u(y) ≥ ηT (x, y)∇u(y), for all x, y ∈ Rn. Clearly,
a differentiable convex function u is invex with η(x, y) = x − y. It is known from [6] that a
differentiable convex function u is invex if and only if each stationary point of u is a global
optimal solution of u on Rn.

Let X ⊂ Rn be nonempty. u : Rn → R1 is said to be level bounded on X if for any real
number t, the set {x ∈ X : u(x) ≤ t} is bounded.

It is easily checked that u is level bounded, on X if and only if X is bounded or u is
coercive on X if X is unbounded (i.e., limx∈X,‖x‖→+∞u(x) = +∞).

2. Main Results

In this section, we present the main results of this paper.
Consider the following quadratic penalty function and the corresponding penalty

problem for (P):

Pk(x) = f(x) + k
m∑

j=1

g+
j
2(x), x ∈ Rn, (2.1)

min
x∈Rn

Pk(x), (Pk)

where the integer k > 0 is the penalty parameter.
For any t ∈ R1, denote that

X(t) =
{
x ∈ Rn : gj(x) ≤ t, j = 1, . . . , m

}
. (2.2)

It is obvious that X(0) is the feasible set of (P). In the sequel, we always assume that X(0)/= ∅.
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We need the following lemma.

Lemma 2.1. Assume that f is level bounded on X(0), then the solution set of (P) is nonempty and
compact.

Proof. It is obvious that problem (P) and the following unconstrained optimization problem
have the same optimal value and the same solution set,

min f(x), (P)

where

f(x) =

⎧
⎪⎨

⎪⎩

f(x), x ∈ X0,

+∞, otherwise.
(2.3)

It is obvious that f : Rn → R1∪{+∞} is proper, lower semicontinuous, and level bounded. By
[7, Theorem 1.9], the solution set of (P) is nonempty and compact. Consequently, the solution
set of (P) is nonempty and compact.

Now we establish the next lemma.

Lemma 2.2. Suppose that there exists t0 > 0 such that f is level bounded on X(t0), and there exists
k∗ > 0 and m0 ∈ R1 such that

Pk∗(x) ≥ m0, ∀x ∈ Rn. (2.4)

Then
(i) the optimal set of (P) is nonempty and compact;
(ii) there exists k∗′ > 0 such that for each k ≥ k∗′ , the penalty problem (Pk) has an optimal

solution xk; the sequence {xk} is bounded and all of its limiting points are optimal solutions of (P).

Proof. (i) Since X(0) ⊂ X(t0) is nonempty and f is level bounded on X(t0), we see that f is
level bounded on X(0). By Lemma 2.1, we conclude that the solution set of (P) is nonempty
and compact.

(ii) Let x0 ∈ X(0) and k∗′ ≥ k∗ + 1 satisfy

f(x0) + 1 −m0

k∗′ − k∗ ≤ t20. (2.5)

Note that when k ≥ k∗′ ,

Pk(x) = f(x) + k∗
m∑

j=1

g+
j
2(x) + (k − k∗)

m∑

j=1

g+
j
2(x) ≥ m0 + (k − k∗)

m∑

j=1

g+
j
2(x). (2.6)
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Consequently, Pk(x) is bounded below by m0 on Rn. For any fixed k ≥ k∗ + 1, suppose that
{yl} satisfies Pk(yl) → infx∈RnPk(x). Then, when l is sufficiently large,

f(x0) + 1 = Pk(x0) + 1 ≥ pk
(
yl

)
= f

(
yl

)
+ k

m∑

j=1

g+
j
2(yl

) ≥ m0 + (k − k∗)
m∑

j=1

g+
j
2(yl

)
. (2.7)

Thus,

f(x0) + 1 −m0

k − k∗ ≥
m∑

j=1

g+
j
2(yl

) ≥ g+
j
2(yl

)
, j = 1, . . . , m. (2.8)

It follows that

g+
j

(
yl

) ≤
[
f(x0) + 1 −m0

k − k∗

]1/2
≤
[
f(x0) + 1 −m0

k∗′ − k∗

]1/2
≤ t0, j = 1, . . . , m. (2.9)

That is, yl ∈ X(t0), when l is sufficiently large. From (2.7), we have

f
(
yl

) ≤ f(x0) + 1, (2.10)

when l is sufficiently large. By the level boundedness of f on X(t0), we see that {yl} is
bounded. Thus, there exists a subsequence {ylp} of {yl} such that ylp → xk as p → +∞.
Then

Pk

(
ylp

)
−→ Pk(xk) = inf

x∈Rn
Pk(x). (2.11)

Moreover, xk ∈ X(t0). Thus, {xk} is bounded. Let {xki} be a subsequence which converges to
x∗. Then, for any feasible solution x of (P), we have

f(xki) + ki
m∑

j=1

g+
j
2(xki) ≤ f(x). (2.12)

That is,

m0 + (ki − k∗)
m∑

j=1

g+
j
2(xki) ≤ f(xki) + k∗

m∑

j=1

g+
j
2(xki) + (ki − k∗)

m∑

j=1

g+
j
2(xki) ≤ f(x), (2.13)

namely,

m∑

j=1

g+
j
2(xki) ≤

f(x) −m0

ki − k∗ . (2.14)
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Passing to the limit as i → +∞ and noting that xki → x∗, we have

m∑

i=1

g+
j
2(x∗) ≤ 0. (2.15)

Hence,

g+
j (x

∗) = 0, j = 1, . . . , m. (2.16)

It follows that

gj(x∗) ≤ 0, j = 1, . . . , m. (2.17)

Consequently, x∗ ∈ X(0). Moreover, from (2.12), we have f(xki) ≤ f(x). Passing to the limit
as i → +∞, we obtain f(x∗) ≤ f(x). By the arbitrariness of x ∈ X(0), we conclude that x∗ is
an optimal solution of (P).

Remark 2.3. If f(x) is bounded below on Rn, then for any k > 0, Pk(x) is bounded below on
Rn.

The next proposition presents sufficient conditions that guarantee all the conditions of
Lemma 2.2.

Proposition 2.4. Any one of the following conditions ensures the validity of the conditions of
Lemma 2.2

(i) f(x) is coercive on Rn;
(ii) the function max{f(x), g+

j (x), j = 1, . . . , m} is coercive on Rn and there exist k∗ > 0 and
m0 ∈ R1 such that

Pk∗(x) ≥ m0, ∀x ∈ Rn. (2.18)

Proof. We need only to show that if (ii) holds, then the conditions of Lemma 2.1 hold, since
condition (i) is stronger than condition (ii). Let t0 > 0. We need only to show that f is coercive
on X(t0). Otherwise, there exists σ > 0 and {yk} ⊂ X(t0) with ‖yk‖ → +∞ satisfying

f
(
yk

) ≤ σ. (2.19)

From {yk} ⊂ X(t0), we deduce

gj
(
yk

) ≤ t0, j = 1, . . . , m. (2.20)

It follows from (2.19) and (2.20) that

max
{
f
(
yk

)
, g+

j

(
yk

)
, j = 1, . . . , m

}
≤ max{σ, t0}, (2.21)

contradicting the coercivity of max{f(x), g+
j (x), j = 1, . . . , m} since ‖yk‖ → +∞ as k →

+∞.
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The next proposition follows immediately from Lemma 2.2 and Proposition 2.4.

Proposition 2.5. If one of the two conditions (i) and (ii) of Proposition 2.4 holds, then the conclusions
of Lemma 2.2 hold.

The following theorem can be established similarly to [5, Theorem 4] by using Lemma
2.2.

Theorem 2.6. Suppose that f, gj(j = 1, . . . , m) are all invex with the same η and the conditions of
Lemma 2.2 hold, then,MP = MD.

Corollary 2.7. Suppose that f, gj(j = 1, . . . , m) are all invex with the same η and one of the
conditions (i) and (ii) of Proposition 2.4 holds, then, MP = MD.

Example 2.8. Consider the following optimization problem

min x

s.t. x ∈ R1, x2 ≤ 0.
(P)

It is easy to see that both the objective function and the constraint function are convex
and thus invex. Note that the objective function f(x) = x → −∞ as x → −∞. It follows that
lim‖x‖→+∞f(x) = +∞ does not hold. Consequently, all the results in [5] are not applicable.
However, it is easily checked that the conditions of our Corollary 2.7 hold and, hence, MP =
MD.
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