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We consider some new nonlinear retarded integral inequalities with two variables, which extend
the results in the work of W.-S. Wang (2007), and the one in the work of Y.-H. kim (2009).
These inequalities include not only a nonconstant term outside the integrals but also more
than one distinct nonlinear integrals without assumption of monotonicity. Finally, we give some
applications to the boundary value problem of a partial differential equation for boundedness and
uniqueness.

1. Introduction

Integral inequalities that give explicit bounds on unknown functions provide a very useful
and important device in the study of many qualitative as well as quantitative properties
of solutions of partial differential equations, integral equations, and integrodifferential
equation. One of the best known and widely used inequalities in the study of nonlinear
differential equations is Gronwall inequality [1], which states that if # and f are nonnegative
continuous functions on the interval [a, b] satisfying

u(t) <c+ ft f(s)u(s)ds, tela,b], (1.1)

where c is a nonnegative constant, then we have

u(t) < cexp <f f(s)ds), t € [a,b]. (1.2)
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Since the inequality (1.2) provides an explicit bound of the unknown function u it furnishes
a handy tool in the study of various properties of solutions of differential equations. Because
of its fundamental importance, several generalizations and analogous results of Gronwall
inequality [1, 2] and its applications have attracted great interests of many mathematicians
(e.g., [3-5]). Some recent works can be found, for example, in [6-17] and some references
therein. In 2005, Agarwal et al. [6] investigated the inequality

b;i(t)
u(t) <a(t) + Zj gi(t, s)w;(u(s))ds, ty<t<t. (1.3)

bito)

In 2006, Cheung [9] studied the inequality

bi(x)  prei(y)

uP(x,y) <a + f j g1(s, Hul(s,t)dtds
bi(x0) J e (yo)

(1.4)

by (x)

(s, t)ul(s, t)g(u(s, t))dt ds,

+
P =4 )by (x) Cz(yo)

for all (x,y) € [x0,X) x [y0,Y), where a is a constant.
In 2007, Wang [16] discussed the retarded integral inequality

bi(x) rci(y)
P (x,y) <a(x,y) + ZJ‘ J‘ fi(x,y,s,t)pi(u(s, t))dsdt, (1.5)

bi(xo) J ci(vo)

forall (x,y) € [xo, x1) x [yo, y1)-
In 2008, Agarwal et al. [7] discussed the retarded integral inequality

ai(t)

p(u(t)) <c+ ZI ul(s) [fi(s)p(u(s)) + gi(s)]ds, (1.6)

ai(to)

for all t € [ty, T), where c is a constant.
In 2009, Kim [12] obtained the explicit bound of the unknown function of the following
inequality:

ai(x)  pi(y)
p(u(x,y)) <a(x,y) +c(x,y) f J‘ ui(s,t)gi(s,t) dsdt
ai(x0) / pi (o)

(1.7)

retxn3

LX,(XQ)

’[( ul(s,t) fi(s, t)p(u(s, t))ds dt,
i yo

for all (x,y) € [x0, X) x [y0,Y).
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The purpose of the present paper is to establish some new nonlinear retarded
integral inequalities of Gronwall-Bellman type with two variables. We can demonstrate that
inequalities (1.4), (1.5), and (1.7), considered in [9, 12, 16], respectively, can also be solved
with our results. We also apply our results to study the boundedness and uniqueness of the
solutions of the boundary value problem of a partial differential equation.

2. Main Result

Throughout this paper, R denotes the set of real numbers, and xy, yo, x1,y1 € R are given
numbers. R, := [0, ), I = [x9,x1), ] := [yo, y1) are the subsets of Rand A :=1x ] C R2. For
any (s, t) € A, let A(s, ) denote the subset [xy, s) x [yo,t) N A of A. C'(U, V) denotes the set of
continuous differentiable functions of U into V.

Consider the following inequality:

g (u(x,y))

n ai(x)  Pi(y)
Sa(x,y)+Z{I o )uq(s,t)gi(x,y,s,t)dsdt
i=1 ai(Xo i(Yo

6i(x)  ryi(y)
+ f ul(s, t) fi(x,y,s,t)pi(u(s,t))ds dt}, V(x,y) €A
8i(x0) ¥ vi (o)

(2.1)

Our inequality (2.1) not only includes a nonconstant term outside the integrals but also more
than one distinct nonlinear integral without assumption of monotonicity. When f;(x, y,s,t) =

c(x,y) fi(s 1), gi(x,y,s,t) = c(x,y)gi(s,t), ai(x) = 6i(x), fi(y) = vi(y), and @;(u) = ¢(u),
our inequality (2.1) reduces to (1.7) studied in [12]. When uf(s,t) = 1, gi(x,y,s,t) = 0, and
¢ (1) = 19, our inequality (2.1) reduces to (1.5) studied in [16].
Suppose that

(Hy) ¢ is a strictly increasing continuous function on R, ¢(0) = 0;

(Hp) all i, (i =1,2,...,n) are continuous functions on R, and positive on (0, 0);
(H3) a(x,y) >0on A, and a is nondecreasing in each variable;
)

(Hy) a;,6; € CY(I,I) and Bi,y; € C'(J,J)(i = 1,2,...,n) are nondecreasing such that
ai(x) <xand 6i(x) <xonl, fi(y) <yand yi(y) <yon J;

(Hs) g > 0 is a constant;

(He) all fi;, gi (i=1,2,...,n) are nonnegative functions on A x A.

Firstly, we technically consider a sequence of functions w;(s), which can be calculated
recursively by

wq(u) := max ¢i(t), u>0,
7€[0, u]

(2.2)

{ i (T)
w;i(T)

winu) = max)

}wi(u), u>0,i=12,...,n-1.
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Moreover, we define the following functions:

" ds
W(u) = fO @) u>0, (2.3)

Wi(u) :=I ds u>0,i=1,2,...,n (2.4)

o wi(p 1 (¥1(s)))

Obviously, both ¥ and W; are strictly increasing and continuous functions. Letting ¥~!, W !
denote ¥, W; inverse function, respectively, then both ¥~! and W, are also continuous and
increasing functions.

Let

fi(x,y,5,t) = max i(1,¢,5,1),
J ( Y ) (7, §)€lxo, x]xyo, y]f 25)

g X, /S/t = max '(T/§/S,t), i:l/ 2, ..., N
8 y,st) (7, »elxo, x1x[vo, y]g’ (2.6)

Then fi(x, y,s,t) and gi(x,y,s,t) are nonnegative and nondecreasing in x,y for each fixed
(S/ t) and SatiSfy fi (x/ y,s, t) > fi (x/ y,s, t)/ gi (x/ y,s, t) > gi(x/ Y,s, t)/ i= 1/ 2/ o n

Theorem 2.1. Suppose that (H1—Hg) hold and u(x,y) is a nonnegative function on A satisfying
(2.1). Then

on(x)  (a(y)
u(x,y) < q,—l {lp—l [W};l (Wn En(x,y)) + )fn (x,y,s,t)ds dt>] }, (2.7)

8n(x0) ¥ 1 (w0

for (x,y) € Ax,, v,), where

n cai(x) ~pi(y)
Ei(x,y) =¥(a(x,y)) +ZI I ( )gi(x,y,s,t)dsdt,
i=1 ¥ ai(xo0) ¥ Bi(vo

6i-1(x)  pyiai(y)
Zi(x,y) = Wl.‘_l1 <Wl~_1 Eia(x,y)) + fisi(x,y,s, t)dsdt>, i=2,3,...,n.
8i-1(x0) ¥ yi-1 (wo)
(2.8)
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(X1, Y1) € Ais arbitrarily given on the boundary of the planar region

6i(x)  (¥i(y)
(x,y) e A:Wi(Ei(x,y)) + I fi (x,y,s,t)dsdt
5ix0) J 1i (o)

<F ds i=1,2,....n
—_— 0 wl(¢71(T71(S)))/ 7 VAR 4 4

(2.9)

On(x)  (Yu(y)
<W Eu(x,y)) + f fn (x,y,s,t)ds dt>

5u(0) J 1 (30)
* ds
<, ) }

Corollary 2.2. Let u, a, fi, g, i, Pi, 6i,yi and @i(u) i = 1,2,...,n be as defined in Theorem 2.1.
Suppose that p > q > 0 are constants. If

ai(x)  ~Pi(y)
uP(x,y) <a(x,y) + {f f ul(s,t)gi(x,y,s,t)ds dt
ai(xo) t(yl)

(2.10)
6i(x)  ryi(y)
’[ f ul(s, t) fi(x,y,s,t)pi(u(s,t))ds dt},

8:(x0) J 1 (v0)

forall (x,y) € A, then

6u(x) (a(y) V(p-9)
) < {6 e [ f fn(X,Y,s,t)]} . en

8u(x0) ¥ yu (v0)

forall (x,y) € Ax,,v,), where le and g; are defined by (2.5) and (2.6), and

(P-0)/ q pur
Bi(x,y) = a(x,y) P=07P 4 —ZI gi(x,y,s,t)dsdt,

a;(xo) iYo

6i-1(x)  pyiai(y)
Bi(x,y) :=G; < i-1(Biz1(x, ]/))+p qf IY ! fl_l(x,y,s,t)dsdt>,

bi- 1(x0) i 1(y0 (2-12)

i=2,3,...,n,

Gi S >0,i=1,2
i(xy) = OW, u>0,i=1,2,...,n
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G; ! denotes the inverse function of G;, and (Xa,Y>) € A lies on the boundary of the planar region

6i(x)  pi
{(x, Y)A : Gi(Bi(x,v)) +P74 IY fl(x, y,s,t)dsdt
6i(x0) z(yo)

« ds .
< J‘O W, 1= 1,2,...,7’[}.

Corollary 2.3. Let u,a,q, fi, 8,61, vi and @i(u)i = 1,2,...,n be as defined in Theorem 2.1.
Supposing that

(2.13)

6i(x)

p(utey) 2atey) + 3 [

Yi(y)
f ui(s,t) fi(x,y,s,t)pi(u(s, t))ds dt, (2.14)
8i(x0) ¥ 1i(vo)

forall (x,y) € A, then

u(x,y) < ¢! {‘P [ <W (Ku(x,v)) +J‘ . fyn(y : fn (x,y,s,t)ds dt>] }, (2.15)

forall (x,y) € A, y,), where
Ki(x,y) =¥(a(x,y)),
6i1(x)  pYia(y)
Ki(x,y) = W= 1( (K (x,9)) +f f ( )fil(x,y,s,t)dsdt>, (2.16)
6i-1(x0) 7 yi-1 (Yo

i=2,3,...,n

fi is defined by (2.5), ¥, W; are as defined in (2.3) and (2.4), respectively, and ‘P‘lwi‘ ! denote the
inverse functions of ¥ and W;. (X3, Y3) € A lies on the boundary of the planar region

6i(x)  ryi(y)
(x,1) € A: Wi(Ki(x,1)) + f (x5 )ds dt
5i(x0) J yi (o)

® ds
,i=1,2,...,n,
: f Wiy (F1())) "

(2.17)

on(x)  (yu(y)
<W (En(x,v)) + f fu(x,y,s,t)ds dt>

8a(x0) J 1 (v0)
* ds
<, <qf—1<s>>f’} |
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Theorem 2.4. Suppose that (H1—Hs) hold and u(x, y)is a nonnegative function on A satisfying

ai(x)  ~Pi(y)
f f ul(s,t)gi(x,y,s,t)ds dt
ai(xo0) J Bi(yo)

p(u(xy)) < a(xy) Z{

i=1

a(x) i) (2.18)
f f ul(s, t) fi(x,y,s,t)pi(u(s,t))ds dt},

a;(xo) i (yO

Y(x,y) € A.

Then

u(x,y) < ‘I’l{ [ <W (Ha(x,y)) + B fn(x,y, s, t)ds dt>] }, (2.19)

an(xo) n y()

for (x,y) € Ax,, v,), where

a; (x)

Pi(y)
Hi(x,y) :=¥(a(x,y)) + Z f J‘ﬂ(y : Si(x,y,s,t)dsdt,

a;(xo)

(2.20)
ai1(x) pPia(y)
be9) =W (Wit [ [ FaGosasar),
ai-1(x0) ¥ Bi-1(wo)
fori=2,3,...,n,and (X4, Ys) € Ais arbitrarily given on the boundary of the planar region
ai(x)  ~pi(y)
(x,y) e A: W;i(Hi(x,y)) + f fi(x,y,s,t)ds dt
ai(x0) ¥ Bi(yo)
h ds
< ,1=1,2,...,n
—[0 wi(¢ (¥7(s)))
(2.21)

an(x)  ,Puy)
<W (Hu(x,y)) + j fn(x,y, s, t)ds dt>

an(x0) J Bu(vo)
et ds
: fo (¢71(s)" }
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Corollary 2.5. Suppose that (H1—Hs) hold and u(x,y)is a nonnegative function on A satisfying

a;(x) ﬂt(l‘/)
$(u(xy)) < a(xy) + { [0 wensenia

ai(x)  ~Pi(y)
J f ) u (s,t)fi(s,t)(pi(u(s,t))dsdt}, V(x,y) €A,
ai(xo) ¥ Pi(yo
(2.22)

where f;, g (i=2,3,...,n) are nonnegative functions on A. Then

Bu(y)
u(x,y) <g¢” {‘P‘ [ <W (La(x,y)) + f Fuls, t)dsdt>]} (2.23)
“"(XO) n
for (x,y) € Axs, vs), where

ai(x)  pi(y)
Li(x,y) =%¥(a(x,y)) + ZI J‘ gi(s, t)dsdt,

ai(xo) 1(]/0
(2.24)
1 ai1(x) P (y)
L y) = WA (W) + [ 7 s ndsat),
i1 (x0) Y fic1 (wo)
fori=2,3,...,n,and (Xs,Ys) € A is arbitrarily given on the boundary of the planar region
a;(x) ﬂz(y
(x,y) € A:Wi(Li(x,y)) + fl(s,t)dsdt
a;i(xo) i yO
*® ds
< ,i=1,2,...,n
Jo wi(g~ 1 (P1(s)))
(2.25)

an(x)  (Pu(y)
<W@www | n@MMQ

an(x0) 7 Bu(v0)
*® ds
<, <qf—1<s>>f’} |
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3. Proofs and Remarks

Proof of Theorem 2.1. Obviously, the sequence w;(s) defined by ¢;(s) in (2.2) is nondecreasing
nonnegative functions and satisfies w;i(s) > ¢i(s), i = 1,2,...,n. Moreover, the ratios
win(s)/wi(s), i = 1,2,...,n -1 are all nondecreasing. From (2.1), (2.2) and (2.5), (2.6), we
have

ai(x)  pi(y)
J‘ f ul(s,1)gi(x,y,s,t)ds dt
ai(x0) J Bi(yo)

o (u(ey)) < axy) Z{

i=1

6i(x) (1Y) ~ (3.1)
+f ul(s,t) fi(x,y,s,t)wi(u(s,t))dsdt ¢,
8i(x0) ¥ 7i(vo)

V(x,y) € A.

We first discuss the case that a(x,y) > 0 for all (x,y) € A. Consider the auxiliary inequality

ai(x)  pi(y)
f f ul(s,)gi(X,Y, s, t)ds dt
ai(xo0) J Bi(yo)

p(u(x,y)) <aX,Y) +Z{
i=1
(3.2)

6i(x)

Yi(y) -
[ s Y, s i)ds dt},
8i(x0) ¥ 11 (o)

for all (x,y) € Ax, v), where xp < X < Xj and yp <Y < Y; are chosen arbitrarily. Let z; (x, )
denote the function on the right-hand side of (3.2), which is a nonnegative and nondecreasing
function on A¢x, vy and z;(xg,y) = a(X,Y). Then, we get the equivalent form of (3.2)

u(x,y) <o ' (z1(xy)), Y(xy) € Ax 1) (3.3)

Since w; is nondecreasing and satisfies w;(u) > 0 for u > 0. By the definition of z;, hypothesis
(H,), the monotonicity of ¢! and z;, and (3.3), we have

(09 %

) Bi(y) . B
Fye {“i(x) ’[ﬂi(]/o) ul(ai(x), 1) &i(X, Y, ai(x), t)dt

i=1

i(y) -
w0 [ w60, HF X, Y,al-(x),t)wi<u<6i<x>,t>>dt}
Yi(yo)
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Yi(y) -
800 [ (57 @6i00,0) Y, 60,0
vi(vo)
xw; (47! (21(6:(x), t))>dt}
n Bi(y)
< (y m@y»thmmj FOCY, a(x), by
i=1 3/0

-wwﬁ ﬂxymwOM(%mwuwwm}

Yi ]/(]
(3.4)
From (3.4), we have
0z1(x,y)/0x " { W)
1(x) Si(X, Y, ai(x), t)dt
() & ﬂ(w)g o
)
6w [ R0 (35)
YiYo

x10; (qf‘l(zl(&(x),t)))dt}.

Keeping vy fixed in (3.5), setting s = x, integrating both sides of (3.5) with respect to s from x
to x, and using the definition of ¥ in (2.3), we have

¥(z1(xv))

n x pi(y)
S qr(zl (xO/ ]/)) + Z {J‘ (ai,(s) J‘ gl(X/Y/ ai(s)/t)dt> ds
X0 i ]/(J

i=1

+fx <6 (s)f Fi(X,Y,6:(s), t)w,( Y(z1(6:(s), t))>dt> }
Yi yO

ai(X) pi(Y)
<¥(a(X, Y))+Z{j ( )j I )gi(X,lf,s,t)dsdt
ai(Xo yo

1 fonemie

6i(x0)

5:(x)

Yi(y)
< An(X,Y) +Zj f ( )fi(X,Y,s,t)wi<qx‘1(zl(s,t))>dsdt,
Yi\Yo

6i(xo)
(3.6)
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for all (x,y) € Ax, v), where

ai(X) pi(Y)
AX,Y) =¥ (a(X,Y)) + Z f f (X, Y, s, t)ds dt. (3.7)
(xO) I(yO
Let
v(x,y) =¥(z1(x,y))- (38)

From (3.6), we have

0(x,y) < An(X,Y) + Z f6 0 IW) Fix,vs, t)w,-(qr‘l (qr-l(v(s, t))))ds dt,  (3.9)

6i(x0) 1(y0

for all (x,y) € Ax, v). We claim that the unknown function v in (3.9) satisfies

6n(X) Yn(Y) ~
v(x,y) <W, <W (E,(X,Y)) + f (XY, s,t)dsdt> (3.10)
6 (x0) n(yo)

for all (x,y) € Ax, v), where

Ei(X,Y) := An(X,Y), (3.11)

6i1(X) i (Y)
B Y) = W (Wir(BaX 1)+ | f Fa(X Y5, tydsdt ), i=2,3,...,n
6i-1(x0) zl(yo
(3.12)

Now, we prove (3.10) by induction. For n = 1, let z»(x, y) denote the function on the right-
hand side of (3.9), which is a nonnegative and nondecreasing function on Ax, v), z2(xo, y) =
A1(X,Y) and v(x,y) < zp(x, y). Then we have

1) ; 1(y) ~

%xy) 5 (x) Y(y e Y6, o (7 (v @@ (), 1)) )t

e (3.13)
y)
< w1< ( 2y (x, y))))[é'l(x) ( )fl(X,Y,Gl(x),t)dt:I,
Y1 \Yo
for all (x,y) € Ax, v). From (3.13), we have

022 (x,y) /0x & [ fl(x,y,(sl (), Bdt, V(o) €Axy).  (3.14)

(g (F (220 y)) 71 (o)
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Keeping y fixed in (3.14), setting s = x, integrating both sides of (3.14) with respect to s from
Xo to x, and using the definition of W; in (2.4), we have

x ny)
Wi(z(9) < Waz2 (o) + | (6;<s> [ fl(X,lﬁ61(s),t)dt> s
Y

x0 1(y0)

61(x) J‘Yl W -

=Wi(A(X,Y)) + (X, Y, s, t)ds dt (3.15)

81(x0) ¥ 11(v0)

61(X)
<Wi(A1(X,Y)) + f fi(X,Y,s,t)ds dt,
&1 (xo) (yo

for all (x,y) € Ax, v). Using v(x, y) < z2(x,y), from (3.15), we obtain

61(X) J‘Yl > _

v(x,y) < z22(x,y) SW; <W1(A1(X Y)) + » fl(X,Y,s,t)dsdt>, (3.16)
Yo

61(x0)

for all (x,y) € Ax, v). This proves that (3.10) is true for n = 1.
Next, we make the inductive assumption that (3.10) is true for n = k. Now, we consider

k1l 6i(x) (ni(y)
v(x,y) € A (X, Y) + ﬁf fy(y : fi(X, Y, s, t)w; (qu (qf-l(v<s, t))))ds dt,  (3.17)
i\Yo

6i(x0)

forall (x,y) € Ax, v). Let z3(x, y) denote the nonnegative and nondecreasing function on the
right-hand side of (3.17). Then z3(xo, y) = Ak (X, Y) and

v(x,y) < z3(x,y). (3.18)

Let

Wi (u )
wy(u)

¢l( ) i=1/2/"'/k- (319)
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By (2.2), we see that each ¢;, i1 =1,2,..., k, is a nondecreasing function. Then, we have

dzs(x,y)/ox TN 660 [I) FilX,Y,6i(x), (7 (¥ (0(6:(x), 1)) dt
wi (gt (¥ (z(xy)))) w1 (g7 (¥ (23(x,y))))

) SRS ) [ Fi(X, Y, 6:(x), Hyw; (¢! (B (z3(6i(x), 1)) ) dt

Y(yo)
- wi (¢ (¥ (z3(x,9))))

ny) _
< 6;(x) fi(X,Y,61(x), t)dt
11 (Y0)

Yi+1 (3/) ~
+ 26 ' (%) firr (XY, 8141 (x), 1)

Yie1(Yo)

x i (47 (¥ (23601 (x), 1)) ) )t
(3.20)

for all (x,y) € Ax, v). Keeping y fixed in (3.20), setting s = x, integrating both sides of (3.20)
with respect to s from xj to x, and using the definition of W; in (2.4), we have

61(X) Yl(Y) —
Wh (23(x,y)) < Wl(Ak+1(X Y ) + J‘ fl(X, Y, s, t)dS dt
81(x0) ¥ 11(0)
(3.21)
iv1 () Yi+1 (y) -
f [ R v g (¥ s ) s
i=1 ¥ 6ix1(x0) +1(y0
for all (x,y) € Ax, v). Let
n(x,y) =Wi(zs(x,v)), (3.22)
61(X Yl(Y
01(X,Y) := W1 (A1 (X, Y)) + J ) f1 (X,Y,s,t)dsdt. (3.23)
61(x0) 1 Yo

Using (3.22) and (3.23), from (3.21), we have
i41(X) Yi+1 (]/) _ 1 1 1
1(x,y) < 6:1(X,Y) +Zf f fl-+1(X,Y,s,t)¢i<qr‘ (W (Wil (n(s,))) )dsat,
6i+1(x0) ¥ Yis1 yo

V(x, y) € A(X, Y)-
(3.24)
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It has the same form as (3.9). Let p(s) = ¢ ' (¥ 1(W;'(s))). Since ¢, ¥}, W, and
¢; are continuous, nondecreasing, and positive on (0,0), each ¢;i(p(s)) is continuous,
nondecreasing, and positive on (0, «0). Moreover,

Pia (p(s)) _ Wi (p(s)) 3 i1 (T) . B
= = 1[%1?((5)]{ o (7) } i=12,..., k-1, (3.25)

$i(p(s))  wi(p(s))

which are also continuous, nondecreasing, and positive on (0, o). Therefore, the inductive
assumption for (3.9) can be used to (3.24), and then we have

ki1 (X) Y (Y)
n(x,y) < ®; <cpk(9k(x Y)) + f Fen(X,Y, 5, )ds dt>, (3.26)

Ok+1(X0) ¥ Vi1 (yo

for all (x,y) € Ax, v), where

u ds
®@; = , 0,i=1,2,...,k, .
w=|, e wie)) @27

61 (X) pyin(Y)
0:1(X, V)= -1<¢> 0:(X, Y)>+f f f,-+1(X,Y,s,t)dsdt>, (3.28)

6is1(x0) Yiv1 (yO

i=1,2,...,k-1
We note that

(g (V] (9))ds
0 win (g (T (W(s))))

@;(u) =

_ fo 1w ds (3.29)
0 wis (g1 (P1(s)))

= Win (w;l(u)), i=1,2,...k
Thus, from (3.18), (3.22), (3.26), and (3.29), we have

v(x,y) < z3(x,y) = Wil (n(x,y))

6+1(X) J‘Yk+1 Y) _

< W{1< <®k(9k(x )+ Fu (XY, 5,1)ds dt>>

(3.30)

6k+1(x0) 7 Yies1 (yo

O+1(X) Yk+1(Y) ~
= Wik ( Weea (Wi 0c(X, 7)) fea(X,Y,s,Hdsdt ),
81 (x0) ¥ 11 (v0)
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for all (x,y) € Ax, v). We can prove that the term of W{l(Gk (X,Y)) in (3.30) is just the same
as Ex41(X,Y) defined in (3.12). Let éi(X, Y) = Wl‘l(Qi(X, Y)). By (3.23), we have

01(X,Y) = Wil (6:1(X,Y))

6(X) m(Y) _
—wr <w1<Ak+1<XY>+ f

f1(X,Y,s,t)ds dt> (3.31)
61(x0) (yo)

=E(X,Y).

Then using (3.28) and (3.29), we get

6i(X) mi(Y)
i 1( i-1(0i-1(X, Y)) + f fi(X,Y,S,t)det>>

8i(x0) ¥ vi(yo)

0:(X,Y) =

6i(xo)

GX) (1Y) _ (3.32)
Wl 0;1(X, Y) I fi(X,Y, s, t)ds dt

W 1
' ,(yo)

6i(X) (V)
W11<W1 w L6 1(XY f f( )fi(X,Y,s,t)dsdt>
i\Yo

6i(xo)

&i(X) (Y)
=W, <W(E (X,Y)) + j fi(X,Y,s,t)ds dt
8i(x0) ¥ yi(vo)

=En(X,Y), i=23,...k

This proves that W{l(Gk(X, Y)) in (3.30) is just the same as Ex.1(X,Y) defined in (3.12).
Therefore, from (3.29), (3.30), and (3.32), we obtain

iv1(X) Yi+1 () ~
®,(6:(X, V) +j f Fur(X, Y., tyds dt
6is1 (x0) ¥ i1 (w0)

6in(X) Y (Y)

= Wi (Eia (X, Y)) +f f fi+1 (X, Y, s, t)ds dt (3.33)
8iv1(x0) ¥ yin (

< J‘°° ds _ IW‘*’) ds

T o wia(p (¥ ) Jo dilg (FI(W ()

i=1,2,...,k. The relations of (3.33) imply that in (3.26) and (3.28)

i+1 (X) Yi+1 (Y) ~
@:(0:(X,Y)) + f f fia(X,Y,s,t)ds dt € Dom(@;"), (3.34)

Yi+1 (yo

bint (XO)
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i=1,2,...,k. Hence, (3.30) can be equivalently written as

6k+1(X Yk+1
v(x,y) < Wk+1 <Wk+1(Ek+1 (X,Y)) + f fl-+1 (X,Y,s,t)dsdt, (3.35)
6ra1(x0) 7 i1 (w0)

for all (x,y) € Ax, v). The claim in (3.10) is proved by induction.
Therefore, by (3.3), (3.8), and (3.10), we have

u(xy) g7 (z1(xy) <¢7 (¥ (v(xy))

6:X) () _ (3.36)
S¢1<‘I‘1<W <w (Ea(X,Y)) + f fn(X,Y,s,t)dsdt>>>,
5u(x0) J 1 ()

for all (x,y) € A, v). Hence, we obtain the estimation of the unknown function u in the
auxiliary inequality (3.2).
Letting x = X, y = Y, from (3.36), we have

¥a(Y)

u(X,Y) gqf1< p-l <w-1 <w (E.(X,Y)) + f fn(X,Y,s,t)dsdt>>>, (3.37)
8u(x0) ¥ 1 (v0)

forall xo < X < Xj, 10 <Y <Y;. Since Z;(X,Y) = Ei(X,Y) and X and Y are arbitrarily chosen,
this proves (2.7).
The remainder case is that a(x, y) = 0 for some (x,y) € A. Let

a:(x,y) =a(x,y) +¢, (3.38)

where ¢ > 0 is an arbitrary small number. Obviously, a.(x, y) > 0, for all (x, y) € A. Using the
same arguments as above, where a(x, y) is replaced with a.(x, y), we get

e (ot o))
) < W (En, e (x,)) + FuX, Y, bdsdt ) ) ), (3.39)
8u(x0) ¥ 1u (y0)

for all (x,y) € Ax,, v,)- Letting ¢ — 0,, we obtain (2.7) because of continuity of a, in € and
continuity of qx‘l, v-1 W, and w; Lfori=1,2,...,n. This completes the proof. O

The proofs of Corollary 2.2, 2.3, 2.5 and Theorem 2.4 are similar to the argument in the
proofs of Theorem 2.1 with appropriate modification. We omit the details here.

Remark 3.1. When a(x,y) =a,n=1and g(x,y,s,t) = (p/(p—q))s1(s,t), f(x,y,s5,t) = (p/(p-
q))8>(s, t), Corollary 2.2 reduces to Theorem 2.4 in [9].

Remark 3.2. When ¢(u) = u” and g = 0, Corollary 2.3 reduces to Theorem 1 of Wang [16].
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Remark 3.3. When fi(x,y,s,t) = c(x,y)fi(s,t), gi(x,y,5,t) = c(c,y)gi(s,t), Theorem 2.4
reduces to Theorem 2.1 of Kim [12].

4. Applications

In this section, we apply our results to study the boundedness and uniqueness of the
solutions of boundary value problem to a partial differential equation. We consider the partial
differential equation with the initial boundary conditions:

aij((;c({;;y)) - F(x’ Y. (2(61 (x),n (y)))' e /‘Pn(z(5n(x)r Yn (y)))), (4.1)

p(z(x,y0)) = a1(x), ¢ (z(x0,y)) =ax(y), ai(x0) = ax(yo) =0, (4.2)

for all (x,y) € A, where A = I x ] is defined as in Section 2, §;, y; are defined in (H,), ¢ is a
continuous and strictly increasing odd function on R, satisfying ¢(0) = 0, ¢s(u) > 0 for u > 0,
F:AxR" - R,a;:1 - R, a,: ] — R,and ¢; : R, — R, are nondecreasing continuous
functions, and the ratio ¢;.1/¢; is also nondecreasing, and ¢;(u) >0foru>0i=1,2,...,n.

In the following corollary, we firstly apply our result to discuss boundedness on the
solution of problem (4.1).

Corollary 4.1. Assume that F : AxR" — R is a continuous function for which there exist a constant
q > 0, nonnegative functions fi(x,y) € C(A,R,),¢; € C(Ry,R,),i=1,2,...,n, such that

n

[F(x, v, 1(1), -, o (un)) | < D il fi(x, y) i (i), (4.3)

i=1

|ai(x) + a2 (y)| < a(x,y), (4.4)

forall (x,y) € A, and a : A — R, is nondecreasing in each variable. If z(x,y) is any solution of
problem (4.1) with condition (4.2), then

|z(x,y)| < q,—l{tp—l [ng <Wn<12n(x,y)> + r ! fn(s, t)ds dt>] } (4.5)

X0 ¥ Yo

forall (x,y) € Ax,y,), where
Ki(x,y) =¥ (a(xy)),
~ ~ X ry
Ki (x, y) = I/Vl__l1 <Wi_1 (Ki—l (.‘X‘, y)) + f fi_1(S, t)dS dt> , (46)
X0 ¥ Yo

i=2,3,...,n,
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and ¥, ¥~1, W, W~ are as defined in Theorem 2.1. (Xe,Ys) € A lies on the boundary of the planar
region

Re = {(x,y) eA: Wi<1%i(x,y)> + Jm ! fi(s, t)ds dt

X0 ¥ Yo

*® ds .
< J‘o (g (T 1(9))) i=1,2,...,n, 4.7)

w;! (Wn <IZn(x,y)) + J:J ;fn(s, t)ds dt) < f: ﬁ}

Proof. It is easy to see that the solution z(x,y) of (4.1) satisfies the following equivalent
integral equation:

Xy
¢(z(x,y)) = ai1(x) + ax(y) +I f F(s,t,01(z(61(5),y1(1)), -, 0n(2(64(5), yu(t))))ds dt.
X0 ¥ Yo

4.8)
By (4.3),(44), and (4.8), we have
g (z(x,y))| = |a1(x) + az(y)|
+j ZO|F(s,t,(pl(z((ﬁl(s),}fl(t))),...,tpn(z(6n(s),yn(t))))dsdt|
(4.9)

noopxopy
<a(x,y) +21:J; J‘y |2(8:(s), yi()) | fi(s, )i (|2(6:(5), yi (1)) | ds dt

61(x) J-y,-(y) fi(671 (), v (1))

i ,1)|)ds dt.
(o) 52(5{1(5))yi’(yi‘1(t))|Z(S Weilz(s,t))ds

6i(xo)

<a(x,y) +Z}f

Since |g(z(x,y))| = ¢(z(x,y)]), (49) is the form of (2.14). Applying Corollary 2.3 to
inequality (4.9), using the relation

o0 () £i(67(5) 17 (1) v (v
1 1 dsdt = i\os d d, 4.10
Lf“‘OJf(yo) 56 @m0 j e (4.10)

we obtain the estimation of z(x, y) as given in (4.5).
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Corollary 4.1 gives a condition of boundedness for solutions, concretely. If there is a
M >0,

~ x ey
Ki(x,y) <M, I fi(s,t)ydsdt <M, i=1,2,...,n, (4.11)
X0 ¥ Yo

for all (x,y) € A. Then every solution z(x, y) of (4.1) is bounded on A.
Next, we discuss the uniqueness of the solutions of (4.1). O

Corollary 4.2. Additionally, assume that

|F(Srtr(l)l(ull)/-- -I(Pn(uln)) _F(Srt/q)l(uﬂ)l- --/(Pn(uZn))l
(4.12)

< Zfi(S, ) g (i) — g (uoi) | o0 (| (uni) — g (ui) |),
in1

for i, uy € Ryi =1,2,...,n,and (x,y) € A\, where A is defined as in Section2,0 < g < 1is
a constant, f; € C(A,RL), ¢; : Ry — Ry, i =1,2,...,n are continuous nondecreasing with the
nondecreasing ratio ;.1 /; such that ¢;(u) > 0 for all u > 0, and jgo (ds/pi(s)) =0,i=1,2,...,n,
and ¢ : R — R s a strictly increasing odd function satisfying ¢s(u) > 0, for all u > 0. Then, (4.1)
has at most one solution on A

Proof. Let z(x, y) and Z(x, y) be two solutions of (4.1). By (4.8) and (4.12), we have
lg(z(x,y)) - ¢ (2(x,v))|
nooex oy
Sex ), f fils: Dy (2(8:(s), 1:(0)) = ¢ (Z(8i(5), 1 (1))
i=1 Y X0 Y Yo

< 9i(|gp(2(6i(5), vi(1)) — ¢ (2(6:(s), v (1)) | ) ds dt (4.13)

e (YA )
- ; '[5i(x0) f {(v0) 61 (671 () (v (1))

lgp(z(s,1) - g (Z(s, )|

x i (|gp(z(s, 1) — ¢ (Z(s,1))|)ds dt

for all (x,y) € A, which is an inequality of the form (2.14), where ¢ > 0 is an arbitrary
small number. Applying Corollary 2.2, we obtain an estimation of the difference |¢(z(x,y)) -
¢(Z(x,y))| in the form (4.5). Namely,

x oy 1/(1-q)
(=2 9)) - 9 G, ))] < [9 <san<pn<x,y>> ca-of [ fn(s,t)dsdt>] ,

(4.14)
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for all (x,y) € A, where

Pi(x,y) =€,
Xy
Pi(x,y) = QY (Qi_l (P (x,v)) + (1-9q) I fiz1(s, t)dsdt), i=2,3,...,n, (4.15)
X0 Y Yo :

u>0, i=12,...,n,

" ds
Qi(u) = L _(Pi(sl/liq)_)’

and Qi‘l denotes the inverse function of Q;.
Furthermore, by the definition of €2;, we conclude that

lim Qi (u) = —oo, lim Q'(u) =0, i=12,...,n (4.16)
Letting ¢ — 0, it follows that

Qi(Pi(x,y))+(1-9q) fx ! fi(s,t)dsdt =-o0, i=1,2,...,n,
Xo ¥ Yo
(4.17)
1 Y .
Q; [Qi(l’i(x,y)) +(1-9) J. fi(s,t)dsdt] =0, i=2,...,n.
Xo ¥ Yo

Thus, from (4.5), we deduce that |¢(z(x, y)) — ¢(Z(x, y))| < 0, implying that z(x, y) = Z(x, y),
for all (x,y) € A, since ¢ is strictly increasing. The uniqueness is proved. O
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