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We obtain the Hyers-Ulam stability of a bi-Jensen functional equation: 2f ((x + y)/2,z) — f(x,z) —

f(y,z) = 0 and simultaneously 2f (x, (y + z)/2) — f(x,y) — f(x,z) = 0. And we get its stability on
the punctured domain.

1. Introduction

In 1940, Ulam [1] raised a question concerning the stability of homomorphisms: let G; be a
group and let G, be a metric group with the metric d(-,-). Given € > 0, does there exista 6 > 0
such that if a mapping h : Gi — G satisfies the inequality

d(h(xy), h(x)h(y)) <6 (1.1)
for all x, y € Gy, then there is a homomorphism H : G; — G, with
d(h(x),H(x)) <¢ (1.2)

for all x € G;1? The case of approximately additive mappings was solved by Hyers [2] under
the assumption that G; and G; are Banach spaces. In 1949, 1950, and 1978, Bourgin [3], Aoki
[4], and Rassias [5] gave a generalization of it under the conditions bounded by variables.
Since then, the further generalization has been extensively investigated by a number of
mathematicians, such as Givruta, Rassias, and so forth, [6-25].
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Throughout this paper, let X be a normed space and Y a Banach space. A mapping
g : X — Yis called a Jensen mapping if g satisfies the functional equation 2g((x + y)/2) =
g(x) + g(y). For a given mapping f : X x X — Y, we define

X+

B Gyz)=2f (5 2) - 2 - £ (v,2),

(1.3)
y+z

e (r2) = 2f (5,157 ) = fxw) = £, 2)

for all x,y,z € X. Amapping f : X x X — Y is called a bi-Jensen mapping if f satisfies the
functional equations Jif =0and Jof = 0.

In 2006, Bae and Park [26] obtained the generalized Hyers-Ulam stability of a bi-Jensen
mapping. The following result is a special case of Theorem 6 in [26].

Theorem A. Let e >0andlet f : X x X — Y be a mapping such that

171f (v ) <&

(1.4)
12 (e y,2) | <
forall x,y,z € X. Then there exist two bi-Jensen mappings F,Fy : X x X — Y such that
IfGoy) = FOy) -F(xy)l <e
(1.5)

| f(x,y) = f(x,0) = Fo(x,y)|| < e

forallx,y € X.

In Theorem A, they did not show that there exist a k € R and a unique bi-Jensen
mapping F : X x X — Y such that ||f(x,y) — F(x,y)|| < ke for all x,y € X. In 2008, Jun et al.
[7, 8] improved Bae and Park’s results.

In Section 2, we show that there exists a unique bi-Jensen mapping F : X x X — Y
such that || f(x, y) — F(x, y)|| < 4e for all x, y € X. In Section 3, we investigate the Hyers-Ulam
stability of a bi-Jensen functional equation on the punctured domain.

2. Stability of a Bi-Jensen Functional Equation
From Lemma 1 in [8], we get the following lemma.

Lemma 2.1. Let f : X x X — Y be a bi-Jensen mapping. Then

Fo) = g f @) + (5 - 3 ) U@x0 4 f0.2) + (1-5) F0,0 @D

forallx,y € Xandn € N.

Now we will give the Hyers-Ulam stability for a bi-Jensen mapping.
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Theorem 2.2. Let ¢ > Oand let f : X x X — Y be a mapping satisfying (1.4) for all x,y,z € X.
Then there exists a unique bi-Jensen mapping F : X x X — Y such that

| f(xy) - F(x,y)|| <4e (2.2)

forall x,y € X with F(0,0) = f(0,0). In particular, the mapping F : X x X — Y is given by

+ £(0,0) (2.3)

Fow) = lim | (2o2) + (5 - ) (1(200) +7(02))

forallx,y € X.

Proof. Let f; be the map defined by

fixy) = W + (21—] - %)(f(ZM,O) +£(0,27y)) + <1 - 2]1—_1 + %)f(0,0) (24)

forall x,y € X and j € N. By (1.4), we get

Jif (27*1x,0,0) .\ Jif (27*1x,0,27%1y) . Jif (27*1x,0,27y)

fi(xy) = fin(xy)| =

2j+1 2. 4j+1 4j+1
SIS(M00) | Rf0.021) | Rf(21%,021y)
. 4j+1 j+1 4+
2_ 4 | 2 | 2-4 (2.5)
Jof (2%,0,2°1y)  312£(0,0,21"1y)
+ 4j+1 B 7. 4j+1
(7°70)
<l —=+—— )¢
21 2.4
forall x,y € X and j € N. For given integers [, m with 0 < I < m, we obtain
m-1 1 3
1fiGey) = el < 25 55+ 577 )¢ (2.6)

j=l

for all x,y € X. By the above inequality, the sequence {f;(x,y)} is a Cauchy sequence for
all x,y € X. Since Y is complete, the sequence {f;(x,y)} converges for all x,y € X. Define
F:XxX — Yby

F(x,y) = Jim fitxy) (2.7)
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for all x, y € X. Putting | = 0 and taking m — oo in (2.6), we obtain the inequality

| f(xy) - F(x,y)|l <4e (2.8)

for all x,y € X. By (1.4) and the definition of F, we get

JiF(x,y,z) = jliriloéjlf(zfx,zfy) + (21—] - 41—]> <]1f<2]'x,0> + ]1f<0,2fy>> =0,
(2.9)
JFs(x,y,z) = jli%%]zf(fo,zfy) + <% - %) <]2f<2fx,0) + ]2f<0,2fy>> =0

for all x,y,z € X. So F is a bi-Jensen mapping satisfying (2.2). Now, let F' : X x X — Y be
another bi-Jensen mapping satisfying (2.2) with F'(0,0) = f(0,0). By Lemma 2.1, we have

|F(x,y) - F'(x )|l
(F - F')(2"x,2"y)

s (- )(E-P)@x0) + (F- P')(O:z"y))“
“ - N@Esry “ H e-N0y ” H (= p)ermo H

(2.10)

+
1 1
2 e )*

forallx,y € Xandn € N. Asn — oo, we may conclude that F(x,y) = F'(x,y) forall x, y € X.
Thus the bi-Jensen mapping F : X x X — Y is unique. O

(f-F) (2"x 2"y)H H(f P 2”y)H H(f P@s, O)H

IN

Example 2.3. Let f,F,F' : R xR — R be the bi-Jensen mappings defined by

f(xy) =0, F(x,y) :=¢, F'(x,y) :=-¢ (2.11)

for all x,y € R. Then f,F, F' satisfy (1.4) for all x,y,z € R. In addition, f, F satisfy (2.2) for
all x, y € R and f, F' also satisfy (2.2) for all x, y € R. But we get F’ # F. Hence the condition
F(0,0) = f(0,0) is necessary to show that the mapping F is unique.
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3. Stability of a Bi-Jensen Functional Equation on
the Punctured Domain

Let A be a subset of X. X \ A and (X x X) \ (A x A) are punctured domain on the spaces X
and (X x X), respectively.

Throughout this paper, for a given mapping f : XxX — Y, let f1, A1, Ay : XxX = Y
be the mappings defined by

fny) =2 (xy) - f(=xy) - 4f (x,-y) + fx-y)
1 1
A(x,y) =D D (D)™ L f (D)™, (-1)" - 3x, y), 3.1)
m=0 n=0
1 1
Ar(x,y) = 3, D" af (x, (1) -3y, (-1)"y)
m=0 n=0

forall x,y € X.

Lemma 3.1. Let A be a subset of X satisfying the following condition: for every x #0, there exists
a positive integer n, such that kx & A for all integer k with |k| > ny, and such that kx € A for all
integer k with |k| < ny. Let f : X x X — Y be a mapping such that

Jif(x,y,2)=0,  Lf(x,y,z)=0 (3.2)
forall x,y,z € X\ A. Then there exists a unique bi-Jensen mapping F : X x X — Y such that
F(x,y) = f(xy) (3.3)
forall x,y € X \ A. Moreover, the equality

F(x,y) = f(x,y) (3.4)

holds for all (x,y) € (X x X) \ (A x A).
Proof. Note that J1f(x,y,z) = 0, of(x,y,z) = 0, Ai(x,y) = 0, and Ax(x,y) = 0 for all

x,y € X\ A Let (f(0,y) + f(0,-y))/2) =c € Y forany y € X \ A. From (3.2), we get the
equality

f(0,y) +f(0,~y) = f(x,0) + f(~x,0) + %(hf (x,~x,y) + L f (x,~x,~y) = .f (x, y,~y)

~Lf(=x,y,-y))
(3.5)

forall x,y € X \ A, and we know that the equality

f(0.y) +2f O-y) _f(x0) +2f (%0 __ (3.6)
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holds for all x,y € X \ A. From (3.2), we have

fi (x y) fi (Zx,y) + Aq (13;,}/) Aq (ché—y)’

H@xy) f1(2x,2y) L ACxy)  A(2xy)
2 4 32 2

f(x,y) _ f(ozy) _2f(0, —y) N f(O,y) +2f(0, —y) .\ f(x,0) _2f(_x’0)

+filoy) - 2(211}‘ (v, =x,y) + Jof (x,y,~y) = 2f (=%, y,-y)),

f(x,0) = f(=x,0) = J(2x,0) —2f 220 (3.7)

+ %(‘sz (e v, ~y) —401f (=, y,~y) =21 f (2%, y,~y)
201 f (222, y,-y) + A1(x,y) + Ai(x,-y)),

F(0,y) - F(0,—y) = 102 —2f (0,-2y)

* %(‘Ulf (x,—x,y) =411 f (x,~x,~y) = 2]1f (x,~x,2y)

+2J1f (x,—x,-2y) + As(x, ) + Ax(—x,Y))

for all x,y € X \ A. From the above equalities, we obtain the equalities

filx,y) = h (22x, y) , (3.8)

Fx,0) - flx,0) = LEZT 200, 69)

102) =70 2)

f(O,y) - f(0,~y) = (3.10)
fiy) = LEREY),
ﬂnm=f“ﬁ*j“”m+f@ﬁH;6mm:fa%ozi<rxm
fo) = O SO JON+O) _FOID-FO2) R
f(x,y):fl(zn;:zny) £(0,2"y) - (0, zny;:lf(znx 0 - 20

forallx,y € X\ Aand n € N.
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Let Ay be the set defined by Ay = {n € N | nx¢ A} for each x#0. From the above
equalities, we can define F : X x X — Y by

F(x,y) := 1

(F2Y) | FO0.2%) - FO,-25) + f(255,0) - (-2%,0) |

4k

f(2kx,0) - f(-2kx,0)

2k+1 4
for some 28 € A, N A, if x, y#0,

+c, forsome2fe A, if x#0, y=0, (3.12)

2k+1
£(0,2y) - £(0,-2"y)

+c¢ for some ZkEAy ifx=0, y#0,

2k+1

if x,y=0.

From the definition of F, we get the equalities

F(x,y) = f(x,y),

FO,y)=f(0,y),  F(x,0) = f(x,0) (3.13)

forall x,y € X \ A. By (3.10), we get the equality

f(x,y) - F(x,y) = % []2 £(x (2’< +2)y,-2%y) - ]2F<x, (26 +2)y, _zky)] 0 (3.14)

forall x € X \ A and y#0, where 2F € A,. And also we get the equality

f(x,y) -F(x,y) = %[]J((zk +2)x,-2%%,y) - iF((2°+2)x, 2" x,y)| =0 (3.15)

forall x#0and y € X \ A, where 25 € A,. Hence the equality

f(x,y) =F(x,y) (3.16)

holds for all (x,y) € (X x X) \ (A x A). From (3.8), (3.9), (3.10), and the definition of F, we

easily get

]1F(x/—x/]/) = 0/
JiF(x,0,y) =0,

JiF(x,—x,0) =0, JiF(0,0,y) =0,
JiF(x,0,0)=0,  J1F(0,0,0) =0

(3.17)
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for all x, y #0. And we obtain

_Rf@ N (x+y),z-2) - bf (2 (x +y),2,-2)

jlp(x/ Y, 0) okl

—Jaf (2%x,z,-2) + o f (-2°x,2,-2) —].f (2Fy,z,-2)

+ +
2k+2 2k+2
(3.18)
.\ Iof (—Zky, z,-z) + ]1f(2kx, 2ky, z) - ]1f(—2kx, -2ky, z)
2k+2

Jif (2Kx, 2%y, —z) — ], f(-2kx, 2%y, -z)

* ok+2 =0

for all x, y # 0 with x + y #0, where 2ke A n Ay N Ayiyand z¢ A. From this, we have

Jif (28x, 2%y, 2k2) — J; f(—2kx, -2Fy, 2kz)
4k+1

Jif (=2Fx,=2ky, -2kz) — ], f (2Fx, 2ky, -2 Z)
+
4k+1

JiF(x,y,z) =
(3.19)

+ JiF(x,y,0) =0
for all x,y, z#0 with x + y #0, where 2ke A n Ay, N A;. From the above equalities, we get
JiF(x,y,2) =0 (3.20)
for all x,y, z € X. By the similar method, we have
JoF(x,y,2z) =0 (3.21)

for all x,y,z € X. Hence F is a bi-Jensen mapping. Let F' be another bi-Jensen mapping
satisfying

F'(x,y) = f(x,y) =F(x,y) (3.22)

forall (x,y) € (X x X) \ (A x A). Using the above equality, we show that the equalities

F'(x,y)-F(x,y) = %(]ﬂ-"'((k +2)x,—kx,y) — J1F((k +2)x,~kx,y)) =0,
(3.23)

F'(0,y) ~ F(O,y) = 5 (I F (ke ~kx,y) = JiF (kx,~kx,)) =0

hold for all x #0 and y € X as we desired, where k € A,. O
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Corollary 3.2. Let f : X x X — Y be a mapping such that
jlf(x/ylz) = 0/ jzf(x/ylz) = 0 (324)
forall x,y,z € X \ {0}. Then there exists a unique bi-Jensen mapping F : X x X — Y such that

F(x,y) = f(x,y) (3.25)

forall (x,y)#(0,0).

Example 3.3. Let f : R xR — R be the mapping defined by

(3.26)

(x+3) 4) for (x, (0,0),
f(x,y)::{{ 3+ for (n)7

for (x,y) =(0,0),
and let F be the mapping defined by F(x,y) = (x + 3)(y + 4) for all x,y € R. Then the

mappings f, F satisfy the conditions of Corollary 3.2 with f(0,0) # F(0,0).

Now, we prove the Hyers-Ulam stability of a bi-Jensen functional equation on the
punctured domain X \ A.
Theorem 3.4. Let € > 0and xo € X \ A. Let f : X x X — Y be a mapping such that

Iif(xy2)<e, f(xy2)| <e (3.27)

forall x,y,z € X \ A. Then there exists a unique bi-Jensen mapping F : X x X — Y such that
17
I1fGey) - Fley)ll < e (3.28)

holds for all (x,y) € (X x X) \ (A x A) with F(0,0) = (f(x0,0) + f(-x0,0))/2. The mapping
F:XxX — Y is given by

F(x,y) := lim

jooo

<f1 (2x,2y)  f(0.2y) +f (zjx'0)> L0000 55
47 2]+1 2

forallx,y € X.
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Proof. By (3.27), we get

A(@x2y)  f1(2x,2y) ”

4]' 4j+1
. . 1 i1 . i1 3¢
4]+2 Ay (2]x,27y> - A <2]x, —2]y> + §A2<2] x,2]y> - —A2< 20 x, 2]y> < T
f(0.27y) - f(0,-2y)  f(0,27*'y) - £(0,-2"y)
2j+1 2j+2
1 : . .
= S +4]1f<x, —-x, 2]y> - 4]1f<x, -x, —27y> - 2]1f<x, -X, 27+1y>
" . 5¢
+2]1f<x, —x,-2) 1y> +A2<x,21y> + A2< x,2/ y)” S S
FO.)+FO-y)  f(x,0)+f(-x,0)
2 2
1
= g f G = y) + 11 f Co =%, —y) = af (v, =y) = f (-, y,-y) || < €
(3.30)
forall x,y € X\ Aand j € N. For given integers [, m (0 < I < m), we have
fi@'x2y) A" 2"y ||
4l - 4m g] 4]+1’ (331)
oo focte fora_jo-r) s .
21+1 m+l ]+2’ ’
f(2'%,0) - f(=2'x,0)  f(2"x,0) - f(-2"x,0) || "= 5
2l+1 om+l < ZI 2j+2” (3'33)
]:
- 0,2™m 0,-2m
Hﬂx,m +f(x,0)  f(0,2"y) + £ e (334)
2 2
O’ 0’_ mn s =2 7
“f( v) +2f( y) _f@2"x,0) +2f( 2"x,0) ” < (335)

for all x,y € X \ A. The sequences {(f1(2/x,2/y))/47}, {(f(0,2/y) - f(0,-2/y))/2/*!}, and
{(f(2/x,0) - f(~2/x,0))/2/*!} are Cauchy sequences for all x,y € X \ A. Since Y is complete,
the above sequences converge for all x, y € X \ A. From (3.34) and (3.35), we have

Q2N Oy fP0) +f(2x0) (3.36)
7*)00 2]+1 j—o oo 2’+1
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for all x, y € X. Using the inequalities (3.31)—(3.35) and the above equality, we can define the
mappings Fi, Fp, F3: X x X — Y by

2x,2]
Fi(x,y) :== lim —fl( X y),
j— o 4]
m 1 O2Y) _ o fO2y) - F0.-2y)
Fy(x,y) = jlggT = leOO T (3.37)
f(ZxO) f(sz 0) f( —2ix, 0)
F3(x,y) := hm 5 jl_)Oo S

for all x, y € X. By (3.27) and the definition of F;, we obtain

JiFi(x,y,z) = lim

jooe

[ Jif (27x,27y,2iz) - J1f(-2/x,-21y,2/z)
4j+1

Nif (2%, 21y, ~2z) - ] f (-2/x, -2y, —zfz)] .

4j+1
‘ _ ' . . _ (3.38)
2ix,2iy,2iz) - —2ix,2iy,2i
J2Fi (x,,2) = lim [fzf @x, 2y, 2) - Jof (2% 2y,22)
j— o 4]+1
Jof (2x,-21y,-21z) - o f (-2/x, -2y, -2/z)
- 4i+1 =
for all x,y,z #0. Since JoF»(x,y,-y) = 0 and
[ f(w w27 (y+2)  if (w,-w,2y)
LE(xy,2) = }5’33< 2 - 2j+1
Jif(w,~w,2z)  DLf(w,2y,2z) Lf(-w,2y,2z)
- i+ + i+l + i+l =
(3.39)
forall x,y,z#0 with y + z#0, where w ¢ A, we have
JiF2(x,y,2) =0,  JoFa(x,y,2) =0 (3.40)

for all x,y, z #0. Similarly, the equalities

JiF3(x,y,z) =0,  LhF3(x,y,z) =0 (3.41)
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hold for all x,y, z#0. By Lemma 3.1, There exist bi-Jensen mappings F,F), F; : X x X — Y
such that

Fi(xy)=F(xy), FEy)=hxy), By =FHxy) (3.42)
for all (x,y) # (0,0). Since the equalities

F;(x,0) + F{(-x,0) _ Fi(x,0) + Fi1(-x,0)

F{(0,0) . 2 2 :Fl(oro)/
Fl(x,0) + F,(-x,0 -

FE(0,0) — 2(x ) 2 2( X ) _ FZ(x/O) +2F2( xIO) — F2(0/ 0), (343)
Fl(x,0) + F.(-x,0 F5(x, F3(—x,

F,(0,0) = 4(x,0) . 3(=x,0) _ F5(x,0) +2 3(=x,0) _ F5(0,0)

hold, Fi, F>, F3 are bi-Jensen mappings. Putting [ = 0 and taking m — oo in (3.31), (3.32), and
(3.33), one can obtain the inequalities

I -RBenl<e  |3000-fO-1) Ry <7,
(3.44)

forall x,y € X \ A. By (3.30) and the above equalities, we get

lf (x,v) = F(x,y)|| < ||f(x,y) — fi(x,y) - £(0,y) - f(x,0) _Zf(—x,O) ||

fQO.y) +f(0,-y)  f(x0,0) + f(~x0,0)
2 2

N Hf(O/y) - f(0,~y)
2

+ +fi(xy) - Fuxy)ll

+

_ Fz (x/ y) f(xr O) _zf(_x/ 0)

R

+7¢

1 1 1
< H_Qflf(x, ~x%,y) = 2 f (v, =y) + o f (%Y, -y)

< 8¢
(3.45)

for all x,y € X \ A, where F is given by

F(x,y) = Fi(x,y) + F2(x,y) + F3(x,y) + f(x0,0) +2f(—x0,0) (3.46)
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and z ¢ A. By (3.45), we get the inequalities

1£ (e y) ~ FGom) = I f((k+2)x, k) + £ ((k +2)x,y) ~ F((k +2)x,y)
+f (kx,y) - F(-kzy) < e,

1£(0.y) -FO, )| = %th (kx,~kx,y) + f(kx,y) = F(kx,y) + f (<kx,y) = F(=kx,y) |

< gg
-2
(3.47)
forall x #0 and y ¢ A, where k € A,, and the inequalities
17
|| f(x,y) - F(x,y)| < &
(3.48)

G, 0) - F 0 < e

for all y #0 and x ¢ A. Hence F is a bi-Jensen mapping satisfying (3.28).
Now, let F' : XxX — Y be another bi-Jensen mapping satisfying (3.28) with F'(0,0) =
F(0,0). By Lemma 2.1, we have

| F(x,y) = F'(x,y)|

<|FE-neEx2n (5 -5 ) (E-nExn -+ E-HE2Y)|
t|FC-B@x2w) 4 (5 - 5 )(F-PIEx0+ (-2 < 55
(3.49)

forallx,y € X\ Aand n € N. Asn — oo, we may conclude that F(x,y) = F'(x,y) for all
x,y € X\ A.By Lemma 3.1, F = F' as we desired. O

Example 3.5. Let f : R xR — R be the mapping defined by

£ if (x,y) = (0,0),
flxy) = {2 i (xy) =00 (3.50)
0 if (x,y)#(0,0).

Let F: RxR — R be the mapping defined by F(x,y) = 1 for all x, y € X. Then f satisfies the
conditions in Theorem 3.4, and F is a bi-Jensen mapping satisfying (3.28) but F(0,0) # f(0,0).
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Corollary 3.6. Let f : XxX — Y be a mapping satisfying (3.13) and (3.27) for all x,y,z € X\ {0}.
Then there exists a bi-Jensen mapping F : X x X — Y such that

| f(x,y) - F(x,y)|l <8¢ (3.51)

forall (x,y)#(0,0).

Proof. Let F, F,, F3 be as in the proof of Theorem 3.4. By (3.30), we obtain

1£0.y) -FOy)| <

fOy)+f(0,-y)  f(x0,0) + f(-x0,0) H
2 2

7€

+ _FZ(x/y) S?r

f(0,y) - f(0,~y)
2

|| f(x,0) - F(x,0)|| < 5 g

f(x,0)+f(=x,00  f(0,y) + f(0,~y) H (3.52)

+

fO,y) +f(0,-y)  f(x0,0) + f(-x0,0) “
2 2

9¢
< =

N “ f(x,0) —zf(—x, 0)

- F3(x,y)

for x, y #0. From the above inequalities and (3.45), we get the inequality

| f(x,y) - F(x,y)| <8¢ (3.53)

for all (x,y) # (0,0). O
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