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We investigate the general solution of the quadratic functional equation f(2x +y) +3f(2x —y) =
4f(x — y) + 12f(x), in the class of all functions between quasi-f-normed spaces, and then we
prove the generalized Hyers-Ulam stability of the equation by using direct method and fixed point
method.

1. Introduction

In 1940, Ulam [1] gave a talk before the Mathematics Club of the University of Wisconsin
in which he discussed a number of unsolved problems. Among these was the following
question concerning the stability of homomorphisms.

Let Gy be a group and let Gy be a metric group with metric p(-,-). Given € > 0, does there
exista & > 0 such that if f : Gi — G satisfies p(f(xy), f(x)f(y)) < 6 forall x,y € Gy, then a
homomorphism h : G — Gj exists with p(f(x), h(x)) < e forall x € G;?

In 1941, the first result concerning the stability of functional equations was presented
by Hyers [2]. And then Aoki [3] and Bourgin [4] have investigated the stability theorems
of functional equations with unbounded Cauchy differences. In 1978, Th. M. Rassias [5]
provided a generalization of Hyers” Theorem which allows the Cauchy difference to be
unbounded. It was shown by Gajda [6] as well as by Th. M. Rassias and Semrl [7] that one
cannot prove the Rassias’ type theorem when p = 1. Gdvruta [8] obtained generalized result
of Th. M. Rassias” Theorem which allow the Cauchy difference to be controlled by a general
unbounded function. ]J. M. Rassias [9, 10] established a similar stability theorem linear and
nonlinear mappings with the unbounded Cauchy difference.

Let E; and E; be real vector spaces. A function f : E; — E, is called a quadratic
function if and only if f is a solution function of the quadratic functional equation:

flx+y)+f(x-y) =2f(x) +2f(y)- (1.1)
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It is well known that a function f between real vector spaces is quadratic if and only if there
exists a unique symmetric biadditive function B such that f(x) = B(x,x) for all x, where
the mapping B is given by B(x,y) = (1/4)(f(x + y) — f(x — y)). See [11, 12] for the details.
The Hyers-Ulam stability of the quadratic functional (1.1) was first proved by Skof [13] for
functions f : E; — E,, where E; is a normed space and E; is a Banach space. Cholewa [14]
demonstrated that Skof’s theorem is also valid if E; is replaced by an abelian group. Czerwik
[15] proved the Hyers-Ulam stability of quadratic functional (1.1) by the similar way to Th.
M. Rassias control function [5]. According to the theorem of Borelli and Forti [16], we obtain
the following generalization of stability theorem for the quadratic functional (1.1): let G be
an abelian group and E a Banach space; let f : G — E be a mapping with f(0) = 0 satisfying
the inequality

If(x+y)+ flx-y)-2f(x) =2f () || < p(x,v) (1.2)

for all x, y € G. Assume that one of the following conditions
1 ky Dk
L 77T p(2kx,2%y) < oo,

2% X Y
02 ‘P<2(k+1)' 2(k+1)> <

holds for all x, y € G, then there exists a unique quadratic function Q : G — E such that

D(x,y) = (1.3)

Ms T

=~
Il

[|f(x) = Q)| < D(x, x) (1.4)

for all x € G. The stability problems of several functional equations have been extensively
investigated by a number of authors and there are many interesting results concerning this
problem [17-23].

In this paper, we consider a new quadratic functional equation

fx+y)+3f(2x-y) =4f(x—y) +12f(x), (1.5)

for all vectors in quasi-f-normed spaces. First, we note that a function f is a solution of the
functional (1.5) in the class of all functions between vector spaces if and only if the function
f is quadratic. Further, we investigate the generalized Hyers-Ulam stability of (1.5) by using
direct method and fixed point method. As a result of the paper, we have a much better
possible estimation of approximate quadratic mappings by quadratic mappings than that
of Czerwik [15] and Skof [13].

2. Stability of (1.5)

Now, we consider some basic concepts concerning quasi-f-normed spaces and some
preliminary results. We fix a realnumber  with 0 < f < 1 and let K denote either R or C.
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Let X be a linear space over K. A quasi- f-norm || - || is a real-valued function on X satisfying
the following.

(1) |lx]| = 0 for all x € X and ||x|| = 0 if and only if x = 0.

(2) |IAx|| = |A[f - ||x|| forall A € K and all x € X.

(3) There is a constant K > 1 such that ||x + y|| < K(||x|| + ||y||) forall x,y € X.

The pair (X, || - ||) is called a quasi-p-normed space if | - || is a quasi-p-norm on X. The
smallest possible K is called the modulus of concavity of || - ||. A quasi-p-Banach space is a
complete quasi-f-normed space. A quasi-f-norm || - || is called a (B, p)-norm (0 < p < 1) if

[+ y1I” < lI=lP + [ly[|” (2.1)

for all x, y € X. In this case, a quasi-p-Banach space is called a (, p)-Banach space. We can refer
to [24, 25] for the concept of quasinormed spaces and p-Banach spaces. Given a p-norm, the
formula d(x, y) := ||x-y||” gives us a translation invariant metric on X. By the Aoki-Rolewicz
theorem [25] (see also [24]), each quasinorm is equivalent to some p-norm. In [26], Tabor has
investigated a version of the D. H. Hyers, Th. M. Rassias, and Z. Gajda theorem (see [5, 6])
in quasibanach spaces. Recently, ]. M. Rassias and Kim [27] have obtained stability results of
general additive equations in quasi-p-normed spaces.

From now on, let X be a quasi-a-normed space with norm || - ||, and let Y be a (§, p)-
Banach space with norm || - || unless we give any specific reference. Now, we are ready to
investigate the generalized Hyers-Ulam stability problem for the functional (1.5) using direct
method.

Theorem 2.1. Assume that a function f : X — Y satisfies
IDf(x,y) = f2x+y) +3f2x ~y) = 4f (x —y) = 12f (x) ||, < 9 (x, ) (2.2)
forall x,y € X and that  satisfies the following control conditions

3i ,31 p 3n ’371 p
Ex3" L e(3)

T Jlim —— =0 (2.3)

4
Dy (x) = Z
forall x,y € X. Then there exists a unique quadratic function Q : X — Y satisfying

e+ L2 —m)”<—v&65 04

forall x € X, where ||£(0)||p < ¢(0,0)/12F. The function Q is defined as

k
Q(x) = lim f (332:‘) (2.5)

forall x € X.
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Proof. Putting x,y := 0 in (2.2), we get [|f(0)[|s < ¢(0, 0)/12F. Replacing y by x in (2.2), we
obtain

1£(3x) =9 (x) =4 (O[] ; < p(x, ) (2.6)
for all x € X. Dividing (2.6) by 9, we get

5760 -Feo| < g0 @)

for all x € X where f(x) = f(x) + f(0)/2, x € X. Now letting x := 3ix and dividing 3%#* in
(2.7), we have

Za 671 - f(3’x)

1 i \P
3% 9<1+1)pﬁ(‘0< x,3'x) (2.8)

for all x € X. Therefore we prove from the inequality (2.8) that for any integers m, n with
m>n20

m—

Z

f@x)  FE |
32(1+1) 32i

32m ——f(3"x) - n7(3"x)

p

e :\P
Zg(ﬁl)pﬂq)( x,31x> ’

1=n

Since the right-hand side of (2.9) tends to zero as n — oo, the sequence {(1/ 32”)?(3”x)} is
Cauchy for all x € X and thus converges by the completeness of Y. Define Q : X — Y by

Qlx) = )%%(f@"x) + @) tim 700 e x (2.10)

n—o 321

Letting x := 3"x, y := 3"y in (2.2), respectively, and dividing both sides by 32" and after
then taking the limit in the resulting inequality, we have

[Q@x +y) +3Q(2x - y) - 4Q(x - y) - 12Q() [}

_ NIfG @x+y) +3£(3"(2x ~y) —4f (3" (x ~y)) - 12f B 1) |}
= jim o (2.11)

: 1 n,. M\ _
< i Gupp ¢y (37,37 =0,

and so the function Q is quadratic.
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Taking the limit in (2.9) with n = 0 as m — oo, we obtain that

¢(3'x, 31x)p

f(0)
9Pﬂ Z 9ipp

“f() —— ~ Q) , (2.12)

which yields the estimation (2.4).

To prove the uniqueness of the quadratic function Q subject to (2.4), let us assume that
there exists a quadratic function Q' : X — Y which satisfies (1.5) and the inequality (2.4).
Obviously, we obtain that

Qx) =37"Q@3"x),  Q'(x) =37"Q'(3"x) (2.13)

for all x € X. Hence it follows from (2.4) that

0 P
2 °°—1 n+i n+i \P _ 2 & 1 . L \P
SW%&%NWW‘P(?’ x,3"x) —wj:znm<p(37x,37x>
(2.14)

for all n € N. Therefore letting n — oo, one has Q(x) — Q'(x) = 0 for all x € X, completing the
proof of uniqueness. O

Theorem 2.2. Assume that a function f : X — Y satisfies
IDf Gl < o(x ) (2.15)

forall x,y € X and that ¢ satisfies conditions

Dy (x) = Zwﬂ <— —>p <w, lim 9"Pf‘<p< a y) =0 (2.16)

3t n— oo
forall x,y € X. Then there exists a unique quadratic function Q : X — Y satisfying
[1£(0) = Q) If < =/ Da(x) (2.17)
forall x € X. The function Q is given by
: 2n X
Q(x) = im 3 f 30 (2.18)

forall x € X.
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Proof. In this case, f(0) = 0 since 3%, (1/9%)¢(0,0) < oo and so ¢(0,0) = 0 by assumption.
Replacing x by x/3 in (2.6), we obtain

Hf(x)—9f<;—c>”ﬁ S¢<§,§> (2.19)

for x € X. Therefore we prove from inequality (2.19) that for any integers m, n withm >n >0

x x\|[P S x 1 x \||P
m Y _on -~ < i A\ _git o
H9 f<3m> 9f<3"> p_é 9f<3i> ’ f<3i+1> p
m-1 p
; X X
< 399( 575 ) (2.20)

1 mt x  x \’
- (i+1)pp o
gpﬁ ;9 (P<3i+1 4 3i+l >

for all x € X. Since the right-hand side of (2.20) tends to zero as n — oo, the sequence
{3%"f(x/3")} is Cauchy for all x € X and thus converges by the completeness of Y. Define
Q:X — Yby

Q(x) = lim 3% f(%) (2.21)
n—oo
for all x € X.
Thereafter, applying the same argument as in the proof of Theorem 2.1, we obtain the
desired result. O

We now introduce a fundamental result of fixed point theory. We refer to [28] for the
proof of it, and the reader is referred to papers [29-31].

Theorem 2.3. Let (L, d) be a generalized complete metric space (i.e., d may assume infinite values).
Assume that A : Q — Q is a strictly contractive operator with the Lipschitz constant 0 < L < 1.
Then for a given element x € Q one of the following assertions is true:

(A1) d(AR*1x, AFx) = oo for all k > 0;

(Ayz) there exists a nonnegative integer ng such that

(Az1) d(A™1x, A"x) < oo for all n > ny;

(Az2) the sequence {A"x} converges to a fixed point x* of A\;

(Az3) x* is the unique fixed point of A in the set A = {y € Q : d(A™x,y) < oo};
(Az4) d(y,x*) < (1/1-L)d(y,Ay) forall y € A.

For an extensive theory of fixed point theorems and other nonlinear methods, the
reader is referred to the book of Hyers et al. [32]. In 1996, Isac and Th. M. Rassias [33] applied
the stability theory of functional equations to prove fixed point theorems and study some new
applications in nonlinear analysis. Cadariu and Radu [29, 31] and Radu [34] applied the fixed
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point theorem of alternative to the investigation of Cauchy and Jensen functional equations.
Recently, Jung et al. [35-40] and Jung and Rassias [41] have obtained the generalized Hyers-
Ulam stability of functional equations via the fixed point method.

Now we are ready to investigate the generalized Hyers-Ulam stability problem for the
functional (1.5) using the fixed point method.

Theorem 2.4. Let f : X — Y be a function with f(0) = O for which there exists a function ¢ :
X? — [0, 00) such that there exists a constant L, 0 < L < 1, satisfying the inequalities

IDf ()l < 0(xy), (2.22)
¢(3x,3y) <9Ly(x,y) (2.23)

for all x,y € X. Then there exists a unique quadratic function Q : X — Y defined by
limg _ o (f(3%x) /3%%) = Q(x) such that

| f(x) - Q)| < ¢(x,x) (2.24)

_
9%(1-L)

forall x € X.

Proof. Let us define Q to be the set of all functions g : X — Y and introduce a generalized
metric d on € as follows:

d(g,h) = inf{C € [0,00] : [|g(x) = h(x)]|; < Cop(x, %), ¥x € X . (2.25)

Then it is easy to show that (€, d) is complete (see [37, Proof of Theorem 3.1]). Now we define
an operator A : Q — Qby

889 en (2.26)

Ag(x) = 5

for all x € X. First, we assert that A is strictly contractive with constant L on Q. Given g, h € Q,
let C € [0, 0] be an arbitrary constant with d(g, h) < C, that is, [|g(x) — h(x)[lp < Co(x,x).
Then it follows from (2.23) that

1 1
IA8() = ARGl = 55 [183x) =BGl < 55 Cop(3x, 3x) (2.27)

< LCyp(x, x)

for all x € X, thatis, d(Ag, Ah) < LC for any C € [0, 0] with d(g, h) < C. Thus we see that
d(Ag,Ah) < Ld(g, h) for any g, h € Q and so A is strictly contractive with constant L on Q.



8 Journal of Inequalities and Applications

Next, if we put (x,y) := (x, x) in (2.22) and we divide both sides by 9, then we get

u f(;x) _ f(x)”ﬂ = %”f(i%x) -9f )|,

(2.28)
< %(p(x, x)

for all x € X, which implies d(Af, f) <1/9 < oo.

Thus applying Theorem 2.3 to the complete generalized metric space (2,d) with
contractive constant L, we see from (Aj;,) of Theorem 2.3 that there exists a function Q : X —
Y which is a fixed point of A, that is, Q(x) = AQ(x) = Q(3x)/9, such that d(Akf,Q) — 0as
k — oo. By mathematical induction we know that

k
rge = 20— g 229)

for all k € N.

Since d(AFf,Q) — 0ask — oo by (Aa3) of Theorem 2.3, there exists a sequence {Cy}
such that Cy — 0as k — oo, and d(A¥f, Q) < Cy for every k € N. Hence, it follows from the
definition of d that

”A"f (%) = Q(x) || 5 < Crpla, x) (2.30)
for all x € X. This implies
3k
lim [|A%f () - Q(x)”ﬂ =0, ie, lim % = Q(x) (2.31)

for all x € X.
In turn, it follows from (2.22) and (2.23) that

IPQe |, = jim sz [P

< lim 1 <3kx, 3ky> < klim Lo (x,v)

(2.32)
T koo 32kﬂ '

=0

for all x, y € X, which implies that Q is a solution of (1.5) and so the mapping Q is quadratic.
By (A24) of Theorem 2.3, we obtain

1 1
A(fQ) s A ) S gy (2.33)

which yields the inequality (2.24).
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To prove the uniqueness of Q, assume now that Q; : X — Y is another quadratic
mapping satisfying the inequality (2.24). Then Q; is a fixed point of A with d(f, Q1) < oo in
view of the inequality (2.24). This implies that Q; € A = {g € Q: d(f,g) < oo} andso Q = Oy
by (Az3) of Theorem 2.3. The proof is complete. O

By a similar way, one can prove the following theorem using the fixed point method.

Theorem 2.5. Let f : X — Y be a function with f(0) = 0 for which there exists a function ¢ :
X% — [0, 0) such that there exists a constant L, 0 < L < 1, satisfying the inequalities

IDf e, )l < o(x,y), (2.34)

p(x,y) < 9%4’(39@ 3y) (2.35)

for all x,y € X. Then there exists a unique quadratic function Q : X — Y defined by
limy —, 3% f (x/35) = Q(x) such that

L

| f(x) - Q)| < Fa-1)"

(x, x) (2.36)

forall x € X.

Proof. We use the same notations for Q and d as in the proof of Theorem 2.4. Thus (L, d) is a
complete generalized metric space. Let us define an operator A : Q — Q by

Ag(x) = 9g<§), g€Q (2.37)

for all x € X. Then it follows from (2.35) that

IAg(x) - AR(x)|| = 9”“8(%) - h(g) ‘

< 9ﬂc¢<f, f) < LCy(x, x) (2.38)
; 3’3

for all x € X, that is, d(Ag, Ah) < LC. Thus we see that d(Ag, Ah) < Ld(g, h) for any g, h € Q
and so A is strictly contractive with constant L on Q.
Next, if we put (x,y) := (x/3,x/3) in (2.34) and we divide both sides by 1/9, then we

get by virtue of (2.35)
13

for all x € X, which implies d(f, Af) < L/9 < oo. Thereafter, applying the same argument as
in the proof of Theorem 2.4, we obtain the desired results. O

x x L
| =0(53) s gwe 239



10 Journal of Inequalities and Applications
3. Applications of Main Results
In the following corollary, we have a stability result of (1.5) in the sense of Th. M. Rassias.

Corollary 3.1. Let r; and &; be real numbers such that a(max{r; : i = 1,2}) < 2p and & > O for
i =1,2. Assume that a function f : X — Y satisfies the inequality

IDf iy < enllxliy +exllyll; (3.1)

forall x,y € X, and for all x,y € X \ {0} if 1,12 < 0. Then there exists a unique quadratic function
Q : X — Y which satisfies the inequality

H f0+ 19 o )H [ ellxl | el ]”P 32)

p2p _ 3par 3p2ﬁ _ 3par

forall x € X, and for all x € X \ {0} if 1,72 < 0. The function Q is given by

fB"x ) (3.3)

Q) = lim =

forall x € X, where f(0) =0ifri, > 0.

Proof. If r1,r5 > 0, then we get f(0) = 0 by putting x,y = 0 in (3.1). Letting ¢(x,y) =
e1]lx||7 + e2||y||7 for all x,y € X and then applying Theorem 2.1 we obtain easily the desired
results. O

Corollary 3.2. Let r; and ¢; be real numbers such that a(min{r; : i = 1,2}) > 2f and & > O for
i =1,2. Assume that a function f : X — Y satisfies the inequality

IDfx iy < erllxlly +exllyll; (34)

for all x,y € X. Then there exists a unique quadratic function Q : X — Y which satisfies the
inequality

P [ [ |PTL Pl P2 /P
&1 [1%[la & [1%lla
- 3.5
”f(x) Q(x)”ﬂ S [3purl _3p2[5 + 3par _3p2ﬂ ( )
forall x € X. The function Q is given by
Q(x) = lim 3% f<3i> (3.6)

forall x € X.
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In the following corollary, we have a stability result of (1.5) in the sense of Hyers.

Corollary 3.3. Let 6 be a nonnegative real number. Assume that a function f : X — Y satisfies the
inequality

IDf ()l <6 (3.7)

forall x,y € X. Then there exists a unique quadratic function Q : X — Y, defined by Q(x) =
lim, . o (f (3"x) /3?"), which satisfies the inequality

Hf( )+ ——Q( )” (3.8)

9Pﬂ 1
forall x € X.

In the next corollary, we get a stability result of (1.5) in the sense of J. M. Rassias.

Corollary 3.4. Let €, 11,17 be real numbers such that € > 0 and ar #2p, where r := 1 + 1,. Suppose
that a function f : X — Y satisfies

IDf Gyl < ellxliz vl (3.9)

forall x,y € X, and for all x,y € X \ {0} if r1, > < 0. Then there exists a unique quadratic function
Q : X — Y which satisfies the inequality

f(0) (0)

ellx]lz

Hf( ) + (3.10)

ﬁ |3par — 3r28|

forall x € Xand all x,y € X \ {0} if r1, 2 <0, where f(0) =0ifry,r > 0.

Proof. Letting ¢(x,y) := e&llx|l7||lylZ and applying Theorems 2.1 and 2.2, we get the re-
sults. O
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