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Recently, many mathematicians have studied various kinds of the q-analogue of Genocchi
numbers and polynomials. In the work (New approach to q-Euler, Genocchi numbers and their
interpolation functions, “Advanced Studies in Contemporary Mathematics, vol. 18, no. 2, pp. 105–
112, 2009.”, Kim defined new generating functions of q-Genocchi, q-Euler polynomials, and their
interpolation functions. In this paper, we give another definition of the multiple Hurwitz type q-
zeta function. This function interpolates q-Genocchi polynomials at negative integers. Finally, we
also give some identities related to these polynomials.

1. Introduction

Let p be a fixed odd prime number. Throughout this paper Zp,Qp,C, and Cp denote the ring
of p-adic rational integers, the field of p-adic rational numbers, the complex number field,
and the completion of the algebraic closure of Qp, respectively. Let N be the set of natural
numbers and Z+ = N ∪ {0}. Let vp be the normalized exponential valuation of Cp with |p|p =
p−vp(p) = 1/p (see [1]).

When one talks of q-extension, q is variously considered as an indeterminate, a
complex q ∈ C or a p-adic number q ∈ Cp. If q ∈ C, then one normally assumes |q| < 1.
If q ∈ Cp, then we assume that |q − 1|p < 1. In this paper, we use the following notation:

[x] =
[
x : q

]
=

1 − qx

1 − q
, [x]−q =

1 − (−q)x
1 + q

(1.1)

(see [2, 3]). Hence limq→ 1[x] = x for all x ∈ Zp.
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We say that f : Zp → Cp is uniformly differentiable function at a point a ∈ Zp and we
write f ∈ UD(Zp) if the difference quotients Φf : Zp × Zp → Cp such that

Φf

(
x, y
)
=

f(x) − f
(
y
)

x − y
(1.2)

have a limit f ′(a) as (x, y) → (a, a). For f ∈ UD(Zp), the q-deformed fermionic p-adic
integral is defined as

I−q
(
f
)
=
∫

Zp

f(x)dμ−q(x) = lim
N→∞

1
[
pN
]
−q

pN−1∑

x=0

f(x)
(−q)x (1.3)

(see [4–6]). Note that

I−1
(
f
)
= lim

q→ 1
I−q
(
f
)
=
∫

Zp

f(x)dμ−1(x) (1.4)

(see [7–9]). Let f1(x) be the translation with f1(x) = f(x + 1). Then we have the following
integral equation:

I−1
(
f1
)
+ I−1

(
f
)
= 2f(0), (1.5)

(see [10–12]).
The ordinary Genocchi numbers and polynomials are defined by the generating

functions as, respectively,

F(t) =
2t

et + 1
=

∞∑

n=0

Gn
tn

n!
, |t| < π,

F(t, x) =
2t

et + 1
ext =

∞∑

n=0

Gn(x)
tn

n!
, |t| < π.

(1.6)

Observe that Gn(0) = Gn (see [10, 11, 13]).
These numbers and polynomials are interpolated by the Genocchi zeta function and

Hurwitz-type Genocchi zeta function, respectively,

ζG(s) = 2
∞∑

n=1

(−1)n
ns

, s ∈ C,

ζG(s, x) = 2
∞∑

n=0

(−1)n
(n + x)s

, s ∈ C, 0 < x ≤ 1.

(1.7)

Thus we note that Genocchi zeta functions are entire functions in the whole complex s-plane
(see [14–16]).
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Various kinds of the q-analogue of the Genocchi numbers and polynomials, recently,
have been studied by many mathematicians. In this paper, we use Kim’s [14–16] methods.
By using p-adic q-Vokenborn integral [6], Kim [2, 7–9, 14–18] constructed many kind
of generating functions of the q-Euler numbers and polynomials and their interpolation
functions. He also gavemany applications of these numbers and functions. He [14] defined q-
extension Genocchi polynomials of higher order. He gave many applications and interesting
identities. We give some of them in what follows.

Let q ∈ C with |q| < 1. The q-Genocchi numbers Gn,q and polynomials Gn,q(x) are
defined by Kim of the generating functions as, respectively,

t

∫

Zp

e[x]tdμ−q(x) =
∞∑

n=0

Gn,q
tn

n!
, |t| < π

t

∫

Zp

e[x+y]tdμ−q
(
y
)
=

∞∑

n=0

Gn,q(x)
tn

n!
, |t| < π

(1.8)

(see [1, 8–11, 13, 14, 17]). By using the Taylor expansion of e[x]t,

∞∑

n=0

∫

Zp

[x]ndμ−q(x)
tn

n!
=

∞∑

n=0

Gn,q
tn−1

n!
= G0,q +

∞∑

n=0

Gn+1,q

n + 1
tn

n!
. (1.9)

By comparing the coefficient of both sides of tn/n! in the above,

G0,q = 0,

Gn+1,q

n + 1
=
∫

Zp

[x]ndμ−q(x) =
[2]

(
1 − q

)n
n∑

l=0

(
n

l

)

(−1)l 1
1 + ql+1

.
(1.10)

From the above, we can easily derive that

∞∑

n=0

Gn,q
tn

n!
=

∞∑

n=0

(

t

∫

Zp

[x]ndμ−q(x)

)
tn

n!

=
∞∑

n=0

(

t
[2]

(
1 − q

)n
n∑

l=0

(
n

l

)

(−1)l 1
1 + ql+1

)
tn

n!

= [2]t
∞∑

m=0
(−1)mqme[m]t.

(1.11)

Thus we have, following that,

Fq(t) = [2]t
∞∑

m=0
(−1)mqme[m]t =

∞∑

n=0

Gn,q
tn

n!
. (1.12)
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Using similar method to the above, we can find that

G0,q(x) = 0,

Gn+1,q(x)
n + 1

=
∫

Zp

[
x + y

]n
dμ−q

(
y
)
=

[2]
(
1 − q

)n
n∑

l=0

(
n

l

)

(−1)lqlx 1
1 + ql+1

.
(1.13)

Thus we can easily derive that

Fq(t, x) = [2]t
∞∑

m=0
(−1)mqme[m+x]t =

∞∑

n=0

Gn,q(x)
tn

n!
. (1.14)

Observe that Fq(t) = Fq(t, 0). Hence we have Gn,q(0) = Gn,q. If q → 1 into (1.14), then we
easily obtain F(t, x) in (1.6).

Let q ∈ C with |q| < 1, r ∈ N, and n ≥ 0. We now define as the generating functions of
higher order q-extension Genocchi numbers G(r)

n,q and polynomials G(r)
n,q(x), respectively,

F
(r)
q (t) = tr

∫

Zp

· · ·
∫

Zp︸ ︷︷ ︸
r times

e[x1+···+xr]tdμ−q(x1) · · ·dμ−q(xr) =
∞∑

n=0

G
(r)
n,q

tn

n!
,

F
(r)
q (t, x) = tr

∫

Zp

· · ·
∫

Zp︸ ︷︷ ︸
r times

e[x+x1+···+xr]tdμ−q(x1) · · ·dμ−q(xr) =
∞∑

n=0

G
(r)
n,q(x)

tn

n!
.

(1.15)

Then we have

∞∑

n=0

(∫

Zp

· · ·
∫

Zp

[x1 + · · · + xr]ndμ−q(x1) · · ·dμ−q(xr)

)
tn

n!

=
∞∑

n=0

G
(r)
n,q

tn−r

n!
=

r−1∑

n=0

G
(r)
n,q

tn−r

n!
+

∞∑

n=0

G
(r)
n+r,q

(
n+r

r

)
r!

tn

n!
,

(1.16)

where
(

n+r

r

)
= (n + r)!/n!r!.

By comparing the coefficient of both sides of tn/n! in the above, we can derive that

G
(r)
0,q = G

(r)
1,q = · · · = G

(r)
r−1,q = 0,

G
(r)
n+r,q

(
n+r

r

)
r!

=
∫

Zp

· · ·
∫

Zp

[x1 + · · · + xr]ndμ−q(x1) · · ·dμ−q(xr)

=
[2]r

(
1 − q

)n
n∑

l=0

(
n

l

)

(−1)l 1
(
1 + ql+1

)r .

(1.17)
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Therefore we obtain

F
(r)
q (t) = [2]r tr

∞∑

m=0
(−1)mqm

(
m + r − 1

m

)

e[m]t =
∞∑

n=0

G
(r)
n,q

tn

n!
. (1.18)

Using similar method to the above, we can also derive that

G
(r)
0,q(x) = G

(r)
1,q(x) = · · · = G

(r)
r−1,q(x) = 0,

G
(r)
n,q(x)
(

n+r

r

)
r!

=
[2]r

(
1 − q

)n
n∑

l=0

(
n

l

)

(−1)lqlx 1
(
1 + ql+1

)r .
(1.19)

Thus we can easily obtain the following theorem.

Theorem 1.1. For r ∈ N and n ≥ 0, one has

F
(r)
q (t, x) = [2]r tr

∞∑

m=0
(−1)mqm

(
m + r − 1

m

)

e[m+x]t =
∞∑

n=0

G
(r)
n,q(x)

tn

n!
. (1.20)

It is noted that if r = 1, then (1.20) reduces to (1.14).

Remark 1.2. In (1.20), we easily see that

lim
q→ 1

F
(r)
q (t, x) = 2r tr

∞∑

m=0
(−1)m

(
m + r − 1

m

)

e(m+x)t

= 2r tretx
∞∑

m=0

(
m + r − 1

m

)
(−et)m

=
2r tretx

(1 + et)r

= F(r)(t, x).

(1.21)

From the above, we obtain generating function of the Genocchi numbers of higher
order. That is

F(r)(t, x) =
2r tretx

(1 + et)r
=

∞∑

n=0

G
(r)
n (x)

tn

n!
. (1.22)

Thus we have

lim
q→ 1

G
(r)
n,q(x) = G

(r)
n (x). (1.23)
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Hence we have

F(r)(t, x) =
(

2t
et + 1

)(
2t

et + 1

)
· · ·
(

2t
et + 1

)

︸ ︷︷ ︸
rtimes

etx

= 2r tretx
∞∑

n1=0
(−1)n1en1t

∞∑

n2=0
(−1)n2en2t · · ·

∞∑

nr=0
(−1)nr enrt

= 2r tretx
∞∑

n1,n2,...,nr=0
(−1)n1+n2+···+nr e(n1+n2+···+nr)t

=
∞∑

n=0

G
(r)
n (x)

tn

n!
.

(1.24)

In [14], Kim defined new generating functions of q-Genocchi, q-Euler polynomials and
their interpolation functions. In this paper, we give another definition of themultiple Hurwitz
type q-zeta function. This function interpolates q-Genocchi polynomials at negative integers.
Finally, we also give some identities related to these polynomials.

2. Modified Generating Functions of Higher Order q-Genocchi
Polynomials and Numbers

In this section, we study modified generating functions of the higher order q-Genocchi
numbers and polynomials. We obtain some relations related to these numbers and
polynomials. Therefore we define generating function of modified higher order q-Genocchi
polynomials and numbers, which are denoted by G

(r)
n,q(x) and G

(r)
n,q, respectively, in (1.15). We

give relations between these numbers and polynomials.
We modify (1.20) as follows:

F
(r)
q (t, x) = F

(r)
q

(
q−xt, x

)
, (2.1)

where F(r)
q (t, x) is defined in (1.20). From the above we find that

F
(r)
q (t, x) =

∞∑

n=0

q−(n+r)xG(r)
n,q(x)

tn

n!
. (2.2)

After some elementary calculations, we obtain

F
(r)
q (t, x) = q−rx exp

(
[x]q−xt

)
F
(r)
q (t), (2.3)

where

F
(r)
q (t) = [2]r tr

∞∑

m=0
(−1)mqm

(
r +m − 1

m

)

e[m]t =
∞∑

n=0

G
(r)
n,q

tn

n!
. (2.4)
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From the above, we can define the modified higher order q-Genocchi polynomials ε(r)n,q(x) as
follows

F
(r)
q (t, x) =

∞∑

n=0

ε
(r)
n,q(x)

tn

n!
(2.5)

Then we have

ε
(r)
n,q(x) = q−(n+r)xG(r)

n,q(x). (2.6)

By using Cauchy product in (2.3), we arrive at following theorem.

Theorem 2.1. For r ∈ N and n ≥ 0, one has

ε
(r)
n,q(x) = q−(n+r)x

n∑

j=0

(
n

j

)

qjx[x]n−jG(r)
j,q . (2.7)

By using (2.7), we easily obtain the following result.

Corollary 2.2. For r ∈ N, and n ≥ 0, one has

ε
(r)
n,q(x) = q−(n+r)x

∞∑

m=0

n∑

j=0

n−j∑

l=0

(
n

j, l, n − j − l

)(
n − j +m − 1

m

)

(−1)lqm+x(j+l)G
(r)
j,q . (2.8)

We now give some identity related to the Genocchi polynomials and numbers of
higher order.

Substituting x = 0 into (1.24), we find that

G
(r)
n = 2r tr

∞∑

n1,n2,...,nr=0

∞∑

j1,j2,...,jr=0
j1+j2+···+jr=n

(
n

j1, j2, . . . , jr

)

(−1)n1+n2+···+nr

r∏

k=0

n
jk
k . (2.9)

By (1.24) and (2.8), we arrive at the following theorem.

Theorem 2.3. For r ∈ N and n ≥ 0, one has

G
(r)
n =

n∑

j=0

(
n

j

)

(−x)n−jG(r)
j (x). (2.10)

By using (1.24), we easily arrive at the following result.

Corollary 2.4. For r, v ∈ N and n ≥ 0, one has

(
G(r)(x) +G(v)(y

))n
=

n∑

j=0

(
n

j

)

xn−jG(r+v)
j

(
y
)
, (2.11)

where (G(r)(x))n is replace by G(r)
n (x).
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3. Interpolation Function of Higher Order q-Genocchi Polynomials

Recently, higher order Bernoulli polynomials, Euler polynomials, and Genocchi polynomials
have been studied by many mathematicians. Especially, in this paper, we study higher order
Genocchi polynomials which constructed by Kim [15] and see also the references cited in
each of the these earlier works.

In [14], by using the fermionic p-adic invariant integral onZp, the set of p-adic integers,
Kim gave a new construction of q-Genocchi numbers, Euler numbers of higher order. By
using q-Genocchi, Euler numbers of higher order, he investigated the interesting relationship
betweenw-q-Euler polynomials andw-q-Genocchi polynomials. He also defined themultiple
w-q-zeta functions which interpolate q-Genocchi, Euler numbers of higher order.

By using similarmethod to that in the papers given byKim [14], in this section, we give
interpolation function of the generating functions of higher order q-Genocchi polynomials.
From (1.20), we easily see that

∞∑

k=0

G
(r)
k,q(x)

tk

k!
=

∞∑

k=0

[2]rr!

(
k + r

r

) ∞∑

m=0
(−1)mqm

(
m + r − 1

m

)

[m + x]k
tk+r

(k + r)!
. (3.1)

From the above we have

G
(r)
k+r,q(x) = [2]rr!

(
k + r

r

) ∞∑

m=0
(−1)mqm

(
m + r − 1

m

)

[m + x]k,

G
(r)
0,q(x) = G

(r)
1,q(x) = · · · = G

(r)
r−1,q(x) = 0.

(3.2)

Hence we have obtain the following theorem.

Theorem 3.1. Let r, k ∈ Z+. Then one has

G
(r)
k+r,q(x) = [2]rr!

(
k + r

r

) ∞∑

m=0
(−1)mqm

(
m + r − 1

m

)

[m + x]k. (3.3)

Let us define interpolation function of the G(r)
k+r,q(x) as follows.

Definition 3.2. Let q, s ∈ C with |q| < 1 and 0 < x ≤ 1. Then we define

ζ
(r)
q (s, x) = [2]r

∞∑

n=0

(
n + r − 1

n

)
(−1)nqn
[n + x]s

. (3.4)

We call ζ(r)q (s, x) are the multiple Hurwitz type q-zeta function.
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Remark 3.3. It holds that

lim
q→ 1

ζ
(r)
q (s, x) = 2r

∞∑

n=0

(
n + r − 1

n

)
(−1)n

(n + x)s
. (3.5)

From (1.24), we easily see that

ζ(r)(s, x) = 2r
∞∑

n1,n2,...,nr=0

(−1)n1+n2+···+nr

(∑r
j=1 nj + x

)s , (3.6)

where s ∈ C.

The functions in (3.5) and (3.6) interpolate the same numbers at negative integers.
That is, these functions interpolate higher order q-Genocchi numbers at negative integers. So,
by (3.5), we modify (3.6) in sense of q-analogue.

In (3.5) and (3.6), setting r = 1, we have

ζ(1)(s, x) = 2
∞∑

n=0

(−1)n
(n + x)s

= ζG(s, x), (3.7)

where ζG(s, x) denotes Hurwitz type Genocchi zeta function, which interpolates classical
Genocchi polynomials at negative integers.

Substituting s = −k, k ∈ Z
+ into (3.4). Then we have

ζ
(r)
q (−k, x) = [2]r

∞∑

n=0

(
r + n − 1

n

)

(−1)nqn[n + x]k. (3.8)

Setting (3.3) into the above, we easily arrive at the following result.

Theorem 3.4. Let r, k ∈ Z+. Then one has

ζ
(r)
q (−n, x) =

G
(r)
n+r,q(x)

r!
(

n+r

r

) . (3.9)

4. Some Relations Related to Higher Order q-Genocchi Polynomials

In this section, by using generating function of the higher order q-Genocchi polynomials,
which is defined by (1.20), we obtain the following identities.
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By using (1.20), we find that

G
(r)
k+r,q(x)

r!
(

k+r

r

) = [2]r
∞∑

m=0
(−1)mqm

(
m + r − 1

m

)
(
[m] + qm[x]

)k

= [2]r
∞∑

m=0
(−1)mqm

(
m + r − 1

m

)
k∑

j=0

(
k

j

)

[m]jqm(k−j)[x]k−j

= [2]r
∞∑

m=0
(−1)mqm

(
m + r − 1

m

)
k∑

j=0

(
k

j

)(
1 − qm

)j

(
1 − q

)j qm(k−j)[x]k−j

= [2]r
∞∑

m=0
(−1)mqm

(
m + r − 1

m

)
k∑

j=0

(
k

j

)
j∑

a=0

(
j

a

)
(−1)aqm(a+k−j)[x]k−j

(
1 − q

)j

= [2]r
k∑

j=0

j∑

a=0

(
k

j

)(
j

a

)
(−1)a[x]k−j
(
1 − q

)j

∞∑

m=0
(−1)mqm

(
m + r − 1

m

)

qm(a+k−j)

= [2]r
k∑

j=0

j∑

a=0

(
k

j

)(
j

a

)
(−1)a[x]k−j

(
1 − q

)j(1 + qa+k−j+1
)r

= [2]r
k∑

j=0

j∑

a=0
(−1)a

(
k

a, j − a, k − j

)
[x]k−j

(
1 − q

)j(1 + qa+k−j+1
)r .

(4.1)

Thus we have the following theorem.

Theorem 4.1. Let q ∈ C with |q| < 1. Let r be a positive integer. Then one has

G
(r)
k+r,q(x)

r!
(

k+r

r

) = [2]r
k∑

j=0

j∑

a=0
(−1)a

(
k

a, j − a, k − j

)
[x]k−j

(
1 − q

)j(1 + qa+k−j+1
)r . (4.2)

By using (1.20), we have

F
(r)
q (t, x) = [2]r tr

∞∑

m=0
(−1)mqm

(
m + r − 1

m

)

e[m+x]t

= [2]r tr
∞∑

m=0

∞∑

n=0
(−1)mqm

(
m + r − 1

m

)(
1 − qm+x

1 − q

)n tn

n!

= [2]r tr
∞∑

m=0

∞∑

n=0
(−1)mqm

(
m + r − 1

m

)
1

(
1 − q

)n
n∑

j=0

(
n

j

)
(−qm+x)j t

n

n!

= [2]r tr
∞∑

n=0

n∑

j=0

(
n

j

)
(−1)jqjx
(
1 − q

)n
∞∑

m=0

(
m + r − 1

m

)

(−1)mq(j+1)m tn

n!
.

(4.3)
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Thus we have

∞∑

n=0

G
(r)
n,q(x)

tn

n!
=

∞∑

n=0
[2]r tr

n∑

j=0

(
n

j

)

(−1)jqjx
(
1 + qj+1

)−r(
1 − q

)−n tn

n!
. (4.4)

By comparing the coefficients tn/n! of both sides in the above, we arrive at the following
theorem.

Theorem 4.2. Let q ∈ C with |q| < 1. Let r be a positive integer. Then one has

G
(r)
n+r,q(x)

r!
(

n+r

r

) = [2]r
n∑

j=0

(
n

j

)

(−1)jqjx
(
1 + qj+1

)−r(
1 − q

)−n
. (4.5)

By using (1.20), we have

∞∑

n=0

G
(r)
n,q(x)

tn

n!

∞∑

n=0

G
(y)
n,q(x)

tn

n!

= [2]r+ytr+y
∞∑

n=0
(−1)nqn

(
n + r − 1

n

)

e[n+x]t
∞∑

n=0
(−1)nqn

(
n + y − 1

n

)

e[n+x]t.

(4.6)

By using Cauchy product into the above, we obtain

∞∑

n=0

n∑

j=0

(
n

j

)

G
(r)
j,q (x)G

(r)
n−j,q
(
y
) tn

n!

= [2]r+ytr+y
∞∑

n=0

n∑

j=0

(
n

j

)

(−1)jqj
(
j + r − 1

j

)

(−1)n−jqn−j
(
n − j + y − 1

n − j

)

e[j+x]te[n−j+x]t.

(4.7)

From the above, we have

∞∑

m=0

⎛

⎝
m∑

j=0

(
m

j

)

G
(r)
j,q (x)G

(r)
m−j,q

(
y
)
⎞

⎠ tm

m!

=
∞∑

m=0

⎛

⎝[2]r+ytr+y
∞∑

n=0

n∑

j=0
(−1)nqn

(
j + r − 1

j

)(
n − j + y − 1

n − j

)
([
j + x

]
+
[
n − j + x

])m
⎞

⎠ tm

m!
.

(4.8)

By comparing the coefficients of both sides of tm/m! in the above, we have the following
theorem.
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Theorem 4.3. Let r, y ∈ Z
+. Then one has

∑k+r+y
j=0

(
k+r+y

j

)
G

(r)
j,q (x)G

(y)
k+r+y−j,q(x)

(
r + y

)
!
(

k+r+y

k

)

= [2]r+y
∞∑

n=0

n∑

j=0
(−1)nqn

(
j + r − 1

j

)(
n − j + y − 1

n − j

)
([
j + x

]
+
[
n − j + x

])k
.

(4.9)

Remark 4.4. In (4.9) setting y = 1, we have

∑k+r+1
j=0

(
k+r+1

j

)
G

(r)
j,q (x)G

(1)
k+r+1−j,q(x)

(r + 1)!
(

k+r+1

k

)

= [2]r+1
∞∑

n=0

n∑

j=0
(−1)nqn

(
j + r − 1

j

)
([
j + x

]
+
[
n − j + x

])k
.

(4.10)
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