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1. Introduction

By I'],, we denote the space of polynomials of degree not greater than n. To obtain our results,
we need the following results of Duffin and Schaeffer [1] and of Gautschi and Notaris [2].

Lemma 1.1 (Duffin and Schaeffer). If g(x) = c-J1 %, (x — x;) is a polynomial of degree n with n
distinct real zeroes and if p € TT,, is such that

P (x:)| < lg'(x)|, i=1,n, (1.1)
then for k = 1,n-1,
[P V)] < g%V )], (1.2)
whenever g® (x) = 0.

Lemma 1.2 (Gautschi and Notaris). A real polynomial r of exact degree 2 satisfies r(x) > 0 for
-1 < x < 1ifand only if

r(x) = b(b-2a)x* +2c(b - a)x + a* + 2 (1.3)

withO<a<b,|c|<b-a, b+#2a.
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By P,(la’ﬁ ) (x), where n is a nonnegative whole number and «, f > -1, we denote the nth
Jacobi polynomial. It is known that Jacobi polynomials with the same parameters a and f are
orthogonal on [-1,1] with respect to the weight function p(x) = (1 - x)*(1 + x)ﬂ.

We will need the following properties of Jacobi polynomials [3]:

PP (1) = <” ' “> , (1.4)

n
PP (1) = (1) <" . ”> : (L5)
d% {P,E”"f’) } (x) = %-(n +a+p+1)-P (), (1.6)

Let 13,(1‘!"; ) (x) be the Jacobi polynomial of degree 1, normalized to have the leading coef-
ficient equal to 1. Then

ﬁr(la’ﬁ)(x) _ 2"71' F(TL +a+ ﬁ + 1)

()

From the relations (1.6) and (1.7), we obtain

d [ >@p) L S(arlpe)

=P} @ = n B (). (1.8)
The Jacobi polynomials orthogonal on [-1,1] with respect to the weight function p(x) =

1/+/1 — x? are the so-called Chebyshev polynomials of first kind. These polynomials are given

by
T, (x) = cos(n arccos x), x€(-1,1), n=0,1,2..., (1.9)

and T, = (1/2"1)T,, are the Chebyshev polynomials of first kind of degree n with the leading
coefficient equal to 1.

The Jacobi polynomials orthogonal on [-1, 1] with respect to the weight function p(x) =
V1 — x? are the so-called Chebyshev polynomials of second kind. These polynomials are given

by

sin[(n + 1) arccos x]

V1-x? '

U, (x) = xe(-1,1), n=0,1,2..., (1.10)

and U, = (1/2")U,, are the Chebyshev polynomials of second kind of degree n with the leading
coefficient equal to 1.

Let us denote by x; = cos((2i — 1)or/2n), i = 1,n, the zeroes of T,, the Chebyshev poly-
nomial of the first kind.

The following problem was raised by Turan.

Problem 1. Let ¢(x) > 0 for -1 < x < 1 and consider the class P, , of all polynomials of degree n

such that [p, (x)| < ¢(x) for -1 < x < 1. How large can max xe[-1,1] |p,(1k) (x)|beif p, is an arbitrary
polynomial in Py,?
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He pointed out two cases: ¢(x) = V1 — x2 and ¢(x) =1 - x%.

In papers [4, 5], the author considers the solution in the weighted L?-norm for the majo-

rant p(x) =1/v1 - x2.

Let H be the class of real polynomials p,_1 € [T,._;, such that

n-1s

1 .
|Pn—1(xi)|5 , i=1,...,n,

1-x;

where the x; are the zeroes of the Chebyshev polynomial of first kind.
Note that U,,_1 € H.
From paper [5] was obtained the following result.

Theorem 1.3 (see [5]). If py—1 € H, then one has

(n+k+1)! K+n*+3k+1
(n—k-2)! 2k +3)2k + 1)(2k + 5)"

n-1

1 _ 2
I (1 _xz)k 1/2 p(k+1)(x)] dx < 2
-1

k=0,...,n-2, with equality for p,-1 = U,1.

We denote by H the class of all real polynomials p,,_1 € [,,_,, such that

n-1s

1 .
lpna(xi)| € ——, i=1,...,n,

< \/@

where the x; are the zeroes of the Chebyshev polynomial of first kind.
Note that 13,51_/12’1/2) €H.
The next theorem can be obtained in the same way of Theorem 1.3.

Theorem 1.4. If p,_; € H , then one has

1 2 2
o\ k=1/2] (k1) 2 < T (n+k+1)! k*+n°+3k+1
J‘_l (1= @) X S T =k =2)l @k +3) 2k + 1)@k +5)/

k=0,...,n -2, with equality for p,_1 = 1375142’1/2).
Let H@P) be the class of real polynomials p,_1 € [T ,_,, such that
pna (x)] < [PV ()|, i=Tom,

where the x; are the zeroes of 13,(1“”; ),
Remark 1.5. For a = p = —1/2, the class H"1/271/2 coincides with the class H.

In this paper, we want to give a generalization of these results.

(1.11)

(1.12)

(1.13)

(1.14)

(1.15)
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2. Quadrature formulae of the Gauss-Lobatto type

In this section, we recall some general concepts about quadrature formulae and we prove some
lemmas which help us in proving our result.
Let

b n 14
f p(x)f(x)dx = Y Aif (a;) + >, Bif (b;) + R[f] (2.1)
a i=1 j=1

be a quadrature formula, where p is a nonnegative weight function, b;¢(a, b), j = w, are fixed
and distinct nodes. The nodes a; € (a,b), i = 1,1, will be determined from the condition that
the quadrature formula (2.1) has maximal degree of exactness. These quadrature formulae are
the so-called Gauss quadrature formulae with fixed nodes.

The next theorem gives the necessary and sufficient condition, such that the quadrature
formula (2.1) has maximal degree of exactness.

Theorem 2.1 (see [6]). The maximal degree of exactness, r = 2n +p — 1, of quadrature formula (2.1)
is obtained if and only if the nodes a;, i = 1,n, are the zeroes of an orthogonal polynomial of degree n
with respect to the weight function w(x) = p(x)-]_[;’:1|x -bjl, x € (a,b).

Let
b no_ P P ~
[ pefeodx = 3 Af ) + 3 Bif by) + X Cif () + RLf) 22)
a i=1 j=1 j=1

be a quadrature formula.
Similarly, the next theorem gives the necessary and sufficient condition, such that the
quadrature formula (2.2) has maximal degree of exactness.

Theorem 2.2 (see [6]). The maximal degree of exactness, r = 2n +2p — 1, of quadrature formula (2.2)
is obtained if and only if the nodes a;, i = 1,n, are the zeroes of an orthogonal polynomial of degree n
with respect to the weight function w(x) = p(x)-]_[?:l(x - b]-)z, x € (a,b).

Remark 2.3. The coefficients A;, AN,-, i = 1,n, from Gauss quadrature formulae (2.1) and (2.2)
are positive.

The Gauss-Lobatto quadrature formulae are the Gauss quadrature formulae with two
fixed nodes, namely, by = a, b, = b. In this paper, we will consider the case (a,b) = (-1,1)
and the weight function is p(x) = (1 -x)"(1 + x)P. These formulae of numerical integration are
called the Gauss-Jacobi-Lobatto quadrature formulae.

Lemma 2.4. For any given n and k, 0 < k < n -1, let yl.(k), i = 1,n-k-1, be the zeroes of
Péf;’:l’ﬂ D Then the quadrature formulae

n—-k-1

fl (1=x)(1+ )" f(0)dx = Bif (1) + Bof (1) + 3, Aif (y0) +RIfl,  (23)
-1 i=1
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where
Fk+p+DIn+a+DI(n-k)I(k+p+2)
_ n2k+a+p+1,
By = 2 Tn+atpeksTnapsl) @4
IFNk+a+DI'(n+p+1I'(n-k)I'(k+a+2)
_ +a+f+1,
B, = 2] In+a+p+k+2)T(n+a+1) ’ 29)
A; >0, (2.6)
1 n—k-2
f (1= )1+ )P f(x)dac=B1 f(-1)+Bo f () +Cy f (-1)+Caf (1) + Z Aif (yV)+RIf1,
-1
(2.7)
where
=~ m-k-2)(n+k+a+p+3) m-k-1)(n+k+a+p+2)
B ‘Cl'{“ 2(p+k+3) ’ 2(k+p+1) } (2:8)
B n-k-2)(n+k+a+p+3) m-k-1)(n+k+a+p+2)
=-Cx { 2a+k+3) " 2k+a+l) } 29)
~ IFk+p+2)I(n+a+1)I'(n-k-1)I'(f+k+3)
_ 92k+a+p+2,
Ci=2 Tn+a+pf+k+3)[(n+p+1) ’ (2.10)
~ varprn Lk +a+2)I(n+p+1)I'(n -k -1)I'(a+k +3)
Cp = 2P In+a+p+k+3)[(n+a+1) ’ 211)
A; >0, (2.12)

have the degree of exactness equal to 2n — 2k — 1.

Proof. 1f in the quadrature formula of the Gauss-type (2.1) we consider a = -1, b =1, p(x) =
(1- x)k“"(l + x)k+p, n—n-k-1, p=2, by= -1, b, =1, then by Theorem 2.1, the quadrature
formula (2.3) has the maximal degree of exactness, r = 2n — 2k — 1.

In order to compute the coefficients B; and B,, we need the following formulae:

_ (V"2 T DM+ a DI—Lem)
Tm+OI(p-Nimeasiss <P
(2.13)

f (1-x)*(1 + 2)* PP (x)dx

2PHT (L + )T (m + o+ D (a - A +m)
Im+1)I(a-MN)I(m+p+r1+2) '

fl (1 -2 1+ x)P PP (x)dx = l<a.  (214)
-1

a+k+1 Prk+1) (X)

If in the quadrature formula (2.3) we consider f(x) = (1 + x)P then by

(a+k+1 [5+k+1)(x) and the

using the relation (2.14) we obtain (2.5), while by using f(x) = (1-x)P,_, ",

relation (2.13) we obtain (2.4).

If in the quadrature formula of the Gauss-type (2.2) we consider a = -1,b = 1, p(x) =
Q-0+ n—-n-k-2, p =2,b; = -1, by = 1, then by Theorem 2.2, the quadrature
formula (2.7) has maximal degree of exactness r = 2n — 2k — 1.
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If in the quadrature formula (2.7) we consider f(x) = (1 — x)(1 + x)zPriilfzz’ﬁ +k+2)(x),
respectively f(x) = (1- x)*(1+ x)szlif’p +42) (x), then by using the formulae (2.13) and (2.14)
we obtain the coefficients (2.11) and (2.10).

If in the quadrature formula (2.7) we choose f(x) = (1+ x)ZPf:;]zZ’ﬁ +s2) (x), respectively
flx) =(1- x)ZPr(zZI:z’p +s2) (x), then by using the formulae (2.13) and (2.14) we obtain the
coefficients (2.9) and (2.8). O

Lemma 2.5. Let r(x) = b(b —2a)x? + 2c(b — a)x + a® + ¢ be a real polynomial. For any given n and

k,0<k<n-1,let yi(k), i=1,n-k-1, be the zeroes of P,Eiljl’ﬂ D Then the quadrature formulae

n—k—
Il r(x) (1= ) (1 + x)**P f (x)dx = Dy f(-1) + Do f (1) + ZlAir<yi(k)>f<yi(k)> + R[f],
-1 i=1

(2.15)
where
A dksatpe IFNk+p+DIn+a+1)I'(n-k)I'(k+p+2) ’
Dy= 22, Tntatprk+ I+ p+1) (a=-b+o)
okrarper Lkt a+ DI(n+ p+ DI (n—k)I(k +a+2) )
D= b, In+a+p+k+2)I(n+a+1) (a=b-c), (2.16)
[1i> O,
1
f r(x) (1= ) (1 + x)** £ (x)dx
- e (2.17)
= Dif (1) + Daf (1) + Gif (1) + Gof (1) + 3, Air (V) £ () + RIS,
i=1
where
S T B (n—k-2)m+k+a+p+3) (n—k—l)(n+k+a+ﬂ+2)]. ~ )
D =C; {2( b*+2ab+bc-ac)+|1+ 2(rkT3) + (kT pT) | (@a-b+o },

n-k-2)mn+k+a+p+3) nm—-k-1)m+k+a+p+2
2(ax+k +3) " 2(k+a+1)

152=52-{2(b2—2ab+bc—ac)—[1+ )}-(a—b—c)z},

él =61~(a—b+c)2, 62:62-(a—b—c)2, A,‘>0,
(2.18)
with Cy, Cy defined in (2.10) and (2.11), have degree of exactness 2n — 2k — 1.

Proof. The proof follows directly by replacing f with r f in Lemma 2.4. O

3. Extremal problems with polynomials

In this section, we want to give exact estimations of certain weighted L*>-norms of the kth
derivative of polynomials which are in the class H @),



A.M. Acu and M. Acu 7

Remark 3.1. Since P(Ml’ﬂ ) P(er1 P H), c€eR, and (P@‘+1 ’ +1))(k azkf Aried) , it follows that
for k = 0 n 1, the polynomials P ‘Hk“ # +k+1), Pfﬁ;’:lﬂ +k+1) and (P(a+1 4 +1))(k) have the same

Zeroesy]. ,] =l,n-k-1

Lemma 3.2. If p,.1 € H@P), then for k = 0,1 — 1, one has

)] < | B ) 61)
whenever
(B ) () =0 for j=Tn=k=1, 62)
P | < | (R ), .
Pl (-1 < ‘(f’ﬁﬁl’ﬂ +1))(kﬂ)(—l)|- (3.4)

Proof. By the Lagrange interpolation formula based on the zeroes of ﬁ,ﬁ”‘"’ )

any algebraic polynomial p,,—; by

, We can represent

. B S(@p) ,
P (x) = Z (x) )pnl( )—1ZP (%) _Pn-1(x) (3.5)

= (x .X')< (aﬂ)> ( (x .X') ﬁé‘f{lfﬂ*l)(xi).

We also have

(a+1 p+1) 2”: B (x) P(a+1,ﬂ+1)(x.) _ lZ” PP (x) (3.6)
= ) ol Yoond x-x ’
(=) (B (o) =
Differentiating with respect to x, we obtain
~ ! ~(a,
o-1¥ (x=x) (BS7) (1) =B x) ()
x)=— .
Puat ne (x—x) (11+1 p+1)( 1) .
5 (a.p) p ﬂ)
(fj(m—l,ﬂﬂ)) _ lzﬂ (o - x;) (Pn ) (x) - (x)
" = (x - x)*
Since y](.o), j =1,n-1, are the zeroes of Igéﬁl/ﬂﬂ)( ), we have (P('Xp ) (y(o)) =0and
> (@p)
p/ (y(0)> — 12 P (y] > Pn-1 (xi)
n-1\7j né= <y]0) ‘>2 1’2([1?{1,/%&) (xi)
(3.8)

n-1

<13<a+1,ﬂ+1>> < <o>> 12":_ “ﬂ)<y(0)>_
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We find

(e ()] - 2

()| ; —(y;.‘” - xi)z :

15, - 1 [P (xi)|
P (y;0)>| < ;IP,E 2 <y](0>> ; (y;o) - xi)z- 13;;1,;13?(3(1_)' (3.9)
L5 ONES _ ‘ S pN () ‘
< n < ) ; (]/] _xl)z (P"—l > <]/] )
Now, applying the Duffin-Schaeffer lemma, we have
pk k+1) <y](k)>| < (ﬁ,iﬁlﬁﬂ))(kﬂ) <y;k)> = m (3.10)

By the Lagrange interpolation formula based on the zeroes y](.k), j=1,n-k-1, of (Pf:l g +1))(k)
we can represent the polynomials pfﬁl) and (ﬁx;lﬁ +1))(k”) b

S(a+1,p+1)
p(k+1)( )_"_Zk_l <P"ﬁ ) ) (x) 'p(k+1)< (k)>
n-1 - (k+1) n-1 i)’
=1 (x — y(k) p(“+1 P+1) y(k)
( j )(nl > <J ) (3.11)
(a+1,p+1)\ (K)
"(a+1,ﬂ+1) (k+1) nk-1 (P ) (x)
(P"—l ) Zl X — y](k)
Since
n-k-1
‘(Pna;l[ﬂl (1)| | P(a+1[5+1)> (1) Z (3.12)
=1 1-y;

using relation (3.1), we have

(k+1) / (k)
(k+1) (1) ‘ (Mlml) (k)(l) nok-1 g Pn-1 (3/] )|
HORETT SR TR TG,
<|(Beeoy ~"__H—1 = | ) o]
=t L7 Y;

We recall that the zeroes of the orthogonal polynomial on an interval [a, b] are real, dis-

tinct, and are located in the interval (a, b). In our case, we have y](.k) e (-1,1).
O

The relation (3.4) can be obtained in a similar way, so the proof is completed.
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Lemma 3.3. The following formulae hold:
(13(,1+1,p+1)>(k+1) 1= 2k 2 - )T (n+a+Pf+k+3)(n+a+1)
=l - T@u+a+p+1)I(n-k-1)T(k+a+3)

(3.14)

(ﬁ(u+1,ﬁ+1)>(k+1)(_1) - 1y 20K 2 - DIT(n+a+f+k+3)T(n+p+1)
n-1 I'n+a+p+1)I(n-k-1I(k+p+3)
Proof. Relation (1.8) yields

~(lX+1,ﬂ+1) (k) _ (Tl - 1)' ~(a+k+1,ﬁ+k+1)
<P”‘1 ) (x) = (n-k-1)! P (x). (3.15)

The proof is completed by using relations (1.4), (1.5), and (1.7). O
Theorem 3.4. If p,_y € H®P, then
1 2
[ a-ntas ] ax
(n—1)! Tm+a+pf+k+3)T(n+a+ DI (n+p+1)
Iren+a+p+1) I'(n-k-1)
[ 1 (n+a+ﬂ+k+3)(n—k—2)+(n—k—1)(n+k+zx+ﬂ+2)
k+p+2 2(k+p+2)(k+p+3) 2(k+p+1)(k+p+2)
. 1 _(n+a+ﬁ+k+3)(n—k—2)+(n—k—l)(n+k+a+ﬁ+2)
k+a+2 2(k+a+2)(k+a+3) 2k+a+1)(k+a+2)
holds for all k = 0,n — 2, with equality for p,_1 = ﬁiﬁl’ﬂ =

< 22n+a+[5—2 [
(3.16)

Proof. According to Lemma 2.4 and positivity of the coefficients in the quadrature formulae,
we have

f () [P0 )]
-1

n-k-1

_ < (k+1( 1)> (P,(qk?) ) n A1( (k+1)( )))2

i=1
n-k-1

- p 2 ,
<B; [(Pna;l B+1) ) 1)] B, [<~7(lﬁl,ﬂ+l)>(k+l)(1)] " z 1: A; [(P“r(lz:rl,ml))(hl) (yfk))]
i=
- 1 - = 2
J. 1 (1 x)k+’1(1 + x)k+ﬂ [(Py(:;l’ﬂﬂ)( )>(k+1)]

~(as1,p+1)\ (K+1) 2 I~ L)y (k1) 2
1[(19;3 POV E] S B [(BET) T )

<P(a+1p+1)>(k+1)(_1).<1~)15z31,ﬁ+1)> (1) + 265 < a+1ﬂ+1)> (1)'(I~Jéﬁl,ﬁ+1)>(’”2)(1)

I
TN

n—k-2

N Z l [(P(a;mn)) (k+1) <ygk+1)>] 2‘
o i

i=

(3.17)
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~ (k+1) S—
Since (Péﬁl’ﬁ +1)) " (yl.(k+1)) =0,i = 1,n-k -2, and by using Lemma 3.3 we obtain the in-

equality (3.16). O
Remark 3.5. If we choose a = # = —1/2 in the above theorem, we obtain Theorem 1.4.
Theorem 3.6. If p,_1 € H®P), and if r(x) = b(b - 2a)x® + 2c(b — a)x + a2 + c2 is a real polynomial
withO<a<b,|c|<b-a, b+#2a,then

1
f m@a—xﬁ”a+xﬁwkﬁﬂuﬂ%x
-1

< ptrarp2 (n—-1)! Tn+a+p+k+3)T(n+a+)I(n+p+1)
= ran+a+p+n]' T(n-k-1)
2(- b*+2ab+bc-ac) (n+a+p+k+3)(n-k-12) (n—-k-1)(n+k+a+p+2)
' k+p+2 [_ 2(k+p+3) " 2(k+p+1)
(a-b+c)* 2(b*-2ab+bc-ac)
' k+p+2 - k+a+2
| (nta+prk+3)(n-k-2) (n-k-1)(n+k+a+p+2)] (a-b-c)?
1T 2(k+a+3) " 2(k+a+1) Tk+ta+2
(3.18)

holds for all k = 0,n — 2, with equality for py_1 = ﬁfﬁ;l’ﬁ”)_
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