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Using a Kurepa’s result for Gramians, we achieve refinements of well-known generalizations
of Griiss inequality in inner product spaces. These results are further applied in Ly(a,b) to
derive improvements of some published trapezoid-Griiss and Ostrowki-Griiss type inequalities.

Refinements of the discrete version of Griiss inequality as well as a reverse of the Schwarz
inequality are also given.

1. Introduction

Let {ei,...,e,} be an orthonormal system of vectors in unitary space (V,(:,-)). It is well
known that for all x, y € V, the following inequality holds [1, page 333]:

150 (x, ) |* < Sux, 0)Su (v, y), (1.1)

where S, (x, y) is defined by

Su(x,y) = (x,y) - kZ<x/ ex){ex )- (12)
=1
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The equality in (1.1) holds if and only if {x, y, e, ..., e,} is linearly dependent. Applying (1.1)

on L,(a,b) for n = 1 by choosing ey = 1/vb—-a,x = (1/vb-a)f and y = (1/vb-a)g, we
immediately obtain the Pre-Griiss inequality as follows:

(T(£,8))* <T(f.F)T(g2), (1.3)
where f,g € L(a,b) and T(f, g) is the Chebyshev functional

1
(b-a)’

b b b
T8 = g [ Sgtodr- s [ x| gtodr (1.4

Lety, I', ¢, and @ be real numbers such that y < f(x) <T'and ¢ < g(x) < @ for all x € (a,b).
Combining (1.3) with the following well-known inequality:

T(f,f) < (=), (1.5

we obtain a premature Griiss inequality,

T 9l < 5T-DVT(s9), (1.6

and the original Griiss inequality (see [2]),

T(f8) < ;T -1)(@-9). 1.7

Note that the discrete version of inequality (1.7) has the following form:
1¢ 1 1 1
— > agbr——> ar-— > b| <=(A-a)(B-b), (1.8)
n g; n é n kz; 4

where ay, by are real numbers sothata < ax < A, b<by <Bforallk=1,...,n,and a < A,
b<B.

In [3, 4], Dragomir starting from inequality (1.2) proved the following Griiss type
inequality in real or complex inner product spaces.

Let e be a unit vector in V. If ¢, y, @, and I" are complex numbers and x, i are vectors
in V that satisfy the conditions,

Re (®e — x,x — pe) >0, Re(Te-y,y—ye) >0, (1.9)

then the following inequality holds:

(2 y) ~ {x e)ey)| < gl glIT -y, (110)
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The constant 1/4 that appears at the right side of the inequality is optimal in the sense that it
cannot be replaced by a smaller one.

Some generalizations and refinements of inequality (1.10) can be found in [1, 4-10].
In this paper, we achieve an improvement of inequality (1.1) in the sense of subtracting
a nonnegative quantity from the right part of (1.1). In this way, every result that stems
from (1.1), such as the inequality (1.10) and its generalizations and refinements, can also
be improved. Furthermore, we apply our improvements of inequalities (1.3), (1.6), and
(1.7) to achieve refinements of some well-known trapezoid-Griiss and Ostrowki-Griiss type
inequalities. Some refinements of inequality (1.8) as well as an additive reverse of the
Schwarz inequality are also given.

2. A Refinement of Inequality (1.1)

Let (V,(:,-)) be an inner product space over the real or complex number field k. For our
purpose, we need the following three lemmas.

Lemma 2.1 (see [2, page 599]). Forall us,..., Uy, v1,...,0m € V, one has
2

(u,v1) -+ (U1,0m)
det : : <T(ui, ..., um)T(v1,...,0m), (2.1)

(Um,01) -+ (Um, Om)
where I'(uy, ..., uy,) is the Gramian of the vectors uy, ..., uy,. The equality in (2.1) holds if and only

if span{uy,..., u,} = span{vi,...,v,}, or {u1,..., uy} is linearly dependent, or {v1,..., v} is
linearly dependent.

Lemma 2.2. Let {ey,...,e,} be an orthonormal system of vectors in V, then, for any vectors
X1,...,Xm €V, one has that

A= {x1 —i<x1,€k>€k,...,xm—i<xm,€k>ek} (22)
k=1 k=1

is linearly dependent, if and only if B := {x1,...,Xp, €1, ..., ey} is linearly dependent.

Proof. Let A be linearly dependent, then clearly B is also linearly dependent. Conversely, let B
be linearly dependent, then since {ey, ..., e,} is linearly independent, there exist ¢y, ..., c, € k
and by, ..., b, € knot all zero, such that

m n
> brxi + D ckex =0, (2.3)
k=1 k=1

which for some dj. € k can be rewritten as follows:

zn:bi <xi - i(xi, €j>€]’> + zn:dkek =0. (2.4)
i=1 j=1 k=1
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Hence, we get

n

Zbi<xi—z<xi,ej>e,-,ek>+dk:0, 1<k<n.
i1

=1

Further, fori=1,...,m, we have
n
<xl- - Z(x,-,e,-)e,-,ek> =0.
=1

Hence from (2.5), we get dx =0, k = 1,...,n. Consequently, from (2.4) we obtain

m n
Dbi( xi- 2 (xiej)e; | =0,
i=1 =1
and because at least one of by, ..., b, is nonzero, it is derived that

{x1 - i(xl,eﬁej,--.,xm - i<xm/3i>ej}

1 1

is linearly dependent.

(2.5)

(2.6)

2.7)

(2.8)

O

Lemma 2.3. Let {ey,...,e,} be an orthonormal system of vectors in V and x1, .. ., xp,, be any vectors

in'V, then,
span{xi,..., Xy, €1,...,6,} =span{Xy,..., X, } ®@spanfey,..., e},

where

M=

<)

=u— Y (u,ex)ex.

T
A

Proof. Define the linear mapping
T :span{xi,..., Xm,€1,...,€n} — span{xi,..., Xm,€1,...,€n}
given by T(u) = u. It is easy to verify that
ImT =span{Xy,...,Xn}, KerT =span{ey,...,e,},

which completes the proof.

(2.9)

(2.10)

(2.11)

(2.12)
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Theorem 2.4. Let {ey, ..., e,} be an orthonormal system of vectors in V and let {l;,1,} C V be linear
independent, such that {l1,1,} L {e1,..., ey}, then for all x,y € V the following inequality holds:

192 (x, ¥)|* < Sulx, 0)Su (v, y) = R(x, 311, 12), (2.13)
where

|(x 1) {y, o) - <x,lz><y;ll>|2 N 214)
P07 = K, 1)

R(x,y; 1, 1) =

and S, (x,y) is given as in (1.2). The equality in (2.13) holds if and only if span{x, y,e;,...,e,} =
span{li, b, e1,...,eq}, 0r {x,y,e1,...,e,} is linearly dependent.

Proof. If we apply inequality (2.1) for n = 2 by choosing u; = X, uy = §, vy = I, and v, = I
and taking into consideration that for all u,v € V, we have

(u,9) = <u— i(u,€i>€i,0—§n:<7)/ej>ej>
i=1 j=1
= (u,0) - Di{ej,v)(u,e) — D (u,e;)(ei,v) + D (u,ex)(v,ex) (2.15)
j=1 i-1 i=1

=(u,v) - i(u,ek)(ek,v) =S,(u,v),
k=1

then we get
det Sn(x,l1) Su(x,l2) ? < Su(x,x) Su(x,y)||Su(li, 1) Su(lh,2) _ (2.16)
Su(y,h) Su(y, o) Su(y,x) Su(y,v)||Snl2, i) Su(lo, 1)
Now, from the condition {l;,I,} L {ey, ..., e,}, the following is derived:
Su(x, L) =(x,I;), Su(y, L) =(y L), i=12, (217)
Suli, 1) = (I, 1)), i,j=1,2. (2.18)

From the condition “{I},,} is linear independent”, it follows that ||l [|*||L]* = (L1, L)|* #0.
Now, if we set (2.17) and (2.18) in (2.16), we readily get the conclusion. Finally, according to
Lemma 2.1 we have that the equality in (2.16) holds if and only if

span{x,y} = span{l],l}}, (2.19)
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or {X,y} is linearly dependent, or {lAl,Tz} is linearly dependent. Now, since l],l},a?,g 1
{e1,...,en}, (2.19) can be rewritten as follows:

span{x,y} @ span{ey, ..., e,} = span{lAl,lAz} @span{er, ..., en}. (2.20)

Moreover, according to Lemma 2.3, we have that

span{x,y} @spanfey, ..., e,} = span{x,y,e1,..., e,},

o (2.21)
span{ll,lz} @ spanfey,..., e,} =spani{ly, pei, ..., en}.
Combining (2.20) with (2.21), we conclude that (2.19) is equivalent to
span{x,y,e1,...,e,} =span{ly, b, ey, ..., e} (2.22)
From the conditions of this theorem, we clearly have that {lAl,lAz} = {l,Ip} is linearly

independent and since {/;,l,} L {ei,...,e,} we obtain that {l;,]5,e1,...,e,} is also linear
independent. Finally, according to Lemma 2.2, we have that {X, 7/} is linearly dependent if
and only if {x, y,ey,...,e,} is linearly dependent, which completes the proof. O

Corollary 2.5. Assuming that the conditions of Theorem 2.4 hold and x,y ¢ span{ey, ..., e,}, then
one has

R(x,y; 11, 1)

2\/Sn(x,x)\/5n(y,y).

1S (%, 1) < A/Su(x,2)/Su () - (2.23)

The equality in (2.23) holds if and only if {x,y,e1,...,en} is linearly dependent.

Proof. From the condition x, y ¢ spanf{es, ..., e,}, we obtain that S, (x, x), S, (v, y) # 0. Hence,
(2.23) can be rewritten as follows:

R(x,y;11,1)
[Sn(x,y)]| < \/Sn(x, x)\/Sn(y,y) - J 1- S5 (10 (2.24)

Furthermore, from (2.13) and (2.14), we have

R(x,y; 1, 1)
T Sule,)Su(y,y) T

(2.25)

Consequently, we can apply the elementary inequality

VI-t<1- %t, te (—oo0,1], (2.26)
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for
R(x,y; 11,1
__Reyhb) (2.27)
Sn(x/x)sn(y'y)
to obtain
- _Reyihb) . Reyihb) (2.28)
Su(x,%)S4(y, ) 25,(x,%)Su(y, )

Combining (2.24) with (2.28), we get the desired result.

Letting span{x,ei,...,e,} = span{y,ei,..., e}, we easily derive that |S,(x,y)| =
\/Sn(x,x)\/Sn(y,y) and (x,11)(y, ) — (x,12){y, 1) = 0, hence the equality in (2.23) holds.
Conversely, it is clear that the equality in (2.23) holds if and only if the equalities in (2.24) and
(2.28) hold. That is

span{x,y,e1,...,e,} =span{ly, b, ei,..., e,}, (2.29)
<xl ll><y112> - <xl lz><]//ll> =0. (230)

Now, from (2.29) it follows that for some x1,x2, y1, 2 € k,

x = xil + 3l + D (X, ex)ex, (2.31)
k=1

v =yl + 2l + D (v, ex)ex. (2.32)
k=1

Putting (2.31) and (2.32) in (2.30), we get after some algebraic calculations,
(x1y2 = x21) (1) (B, ) = (1)) =0, (2.33)

and since || |]*[|L1* = [{I1, 1) |* #0, we conclude that x1y; — x2; = 0.
Therefore, there is t #0 in k such that,

y1 =txy, Y2 = txa. (2.34)

Putting (2.34) in (2.32), dividing the result by ¢ and finally subtracting this result from (2.31),
we conclude that {x,y, ey, ..., e,} is linearly dependent. O
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Remark 2.6. The main result in [11] is an identity, which by setting e = z/||z|| can be
equivalently written in the following form:

(Il = 1, e)P) (1P = [ @) ?) =[x ) = (x.e)e, )

= (IPlyI* = 1¢e ) *) x__inf Jle=sx - ty]*.

—00<s,t<+00

(2.35)

It is hard to find a positive lower bound of the term inf_,<s i<+o0l€ — s5x — ty||2. Therefore, it is
difficult to derive a refinement of inequality (1.1) like (2.13) for n = 1 from the above identity.

3. A Refinement of Dragomir’s Inequality
The main result of this section is a refinement of Dragomir’s inequality (1.10).

Theorem 3.1. Let e be a unit vector in V. If ¢, y, @, and I are real or complex numbers with ¢ # @,
y#7T, and x,y are vectors in V satisfying the following conditions:

Re (®e - x,x-¢e) >0, Re(Te-y,y-ye)>0, (3.1)

then for all nonproportional vectors Iy, 1, € V such that {e} L {l1,1,}, the following inequality holds

2R(x,y;11, 1)

1
[(x,y) = (x.e)le )| < 71 - [T -v[- Rk

(3.2)

where R(x, y; 11, 1b) is as given in (2.14).
Proof. We distinguish two cases.

Case 1. Let either x or y € span{e}. Without loss of generality, let us assume that i € span{e
Then from the condition {e} 1 {l1,1,}, we have that {y} L {l;,»}. Thus, (y,I1) = (y, L) =
So R(x,y;11,15) = 0. Consequently, (3.2) reduces to inequality (1.10).

.
0.
Case 2. Let x,y ¢ span{e}, then we can apply inequality (2.23) by n = 1 to obtain

|(xy) ~ (xe)e )] < (I~ e P) " (yl - |, e) )
R(x,y;11,1) (3:3)

2(1xIP - 1x,e)P) " (v - |<y16>|2>1/2'

Furthermore, from the conditions (3.1), we have the following (see [3]):
2 2 1 2 2 2 1 2 34
" = 1¢x,e) < 7@ =¢l% lyll" = [y, e)" < ZIT =" (3:4)

Finally, combining (3.3) with (3.4) leads to the asserted inequality (3.2). O
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Now, working similar as above we can show the following result, which we will use
in the next section, to obtain refinements of some known integral inequalities.

Theorem 3.2. Let e be a unit vector in V. If ¢, D are real or complex numbers with ¢ # @, and x, y
are vectors in 'V satisfying the following condition:

Re(®e - x,x — pe) >0, (3.5)

then for all nonproportional vectors l,1, € V such that {e} L {l1,1,}, the following inequality holds:

R(x,y;11,1)

- ¢l (I - |, e)?)”

(3.6)

[(x,9) - (x.e)e ) < 510 - ¢l (v - [ e)?)” -

Remark 3.3. Based on inequality (2.23), one can improve, in a way similar to Theorem 3.1,
all results related to Griiss inequality as in [1, 4-8]. For example, in [1, pages 333-334], [7,
page 2751], and [4, page 90], Dragomir obtained the following inequality by using Arcel’s
inequality:

(1=l = 16xe)2) " (12 - 1, ) )

1 I+ (37)
< glo-olir-v - |2 -1 el| [ - 1we]
which is used to derive the following refinement of (1.10):
[(x,y) = (x,e) (e, y)]
(3.8)

1 D+¢
< glo-glIr-y] - | -l e))

I'+y
52 - 1wel|

Now, if we combine the inequalities (3.3), (3.7), and (3.4), we get the following improvement
of (3.8):

(2 ) - (xe)ey)] < 310~ plIT -]

0 ¢ (3.9)

2R(x,y; 1, 1)
|®-||T-y|

el |5 - e -

4. A Refinement of Griiss Inequality and Applications

First we will use the results of Section 3 to obtain improvements of inequalities (1.3), (1.6),
and (1.7).
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Theorem 4.1. Let f, g € Ly(a,b) be bounded on (a,b) and let i, j € L,(a, b) be not proportional and
s0 that fs i(x)dx = fs j(x)dx = 0. Then, provided that f, g are nonconstant functions, the following
inequalities hold:

R(f, g1, ])
IT(f. &) <\T(f, T8 8) - , .
i e 20T (f,)T(8 8) 4

1 R(f &i,])
IT(f,8)| < 5T -1)\T(88) - , (4.2)
? (r-1YyT(58)
1 2R(f, 851, ])
T(f,8)| < ~(T-y)(®-¢) - —2 43
IT(f )< 7(T=7)(®-9) T (@-9) (43)
where
I (1! f i [ g(0)j()dx - [} f0)j(dx [} g(yiCx)dx)’
/81,f) = ,
(b- a)2< [o 2(0)dx [] j2(0)dx — (J1i(x) j(x)dx>2> (4.4)

y=_inf ), T=sup f(x), ¢= infg(x), = supg(x)

x€(ab) xe(a,b) xé&(a,b)

and T (f, g) is the Chebyshev functional defined by (1.4).

Proof. Applying inequality (2.23) on Ly(a,b) for n = 1 as well as the inequalities (3.6) and
(3.2) by choosinge =1/vb—-a,x=(1/vb—-a)f,y=(1/vb-a)g, L =i, 1, = j, we easily get
the required inequalities. O

Note that all known trapezoid-Griiss, midpoint-Griiss, and Ostrowski-Griiss type
inequalities, which are proved by applying the inequalities (1.3), (1.6), and (1.7), can be
improved by using the inequalities of Theorem 4.1. For example, in [12, page 39] we can
see the following trapezoid-Griiss type inequality:

1 -
Sl Ty, 49

b —
bf—a f A C) ; hb) | (blza) (K (b) - W (a))

where h is a twice differentiable mapping on (a, b) such that y < h"(x) <T, forall x € (a,b).
In the following, we apply inequality (4.2) to derive a refinement of inequality (4.5).

Proposition 4.2. Let h, y, and I be as above, then

b —
‘b}—a f h(x)dx — @ ; hib) , (blz") (K (b) - W (a))

(4.6)

L@’y V5 L —h(a))z
a 24+/5 5(T-y) 2 b-a '
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Proof. Let f,g,i,j : [a,b] — R be functions defined by f(x) = h"(x), g(x) = (x — a)(b - x),
i(x) =(x—a)(b- x) - (1/6)(b - a)?*, and j(x) = x = (a+b)/2, then it is easy to verify that

b
T(1,8) = 5 (H®) - (@) (- 0) - (hb) - h(a) + 2 [ hexd,

T(3,8) = 550~ )"

[ sitadx-o, f ()i(W)dx = = (b - a)’, (7)

180

f F)jx)dx = (W (B) + ~ (h(b) - h(a)),

b
f i2(x)dx = @(b a)’ J‘ j 2(x)dx = _Z(b_ a)?, J‘u i(x)j(x)dx =0.

Finally, since equalities fs i(x)dx =0, Ll: j(x)dx = 0 hold, we can apply inequality (4.2), using
the above relations to get the required inequality. O

In [13, page 167] we can see the following Ostrowski-Griiss type inequality for all
t € (a,b):

|T(h,t)| < 4\%@ -y)(b—-a), te(ab), (4.8)

where h is a differentiable function on (a,b) such that y < h'(x) < T, for all x € (a,b), and
T(h,t) is defined by

b
T(h,t) = h(t) - bi—a J h(x)dx — h(b; - Z(a) (t _a ; b). (4.9)

We propose improvement of this result as follows.

Proposition 4.3. Let h be as above, then,

6+/3(t—a)(b—t)(b - a)
-y (-’ -3¢-a)b-1)

) <<h(t)t:Z(a) ) h(b; - f(t))b;a _T(h,t)>z'

T (h, t)|< (T Y)(b-a) -
(4.10)
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Proof. If we apply inequality (4.2) by choosing

) x—a, ifa<x<t,
fx)=H(x), gx) =

x—-b, ift<x<bp,

1

i(x)=4t-2

-——, ift<x<b,

, ifa<x<t,
1

b-t’

. a+b
) =g - (1-237)

and take into account that, after some calculations, we obtain

b —
R G

T(g,8) = %(b - a)?,

_ B ) .
h(ti - h(a) h(b; - ?(t)' J‘ S ()i(x)ddx = bTa’

b
[ reicoa -
b b
[ feiedx = o= amt - [ hedx= (1= 2 ) 0b) - ha)) =T, 1),
a a 2
b . 1 ,
j g(x)j(x)dx = E(b -a)’,
b b-a
J, P =

b b
b-
L j*(x)dx = %(b -a)’, f i(x)j (x)dx = T"

and we easily derive the asserted inequality.

According to [13, page 168], the following inequality holds:

b
‘ﬁf h(x)dx—h(a;b>‘ < ﬁg(r—y)(b—a).

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

If we apply inequality (4.10) for t = (a + b) /2, we get the following refinement of the

previous inequality.
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Corollary 4.4. Let h be as in Proposition 4.3, then,

a+b

})i—afjh(x)dx—h< 5 >‘ < Zﬁg(l"—y)(b—a)

s (s [ Yo oa(252) o))

It can now be observed that (4.19) can be written as follows:

<bi—af:h(x)dx- %(h(a) +h<“;b> +h(b)>>2

—(F'Z)j;"“) biaJ‘:h(x)dx—h<a;b>

(4.22)

(4.23)
1
72

< o= (T=y)*(b-a)?

7

N

or equivalently

ﬁ fjh(x)dx - %h(a) + h(“ * b) + h(b)l

2
1 b a+b
b—aL h(x)dx—h< > )

which, by using inequality (2.26), leads to the following result.

(4.24)
<(T—Y)(b—a)[ s
T 6V2 (T-y)(b-a)

]1/2

Corollary 4.5. Let h be as above, then,

ot e (e (%5) )|

T-y)(b-a) 1] 1 (* a+b
T = KLl G

(4.25)

Now, we will use again inequality (4.2) to give another improvement of inequality
(4.8).

Proposition 4.6. Let h be as in Proposition 4.3, then for all t € [a, b],

_2V3(a-t)’(b—t)*|a+b—2tK(h,t)
T-y)b-a’

1
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where

h(2t-b) —h(a) h(b)-hQt-b)\> . a+b
K(ht) = < 2t—b-a  2b-2t ) f——stsb (427)
") /h@i-a)—h(a)  h(b)-hQt-a)\? | < ath '
< 2-2a  a+b-2t ) fast<——

Proof. Let us choose f, g, and i as given in (4.11) and (4.12). We distinguish the following two
cases.

Case 1 ((a+b)/2 <t <b). Then, by choosing

1 ifa<x<2t-b,

: 2t-b-a’
j(x) = . a (4.28)
T if2t-b<x<b,
it can be easily verified that
b
f j(x)dx =0. (4.29)

So, we can apply inequality (4.2), by using (4.12), (4.14), (4.15), and (4.16) as well as

b
f g(x)j(x)dx =0,

b h(2t—b) - h h(b) - h(2t - b
Lf(x)](x)dxz (;t—;—a(a)_ ()2b—(2i s (4.30)

b b-a b b-a
L ixjxdx = 5= m=n’ f JFeodx = (2t-b-a)(2b-2t)

to obtain the desired inequality (4.22).

Case 2 (a <t < (a+b)/2). Then, by choosing

1
_— ifa<x<2t-a
2t —2a’ - !

j(x) = “ t<“;b (4.31)

1
- 1 — <
PR TY if2t—-a<x<b,
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we easily derive the following:

b b
f j(x)dx =0, f g(x)j(x)dx = 0,

h(2t - a) —h(a) h(b) - h(2t - a)
2t —2a T a+b-2t

b
[ reieoax - (432)

b b-a b b-a
R e = R e e e

Finally, application of inequality (4.2) using the above relations leads to the claimed result.

O

5. Refinements of Discrete Griiss Inequality

In this section, some refinements of the discrete version of Griiss inequality (1.8), as well as,
an additive reverse of the Schwarz inequality are provided.

Theorem 5.1. Let ay, by, k = 1,...,n be real numbers so that a < a,r < A, b < by < B
for k = 1,...,n, where a < A and b < B. Let x1,yi be real numbers such that the vectors
(x1,...,xn),(x1,...,x,) € R™ are not proportional and

Sxic= Dy =0. (5.1)

Then,

1& 1& 1& 1
=Y agby—— > ar-—= > b|<=(A-a)(B-Db)
né né né 4
n n n n 2 (52)
2 (Dket Xkak - Sy Yibr = Doy Xkbic - Xy Yrak)

(A-a)(B-b)n? Sl Sy (S k)

Proof. Define the vectors x := (1/v/n)(ai,...,a,), y = (1//n)(b1,...,b,), e := (1/v/n)(1,
oD, L= (x,., %), b= (Y1,...,Y,) In the Euclidian inner product space (R”, (-, -)).
Then, we have

_ i (A - akL(ak - a) >0,

(Ae — x,x — ae)

k=1
(5.3)

<Be_y,y_be> :iw ZO,
k=1 n

and (e, l1) = (e, ) = 0. Hence, we can apply inequality (3.2) of Theorem 3.1 for the vectors
x,y, e, 11, and I, as given above, to complete the proof. O
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Corollary 5.2. Let ay, by be as is in Theorem 5.1, then for all p,q,r,s € {1,...,n},

2((ap — aq) (by = bs) = (by = by) (ar - as))z
e(p,q,1,5)n*(A-a)(B-Db)

1
<{(A-a)(B-b)-

7

1& 1& 1&
Egakbk - E;ak : E;bk

(5.4)
where

4, lf{P,q}ﬁ{T,S} =0,
,q;1,5) = 55
i) {3, i {p,a) 0 17,5} 0. )

Proof. If p = qorr = s or {p,q} = {r,s}, then inequality (5.4) reduces to (1.8). If p#q, r #s,
and {p, q} # {r, s}, then by choosing the vectors (x1,...,x,), (y1,...,x,) such that

(1, ifi=p,

xi=4-1, ifi=gq,

L0, ifi#p,q,

(5.6)
(1, ifi=r,

Yi = -1, ifi=S,

0, ifi#r,s,
it follows that these vectors satisfy the conditions of Theorem 5.1. Hence, we can apply
Theorem 5.1 to obtain the desired result. O

Now, if we apply Corollary 5.2 by choosing a, = b, = 0 and g = s = n, we immediately
obtain the following result.

Corollary 5.3. Let ax, by be real numbers so that a < ax < A, b <by < Bforallk=1,...,n-1,
where a < Aand b < B. Then for all p,r € {1,...,n -1}, one has the following inequality:

1 1= ot | 2(ayb, - bya,)’
— b - — i-—>bi|<=(A-a)(B-b) - . 5.7
nga" : néal n; A Ty s 7 67
Corollary 5.4. Let0<a; <ay <+~ <ayqand by >by > -+ > b, >0, then
111—1 1 n-1 111—1 1 2(an,1b1 _ albn71)2
— b - — = bl < =(ay1 - b1 -b,1) - . 5.8
nkz:;ak k ng;‘ak nkz:; k| < 4(an 1—a1) (b1 — by-1) 3y = an) (b = bid) (5.8)

Proof. If we apply inequality (5.7) by choosing a = a;, A=a,.1,b=b,.1,B=bjandp=n-1,
r =1, we directly get the desired inequality. O
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Now, we will use inequality (5.7) to derive an additive reverse of the Schwarz
inequality.

Applying ("5!) times the inequality (5.7), namely for all pairs of integers (p,r) with
1 < p <r £ n-1, adding the resulting inequalities, using the Lagrange identity, and finally
dividing the resulting inequality by (";!), then,

n-1

1 n-1 1 n-1 1 1
=D akbk— =) axr=D bx| < - (A-a)(B-b)
n | <
1 1 1 2 59
4 S ap X b - ( k=1 akbk)
3(n—1)(n-2)n? (A-a)(B-Db)

Now, if we solve inequality (5.9) with respect to 3771 a; - oy by - > akbk)2 and then
replace n by n + 1, we obtain the following reverse of the Schwarz inequality.

Proposition 5.5. Let ay, by, k = 1,...,n be real numbers so that a < a, < A, b < by < B for all
k=1,...,n, where a < Aandb < B. then,

n n n 2
S5t (Son)
k=1 k=1 k=1
< Zn(n -1)(n+1)*(A-a)(B-b)
(5.10)

n 1 n

1 1 & 1
. <1<A‘“>(B‘b>‘ T2 T 2 2

k=1 k=1

)

< 13—611(11 ~1)(n+1)*(A - a)*(B-Db)*
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