Hindawi Publishing Corporation
Journal of Inequalities and Applications
Volume 2010, Article ID 839639, 18 pages
doi:10.1155/2010/839639

Research Article

A Fixed Point Approach to the Stability of Pexider
Quadratic Functional Equation with Involution

M. M. Pourpasha,® J. M. Rassias,? R. Saadati,>
and S. M. Vaezpour®

1 Department of Mathematics, Science and Research Branch, Islamic Azad University (IAU), Tehran, Iran

2 Section of Mathematics and Informatics, Pedagogical Department, National and Kapodistrian University
of Athens, 4, Agamemnonos St., Aghia Paraskevi, Athens 15342, Greece

3 Department of Mathematics, Amirkabir University of Technology, Hafez Avenue, P. O. Box 15914,
Tehran, Iran

Correspondence should be addressed to
R. Saadati, rsaadati@eml.cc and S. M. Vaezpour, vaezpour@aut.ac.ir

Received 10 May 2010; Revised 13 July 2010; Accepted 31 July 2010
Academic Editor: S. Reich

Copyright © 2010 M. M. Pourpasha et al. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

We apply the fixed point method to investigate the Hyers-Ulam stability of the Pexider functional
equation f(x +y) + g(x + o(y)) = h(x) + k(y), for all x,y € E, where E is a normed space and
o0 : E — Eisan involution.

1. Introduction and Preliminary

A basic question in the theory of functional equations is as follows. “When is it true that
a function, which approximately satisfies a functional equation must be close to an exact
solution of the equation?” The first stability problem concerning group homomorphisms was
raised by Ulam [1] in 1940 and affirmatively answered by Hyers in [2]. Subsequently, the
result of Hyers was generalized by Aoki [3] for additive mappings and by Rassias [4] for
linear mappings by considering an unbounded Cauchy difference. The paper of Rassias has
provided a lot of influence in the development of what we now call Hyers-Ulam-Rassias
stability of functional equations. For more information, see [5-7]. Specially, Maligranda
[8] and Moszner [9] provided a very interesting discussion on the definition of functional
equations’ stability.

Recently, the stability of functional equations has been investigated by many
mathematicians. They have many applications in the Information Theory, Physics, Economic
Theory and Social and Behavior Sciences. See [10-14].
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A Hyers-Ulam stability theorem for the quadratic functional equation
flr+y) + flx-y) =2f(x) +2f (y) (1.1)

was proved by Skof [15] for the function f : E; — E,, where E; is a normed space and E; is
a Banach space. Cholewa [16] noticed that the theorem of Skof is still true if the relevant
domain E; is replaced by an abelian group. Czerwik [17] proved the generalized Hyers-
Ulam stability of the quadratic functional equation (1.1). Recently, Brzdek [18], Jung [19],
and Jung and Sahoo [20] investigated the Hyers-Ulam-Rassias stability of (1.1). Furthermore
they proved the Hyers-Ulam-Rassias stability of the functional equation of Pexider type

filx+y) + fa(x=y) = f3(x) + fa(y)- (1.2)

The stability problem of several functional equations has been extensively investigated by
a number of authors, and there are many interesting results concerning this problem (see
[4, 21-37]).

Let E; and E, be real vector spaces. If an additive function 0 : E; — E; satisfies
o(x+y) =0(x)+0(y) and o(o(x)) = x for all x,y € E;, then o is called an involution of Ej,
see [21, 37]. For a given involution o : E; — Ej, the functional equation

flx+y)+f(x+0o(y)) =2f(x)+2f(y), Vxy€E (1.3)

is called the quadratic functional equation with involution. According to [37, Corollary 8],
a function f : E; — E, is a solution of (1.3) if and only if there exists an additive function
A : E; — Ej,and abiadditive symmetric function B : E;xE; — Ej such that A(c(x)) = A(x),
B(o(x),y) = -B(o(x),y) and f(x) = B(x,y) + A(x) for all x € E;.

Indeed, if we set o(x) = I in (1.3), where I : E; — E; denotes the identity function,
then (1.3) reduces to the additive functional equation

f(x+y)=f(x)+f(y), VYx,yeE (1.4)

On the other hand, if o(x) = —I in (1.3), then (1.3) is transformed into the quadratic functional
equation

flx+y)+f(x-y) =2f(x)+2f(y), VYx,y€E. (1.5)

Recently, Bouikhalene et al. have proved the Hyers-Ulam-Rassias stability of the
quadratic functional equation with involution (1.2), see [21].

In this paper, we will apply the fixed point method to prove the Hyers-Ulam-Rassias
stability of the functional equation (1.3) in the Pexider type

flx+y)+g(x+0(y)) =2h(x) +2k(y). (1.6)

To see the different approaches to the problem of the Pexiderized Cauchy equations’ stability
and further references concerning that subject we refer to [38—43].
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Let X be aset. A functiond : X xX — [0, oo] is called a generalized metric on X if and
only if d satisfies the following

(1) d(x,y) =0, ifand only if x = y
(2) d(x,y) =d(y,x), forall x,y € X;
(3)d(x,z) <d(x,y)+d(y,z), forall x,y,z € X.

For an extensive theory of fixed point and other nonlinear methods, the reader is referred to
the book of Hyers et al. [44] and Cddariu and Radu [45].

Theorem 1.1. Let (X, d) be a generalized complete metric space. Assume that | : X — X is a strictly
contractive operator with the Lipschitz constant O < L < 1. If there exists a nonnegative integer k such
that d(J¥*'x, J*x) < oo for some x € X, then the following are true:

(a) the sequence {J"x} converges to a fixed point x* of J

(b) x* is the unique fixed point of | in

X* = {yeX:d(]kx,x> <oo},‘ (1.7)

(c) if y € X*, then

1
d(y,x") < =740y, y)- (1.8)

2. Main Results

In this section, we prove the Hyers-Ulam-Rassias stability of the quadratic functional
equation with involution (1.6) by applying the fixed point method.

Theorem 2.1. Let Eq be a commutative semigroup (with the divisibility by 2), and let E, be a real
Banach space. Suppose that a function ¢ : E; x E; — [0, 00) is given and there exists a constant L,
0 < L <1, such that

¢(2x,2y) < 2Lop(x,y),
p(x+o(x),y+o(y)) <2Lp(x,y),

(2.1)

forall x,y € Ey. Furthermore, let f, g, h,k : E; — E, be even functions satisfying the inequality

| f(x+y) +g(x+0(y)) —2h(x) -2k(y) || < p(x ) (2.2)
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forall x,y € Ey, where 0 : Ey — E; is an involution of Ey and f(0) = g(0) = h(0) = k(0) = 0.
Then there exists a unique solution T : Ey — Ej of (2.2) such that

12£G0) - T)|| < ﬁM'(x, x) + M(x,0),
25~ Tl < gy M e, ) + MCx,0) + (9l ) + plx, ),
I ~T (Ol < o7 M ),
() = T € g M (o) + 3 (9(0,) + 9(x,0),
2.3)
for all x € Ey, where
M(x,y) = p(x) +0(0y) + 9.0 +o(5.5) +o(5.-(3)).
M (x,y) = M(x,) + M(x+7,0) + M(x + o(y),0), (2.4)
T(x) = }%2% [h(Z"x) + " - 1)h(2"-1x + 2"—1o(x)>].
Proof. Letting y = 0 in (2.2), we obtain
[1f(x) + g(x) = 2h(2)|| < (x, 0). (2.5)
Similarly, for every y € E;, we can put x = 0 in (2.2) to obtain
If () +8(a(y)) = 2k(@) || < @(0, ). (2.6)

Since 0 : E; — Ej is an involution, we replace y by x + o(x) := d in (2.6), then we have
|| £ (d) + g(d) = 2k(d)]| < ¢(0,d). (2.7)
Also, we can replace y by x and replace y by —x in (2.2) to get
|| f(2x) + g(x + 0(x)) = 2h(x) = 2k(x) || < @(x, x), (2.8)

g (x = 0(x)) - 2h(x) - 2k (=) | < (x, ~2). (29)

Since o : E;y — Ej is an involution, by replacing x by x + o(x) := d in (2.8) and using (2.1),
we have

|| f(2d) - 2h(d) - 2k(d)|| < p(d, d). (2.10)
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Also, by replacing x by x — o(x) := d in (2.9), we have

|lg(2d) — 2h(d) - 2k(d)|| < ¢(d,-d).
In view of (2.5) and (2.7), we see that

(@) = k(@] < 5 (0, +p(d, 0),
and it follows from (2.10) and (2.11) that

[1f@d) - g2ad)|| < ¢(d,d) + p(d, ~d).
By using (2.2), (2.12) and (2.13), we have

[ f(x+y)+f(x+0(y)) - 2h(x) - 2h(y)||
<||f(x+y)+g(x+0(y)) -2h(x) - 2k(y)| +2||k(v) - h(y) ||
+|If(x+0(y)) -gx+o)l

<o(xy)+90y) +9(y,0) +(p<x+62’(y)IX+czf(y)>

+¢<X+;(y),_<“;(}/)>>

<p(xy) +90) + 91,0 +9(3.3) +9(5.-(3)) = M(x.y)-

Therefore
£ (x+y) + f(x+0(y)) - 2h(x) = 2h(y) || < M(x,y).
By putting v = 0 in (2.15), we get
|| () = h(x)|| < M(x,0).
Hence, (2.15) and (2.16) imply that

|7 (x +y) +h(x+0(y)) - 2h(x) - 2h(y) ||

<[l f(x+y) + f(x+0(y)) —2h(x) =2h(y)|| + || f(x +y) —h(x+y)||

+||f(x+0(y)) —h(x+o())|l
<M(x,y) + M(x+y,0) + M(x+0(y),0) = M'(x,y).

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)
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Therefore
|h(x+v) + h(x+0(y)) - 2h(x) -2h(y)|| < M'(x,y). (2.18)

Now, we define X to be the set of all functions f : E; — E, and introduce a generalized
metric on X as follows:

d(g h) =inf{C € [0,0) : ||g(x) — h(x)|| < CM'(x,x), Vx € E1}. (2.19)

Let { f,} be a Cauchy sequence in (X, d). According to the definition of Cauchy sequences, for
any given € > 0, there exists a positive integer N, such that

A(fm, fn) <€ (2.20)

for all m,n > N,.
By considering the definition of the generalized metric d, we see that

Ve>0, IN.€N, Vmn>N, Vxe€E;:|fum(x)- fulx)| <eM'(x,x). (2.21)

If x is any given point in E;, (2.21) implies that { f,(x)} is a Cauchy sequence in E,. Since
E; is complete, {f,(x)} converges in E, for each x € E;. Hence, we can define a function
f : El — E2 by

f(x) = lim £ (). (2.22)
We define an operator | : X — X by
JL(x) = %[L(Zx) + L(x + 0(x))] (2.23)

for all x € E;.
First, we assert that J is strictly contractive on X. Given g, h € X, let C € [0, o0) be an
arbitrary constant with

d(g,h) < C, (2.24)

that is,

|g(x) - h(x)|| < CM'(x, x) (2.25)

for all x € E;.



Journal of Inequalities and Applications 7

If we replace y by x in (2.18), then we obtain
Ih(2x) + h(x + o(x)) — 4h(x)|| £ M'(x, x) (2.26)

for every x € E;.
It follows from (2.23) and (2.25) that

l7g(x) = Jh(x)|| = 1||g(2x) +g(x+0(x)) —hQ2x)—h(x+0o(x))|
Z ||g(2x) h(2x)|| + 1||g(3c +0(x)) —h(x+o(x))]| (2.2
jICM'(Zx, 2x) + — CM'(x +0(x),x +0(x))

< LCM'(x,x)

for all x € Ey, thatis, d(Jg, Jh) < LC. Hence, we conclude that d(Jg, Jh) <Ld (g, h) for any
g, h € X. Therefore, ] is strictly contractive because L is a constant with 0 < L < 1.

Now, we claim that d(Jh, h) < co. If we put ¥ = x in (2.26) and divide both sides by
1/4, then we get

|[Jh(x) = h(x)|| = “}I[h@x) +h(x+0(x)) - h(x)]|| < }IM'(x, x) (2.28)

for all x € Eq, that is,
1
d(Jh,h) < i < 0. (2.29)

Now, by Theorem 1.1 there exists a function T : E; — E, which is a fixed point of J, such that
d(J"h,T) — 0asn — oo. By induction, we can easily show that

(J*h)(x) = [h(Z"x) +@ = Dh(2 x 270 (x))] (2.30)

22n

for each n € N. Since d(J"h,T) — 0asn — oo, there exists a sequence {C,} such that
Cy, — 0asn — ocwand d(J"h,T) < C, for every n € N. Hence, by the definition of d, we have

IJ"h(x) = T(x)| < CuM'(x, x) (2.31)

for all x € E;. Thus, for each fixed x € E;, we have

Jim [|J%h(x) =T (x)|| = 0. (2.32)
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Therefore
. 1 n n n— n—
T(x) :nlgr;oﬁ[h(Z x) + (2 —1)h<2 Ix +2 1o(x))] (2.33)

for all x € Ej. It follows from (2.1), (2.2), and (2.33) that

IT(x+y)+T(x+0(y))—2T(x) - 2T (y) ||

- lim — @ +2my) + " = DR(2 7 (x + y) + 27 (0(x) + 0 (1))

n— o021
+h(2"x+2"0(y)) + (2" - 1)}1(2”’1 (x+0(y)) +2" (o(x) + y)>
—2h(2"x) +2(2" - 1)h(2"-1x + 2"-1o(x))

~2h(2"y) +2(2" = (2 y + 2o (y) )

2.34)
3 1 n n n n n n (
Snlgr;oﬁ”h(Z x+2"y) + h(2"x +2"0(y)) - 2h(2"x) - 2h(2"y) ||

+ lim E 2D (2 s o) + 27y 0 ()

+ h<2”*1(x +0o(x) + 2" (y + o(y))>
-2h <2"‘1x + 2"‘10'(x)> —2h <2”_1x + 2"‘10'(x)> ”

(2"-1)
22n

. 1 , . )
< lim oMY (2"x,2"y) + lim. M'(2"(x +0(x)),2"(y +0(y))) =0

for all x, y € E;, which implies that T is a solution of (1.6).
By Theorem 1.1 (c) and (2.29), we obtain

A, T) < ——d(h, Th) <

1
<1 D (2.35)

that is, (2.3) is true for all x € E;. Assume that T} : E; — E, is another solution of (2.2)
satisfying (2.3). We know that T; is a fixed point of J. In view of (2.3) and the definition of
d, we can conclude that (2.35) is true with T; in place of T. Due to Theorem 1.1 (b), we get
T =T). This proves the uniqueness of T
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By (2.16), (2.28), we obtain

| f(x) =T @) < || f(x) = h(x)]|| + |h(x) = T(x)]|

1 (2.36)
< M(x,O) + mM,(x, x).
Also by (2.12), (2.28), we obtain
lk(x) = T(x)| < [[k(x) = h(x)|| + ||h(x) = T (x)||
1 1 ) (2.37)
< Z((p(O,x) +¢(x,0)) + mM (x, x),
and by (2.13), (2.28), we obtain
lg(x) =T < [If(x) =g + || f () - T@)||
1 1 , (2.38)
< E((p(x,x) +¢(x,—x)) + M(x,0) + mM (x, x).
O

In the following, we will investigate some special cases of Theorem 2.1.

Remark 2.2. Let E; be a commutative semigroup (with the divisibility by 2), and let E; be a a
real Banach space. Suppose that a function ¢ : E; x E; — [0, o) is given and there exists a
constant L, 0 < L < 1, such that

L
o(x,y) < p(2x,2y),
(2.39)

p(x+0(x),y+0(y)) < %tp(Zx,Zy),

for all x,y € E;. Furthermore, let f,¢g,h,k : E;y — E, be even functions satisfying the
inequality

If(x+y) +g(x+0(y)) —2h(x) - 2k(y)|| < 9(x, ) (2.40)
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for all x,y € E;, where 0 : E; — E;j is an involution of E; and f(0) = g(0) = h(0) = k(0) = 0.
Then there exists a unique solution T : E; — E; of (2.40) such that

L !
12 @) - T < g M () + M(x,0),

|2g(x) = T(x)|| < M (x,x) + M(x,0) + %(cp(x, x) + @(x,-x)),

L
41-1) an

[h(x) = T(x)] < M (x,x),

L
11-1)

L 1
llk(x) = T(x)|l < mM'(x,x) + Z(‘P(O/x) +p(x, 0))

for all x € E;, where

M(x,y) = o(x,y) +9(0,y) +¢(y,0) + (p(%c, ’EC) + (p(%c—<§>>

M'(x,y) = M(x,y) + M(x +y,0) + M(x+0(y),0), (2.42)
re - () - (- o5+ 59)])

Remark 2.3. Let E1 and E; be real Banach spaces. Let the hypotheses of Theorem 2.1 hold. If
we put

p(x,y)=6, 6>0 (2.43)
for all x, y € Eq, then, there exists a unique solution T : E; — E; such that

l2f G - Tell < 26,

27
2 -T -6,
128(x) - T@)[| < 5 b

Ih) =T < 55,

[K(x) —T(x)|| <86,
for all x € E;, where

T(x) = lim 2%1 [h(Z”x) + (@ = 1h(2" x4 2"-1o(x))]. (2.45)
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Also, if we put ¢(x,v) = e(||x|P + |ly||P) for 0 < p < 1 and € > 0, then there exists a
unique solution T : E; — E, such that

3+ (=1)?
2r-1

1
[12f (x) = T(x)]| < 2(2—2P)€<10 +

34 (1PN
e (10 25 Ve,

+2<—2>”)e||x||P

—1)P
[25(2) =Tl < 5 e 10+ =5 2020 )l

5 3+ (-1 (—1)”) p
+ <2 + T + > ellx||F,

(2.46)

—1)?
[|h(x) = T (x)] < 20 i ) e(lo + 3 +2£_11) + 2(—2)7’>e||x||P/

3+ (=1)?
2r-1

lk(x) = T(x)|| < 0 i ) €<10 + + 2(_2)P>e||x||p + %e”x”l’.

Similarly, let €, p, g > 0 be real numbers such that p + g < 1. If we put ¢(x,y) = e(||x||") (||y||)
(see [22, 28]), then there exists a unique solution T : E; — E; such that

1 1 €
[12f (x) - T(x)]| < m<5 + 2p+q_1>€(||x||p+q) + g IXIP7),

1 1 . 1 .
||2g(x) - T(x)" S 4 _ 2p+q+1 <5 + 2p+q—1 )e(”x”p q) + <2p+q + 1>€(”x”P q)’
(2.47)

1 1
[[h(x) = T(x)| < 1o (5 + TR >e(||x||r1+q),

+

1 1
k) T < gz (5 s )ll?™).

Let €,p,g > 0 be real numbers such that p + g < 1. Another control function is

e(|lx|IPllyll7 + |x[|P* + [ly||IP*) (see [35]). Then, there exists a unique solution T : E; — Ej
such that

1 9 " 3 N
12/ () =T < 5 (15 + ) xP*9 + <1 - 2p+q_1>€||x||l’ a
|2g(x) - T(x)|| < 1 15+ 9 [|l|[P*T + ( 4+ 3 €l|x||P*
= 4 —2ptqtl op+q-1 op+g-1 4

1 9
— < p+q
Ih) =TI < 7—prm (15+ 2,ﬂﬂ,,l)uxn :

(2.48)

1 1 .
Ilk(x) = T(x)] < yp T <15 + >||x||P+q + §€||x||l’ q

2p+q-1

for all x € E;.
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Theorem 2.4. Let E; be a commutative semigroup (with the divisibility by 2) and let E; be a real
Banach space. Suppose that a function ¢ : E; x E; — [0, 00) is given and there exists a constant L,
0 < L <1, such that

9(2x,2y) < Ly(x,y),

(2.49)
p(x+0(x),y+0(y)) <Lo(x,y),

forall x,y € Ey. Furthermore, let f,g,h, k : E1 — E, be odd functions satisfying the inequality
[f(x+y)+g(x+0(y)) —hx) -ky)| < o(xy), (2.50)
forall x,y € Ei, where o : Ey — E;j is an involution of Ey. Then, there exists a unique solution

T:E; — E;of (2.50) such that

1

, 3
[l f(x) =T < mM (x,%) + 5 (p(x,0) + (0, %)),

l§6) = TGNl < 5775 M%)+ 29(6,0) + (0, ),
(2.51)

[[R(x) =T < M'(x,x),

1
21-1)

kG =T € 57— M (0) + 5 (9(5,0) + 9(0,),

_1
2(1-1L)
for all x € Ey, where
M(x,y) = 9(xy) +p(x+y,0) +9(0,x +y) + ;(4’(%0) +(0,%))
+p(x,—x) + %((p(y/O) +9(0y) +9(y,~v),

M'(x,y) = M(x,y) + M(x,0(y)),

T(x) = lim zln [h(Z"x) + (" - 1)h(2"-1x + z"-lo(x))].

(2.52)

Proof. As in the Theorem 2.1, if we put y = 0, x = 0 (and replace y by x), y = x, and y = —x
in (2.50) separately, then we obtain

[|£(x) + g(x) = 2h(x) || < (x,0), (253)

£ () +8(a(y)) -2k || <9 (0,), (2.54)
||lf(2x) + g(x + o(x)) = 2h(x) — 2k(x)|| < @(x, x), (2.55)
llg(x = o(x)) = 2h(x) + 2k(x) || < @(x, ~x), (2.56)

for all x € E;, respectively.
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We replace y by x — o(x) := d in (2.54). Since 0 : E; — E; is an involution, then
1£(d) - §(d) - 2k(d)|| < (0, d). (2.57)
Also, replace y by x + o(x) := d in (2.54), then
|| £ (d) + g(d) = 2k(d)|| < ¢(0,d). (2.58)
Also, we replace x by x — o(x) := d in (2.55), then
|| £ (2d) - 2h(d) - 2k(d)|| < p(d, d). (259)
We replace x by x — o(x) = d in (2.56), then
Ig(2d) - 2h(d) +2k(d)|| < ¢(d, ~d). (2.60)
Due to (2.53) and (2.57), we have

12 (d) = 2h(d) - 2k(d)|| < ¢(d,0) + (0, d), (2.61)
I2g(d) - 2h(d) + 2k(d)|| < (d,0) + (0, d). (2.62)

Combining (2.54) with (2.61) yields

h(2d) + k(2d) - 2h(d) - 2k(d)|| < %(‘P(d, 0) +(0,d)) + ¢(d, d). (2.63)
Due to (2.60) and (2.62), we have

Ih(2d) - k(2d) - 2h(d) + 2k(d)]|| < %((p(d,()) +¢(0,d)) + ¢(d, —d). (2.64)
Now, it follows from (2.63) and (2.64) that

Ih(2t) ~ 20 (@) < 2 (p(d,0) + (0, ) + p(d, ),
(2.65)
k)~ 2K(@)] < 3 (9(@,0) + 9(0,4) + p(d, ).
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By (2.50), (2.61), (2.62), and (2.65), we have

[(x+y) +k(x+y) +h(x+0(y)) —k(x+0(y)) - h2x) - kQ2y)||
<|If(x+y) +g(x+0(y)) —2h(x) - 2k(y) |
+|[n(x+y) +k(x+y) - f(x+y)||
+|[h(x+0(y)) —k(x+0(y)) -g(x+o))|l
+[|h(2x) = 2h(x)|| + ||k (2y) - 2k () ||

(2.66)
<9(oy) +o(x+y,0) +9(0,x +y) + ;(tp<x,0) +¢(0,x))
1
9 =x) +5(0(y,0) +9(0.y)) +9(y,~y) = M(x,y)

for all x, y € E;. If we replace y in (2.66) by o(y), we get

|h(x+0(y)) +k(x+0(y)) +h(x+y) —k(x+y) —h(2x) -k(2o(y))|| < M(x,0(y)).

(2.67)
By (2.66) and (2.67), we get
[2h(x +y) +2h(x + 0(y)) - h(2x) - h(20(y)) || < M(x,y) + M(x,0(y)).  (2:68)
If we replace y in (2.66) by (y) and combine (2.53) with (2.58), we get
125 (x + ) + 2k (x + 0(y)) - h(2x) = h(2y) || < M(x,v) + M(x,0(y)). (2.69)
By (2.65) and (2.69), we get
[25(x + y) + 2h(x + 0(y)) - 2h(x) = 2h(y) || < M(x,y) + M(x,0(y)) 270
= M'(x,y).
Therefore
[h(x +y) + h(x +0(y)) - h(x) - h(y)|| < M'(x, ). (2.71)

We define X to be the set of all functions f : E; — E; and introduce a generalized metric on
X as follows:

d(g, h) =inf{C € [0,00) : ||g(x) — h(x)|| < CM'(x,x), Vx € Eq}. (2.72)
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Also, we define an operator J : X — X by
JLG) = [L2%) + Lix + 0(x)] @73)

for all x € E;.
Then, there exists a function T : E; — E; which is a fixed point of J, such that
d(J"h,T) — 0asn — oo. By induction, we can show that

(J"h) (x) = % [h(Z”x) +(@" = Dh(2 x4 2"-1o(x)>] (2.74)

for each n € N. Since d(J"h,T) — 0asn — oo, there exists a sequence {C,} such that
Cy, — 0asn — owand d(J"h, T) < C, for every n € N. Hence,

IJ"h(x) = T(x)|| < CuM'(x, x) (2.75)

for all x € E;. Thus, for each fixed x € E;, we have

Jim [[J"h(x) = T(x)|| = 0. (2.76)

Then
T(x) = lim zln [h(Z"x) + (2" - 1)h(2"-1x + 2"-1a(x))] (2.77)
for all x € E;. Hence, T is a solution of (2.51). O

Remark 2.5. Let E; and E; be real Banach spaces. Let the hypotheses of Theorem 2.4 hold. If we
replace the control function ¢(x, y) by 6 > 0, then, there exists a unique solution T : E; — E;
such that

[If () =T()|| <128,
llg(x) = T(x)|| <218,
Ih(x) - T(x)|| <186,
llk(x) - T(x)[| <196,

(2.78)

for all x € E;, where

T(x) = lim 2ln h(2"x) + (2" - 1)h(2”-1x + 2"-1a(x))]. (2.79)
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If we put ¢(x,y) = e(||x||” + ||ly|I) in which € > 0 and p is a nonnegative number less than 1,
then, there exists a unique solution T : E; — E, such that

-1
| f(x) = T(x)| < (;,p—_l) (12 +2(=1)")ellx[” + 3 (ellx["),

) =T < s (1221 el + (eI,
o (2.80)
1) = TN < 5y (124 2-1P)elll,
k() = T € s (12217 el + (ellP).

Lete > 0and p,g > 2. If we put ¢(x,y) = e(||x[|")(|ly[|?), then, there exists a unique solution
T : E;y — E; such that

1f () =T <

3
[ — p+q
T G

3
_ - - ptq
g~ T < g —yelll™
(2.81)
3
_ - - ptq
) =T < gy el

3
_ - - ptq
I =TI ey elll”™.

Finally, if we put ¢(x,v) = e(||x||Ply[|7 + [|x|[P* + ||y||[P*7), then, there exists a unique solution
T : E; — E; such that

| f(x) - T()| <

9
R p+q
ey

9
— I p*q
l§0 =T < gy el
(2.82)

[h(x) ellx|P*,

-Tx)| < m

[I(x) el

9
-Tx)[ < m

for all x € E;.

Remark 2.6. The methods of proofs, used in this paper, can be also applied to the problem
of stability of (1.6) on the restricted domain, analogously as in the papers [18, 46]. Also,
this corresponds to the results in [38, 41-43], where the Pexiderized equations’ stability on
restricted domains has been investigated.
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