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It is shown that if MC =
(
A C
0 B

)
is an 2× 2 upper-triangular operator matrix acting on

the Hilbert space �⊕� and if σe(·) denotes the essential spectrum, then the passage
from σe(A) ∪ σe(B) to σe(MC) is accomplished by removing certain open subsets of
σe(A)∩ σe(B) from the former. Using this result we establish that quasisimilar (p,k)-
quasihyponormal operators have equal spectra and essential spectra.
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der the Creative Commons Attribution License, which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Let � and � be infinite-dimensional separable complex Hilbert spaces and let �(�,�)
be the set of all bounded linear operators from � to �. We abbreviate �(�,�) by �(�).
If T ∈�(�) write σ(T) for the spectrum of T . An operator A ∈�(�,�) is called left-
Fredholm if it has closed range with finite-dimensional null space and right-Fredholm
if it has closed range with its range of finite codimension. If A is both left- and right-
Fredholm, we call it Fredholm: in this case, we define the index of A by

index(A)= dimA−1(0)−dim�
A(�)

. (1.1)

An operatorA∈�(�) is called Weyl if it is Fredholm of index zero. If A∈�(�), then the
left essential spectrum σ+

e (A), the right essential spectrum σ−e (A), the essential spectrum
σe(A), and the Weyl spectrum w(A) are defined by

σ+
e (A)= {λ∈ C : A− λI is not left-Fredholm};

σ−e (A)= {λ∈ C : A− λI is not right-Fredholm};
σe(A)= {λ∈ C : A− λI is not Fredholm};

w(A)= {λ∈ C : A− λI is not Weyl}.

(1.2)
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2 Essential spectra of quasisimilar operators

When A∈�(�) and B ∈�(�) are given we denote by MC an operator acting on �⊕�
of the form

MC :=
(
A C
0 B

)

, (1.3)

where C ∈�(�,�). For bounded linear operators A, B, and C, the equality

σ
(
MC
)= σ(A)∪ σ(B) (1.4)

and the equality

w
(
MC
)=w(A)∪w(B) (1.5)

were studied by numerous authors. In [5, 10], it was shown that if σ(A)∩ σ(B) (orw(A)∩
w(B)) has no interior points, then (1.4) (or (1.5)) is satisfied for every C ∈�(�,�).

Recall [9] that an operator T ∈�(�) is called (p,k)-quasihyponormal if T∗k(|T|2p −
|T∗|2p)Tk ≥ 0, where 0 < p ≤ 1 and k is a positive integer. This includes p-hyponormal
operators (k = 0), k-quasihyponormal operators (p = 1), and p-quasihyponormal oper-
ators (k = 1). The followings are well known:

{hyponormal operators} ⊆ {p-hyponormal operators}
⊆ {p-quasihyponormal operators}
⊆ {(p,k)-quasihyponormal operators

}
,

{hyponormal operators} ⊆ {k-quasihyponormal operators}
⊆ {(p,k)-quasihyponormal operators

}
.

(1.6)

Recall that an operator A ∈ �(�,�) is called regular if there is an operator A′ ∈
�(�,�) for which A= AA′A; then A′ is called a generalized inverse for A. In this case, �
and � can be decomposed as follows (cf. [6, 7]):

A−1(0)⊕A′A(�)=�, A(�)⊕ (AA′)−1(0)=�. (1.7)

It is familiar [3, 7] that A∈�(�,�) is regular if and only if A has closed range.
If � and � are Hilbert spaces and X : �→� is a bounded linear transformation hav-

ing trivial kernel and dense range, then X is called quasiaffinity. If A∈�(�), B ∈�(�),
and there exist quasiaffinities X ∈�(�,�), Y ∈�(�,�) satisfying XA= BX , AY = YB,
then A and B are said to be quasisimilar. Quasisimilarity is an equivalent relation weaker
than similarity. Similarity preserves the spectrum and essential spectrum of an operator,
but this fails to be true for quasisimilarity. Therefore it is natural to ask that for operators
A and B such that A and B are quasisimilar, what condition should be imposed on A and
B to insure the equality relation σe(A)= σe(B) (σ(A)= σ(B))?

It is known that quasisimilar normal operators are unitarily equivalent [2, Lemma 4.1].
Thus quasisimilar normal operators have equal spectra and essential spectra. Clary [1,
Theorem 2] proved that quasisimilar hyponormal operators have equal spectra and asked
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whether quasisimilar hyponormal operators also have essential spectra. Later Williams
(see [11, Theorem 1], [12, Theorem 3]) showed that two quasisimilar quasinormal op-
erators and under certain conditions two quasisimilar hyponormal operators have equal
essential spectra. Gupta [4, Theorem 4] showed that biquasitriangular and quasisimi-
lar k-quasihyponormal operators have equal essential spectra. On the other hand, Yang
[13, Theorem 2.10] proved that quasisimilar M-hyponormal operators have equal es-
sential spectra, and Yingbin and Zikun [14, Corollary 12] showed that quasisimilar p-
hyponormal operators have also equal spectra and essential spectra. Very recently, Jeon et
al. [8, Theorem 5] showed that quasisimilar injective p-quasihyponormal operators have
equal spectra and essential spectra. In this paper we give some conditions for operators A
and B (A is left-Fredholm and B is right-Fredholm) to exist an operator C such that MC

is Fredholm, and describe the essential spectra of MC. Using this result we establish that
quasisimilar (p,k)-quasihyponormal operators have equal spectra and essential spectra.

2. Main results

We need auxiliary lemmas to prove the main result.

Lemma 2.1. For a given pair (A,B) of operators if
(
A 0
0 B

)
is Fredholm, then MC is Fredholm

for every C ∈�(�,�). Hence, in particular,

σe
(
MC
)⊆ σe

(
A 0
0 B

)

= σe(A)∪ σe(B). (2.1)

Proof. This follows at once from the observation that
(
A C
0 B

)= ( I 0
0 B

)(
I C
0 I

)(
A 0
0 I

)
. �

Lemma 2.2 [10, Corollary 2]. Suppose �, �, � are Hilbert spaces. If T ∈�(�,�), S ∈
�(�,�), and ST ∈�(�,�) have closed ranges, then there is isomorphism

T−1(0)⊕ S−1(0)⊕ (ST�)⊥ ∼= (ST)−1(0)⊕ (T�)⊥ ⊕ (S�)⊥. (2.2)

The following lemma gives a necessary and sufficient condition for MC to be Fred-
holm. This is a Fredholm version of [10, Lemma 4].

Lemma 2.3. Let A ∈�(�) and B ∈�(�). Then MC =
(
A C
0 B

)
is Fredholm for some C ∈

�(�,�) if and only if A and B satisfy the following conditions:
(i) A is left-Fredholm,

(ii) B is right-Fredholm,
(iii) (A Fredholm⇔ B Fredholm).

Proof. Since MC =
(
I 0
0 B

)(
I C
0 I

)(
A 0
0 I

)
, we can see that if MC is Fredholm, then

(
A 0
0 I

)
is

left-Fredholm and
(
I 0
0 B

)
is right-Fredholm, so that A is left-Fredholm and B is right-

Fredholm. On the other hand, since, evidently,
(
I 0
0 B

) (
I C
0 I

)
and

(
A 0
0 I

)
have closed ranges,

it follows from Lemma 2.2 that

A−1(0)⊕B−1(0)⊕ (ran
(
MC
))⊥ ∼= ker

(
MC
)⊕A(�)⊥ ⊕B(�)⊥. (2.3)
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Since by assumption MC is Fredholm, we have

dimB−1(0) <∞⇐⇒ dimA(�)⊥ <∞, (2.4)

which together with the fact that A is left-Fredholm and B is right-Fredholm gives the
condition (iii).

For the converse we asssume that conditions (i), (ii), and (iii) hold. First observe that
if A and B are both Fredholm, then by Lemma 2.1, MC is Fredholm for every C. Thus
we suppose that A and B are not Fredholm. But since A is left-Fredholm and B is right-
Fredholm, it follows that

B−1(0)∼= A(�)⊥. (2.5)

Note that A and B are both regular, and so we suppose A=AA′A and B = BB′B. Then as
in (1.7), � and � can be decomposed as

A(�)⊕ (AA′)−1(0)=�, B−1(0)⊕B′B(�)=�. (2.6)

By (2.5) we have (AA′)−1(0) ∼= B−1(0). So there exists an isomorphism J : B−1(0) →
(AA′)−1(0). Define an operator C : �→� by

C :=
(
J 0
0 0

)

: B−1(0)⊕B′B(�)−→ (AA′)−1(0)⊕A(�). (2.7)

Then we have that C ∈ �(�,�), C(�) = (AA′)−1(0), and C−1(0) = B′B(�). We now
claim that MC is Fredholm. Indeed,

(
A C
0 B

)(
h
k

)

= 0=⇒ Ah= Ck = Bk = 0
(
because A(�)∩C(�)= {0}), (2.8)

which implies k = 0, and hence

ker

(
A C
0 B

)

= A−1(0)⊕ 0�, (2.9)

(
A C
0 B

)(
�
�

)

=
(
A(�) + (AA′)−1(0)

B(�)

)

=
(

�
B(�)

)

, (2.10)

and hence
(

ran

(
A C
0 B

))⊥
∼= 0�⊕B(�)⊥. (2.11)

The spaces in (2.9) and (2.11) are both finite dimensional. Thus MC is Fredholm. This
completes the proof. �

Corollary 2.4. For a given pair (A,B) of operators the following holds
⋂

C∈�(�,�)

σe
(
MC
)= σ+

e (A)∪ σ−e (B)∪ [(σe(A)∪ σe(B)
) \ (σe(A)∩ σe(B)

)]
. (2.12)
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Hence in particular, for every C ∈�(�,�),

(
σe(A)∪ σe(B)

) \ (σe(A)∩ σe(B)
)⊂ σe

(
MC
)⊂ σe(A)∪ σe(B). (2.13)

The proof is immediate from Lemma 2.3, Corollary 2.4, and Lemma 2.1.
From Corollary 2.4 we see that σe(MC) shrinks from σe

(
A 0
0 B

) = σe(A)∪ σe(B). How
much of σe(A)∪ σe(B) survives? The following says that the passage from σe(A)∪ σe(B)
to σe(MC) is accomplished by removing certain open subsets of σe(A)∩ σe(B) from the
former.

Theorem 2.5. For operators A∈�(�), B ∈�(�), and C ∈�(�,�), there is equality

σe(A)∪ σe(B)= σe
(
MC
)∪S, (2.14)

where S is the union of certain of the holes in σe(MC) which happen to be subsets of σe(A)∩
σe(B).

Proof. We first claim that, for every C ∈�(�,�),

η
(
σe
(
MC
))= η

(
σe(A)∪ σe(B)

)
, (2.15)

where ηC denotes the “polynomially convex hull,” which is also the “connected hull”
obtained [6, 7] by “filling in the holes” of a compact subset. Since by (2.15), σe(MC) ⊆
σe(A)∪ σe(B) for every C ∈�(�,�), we need to show that ∂(σe(A)∪ σe(B))⊆ ∂σe(MC),
where ∂C denotes the topological boundary of the compact set C⊆ C. But since intσe(MC)
⊆ int(σe(A)∪ σe(B)), it suffices to show that ∂(σe(A)∪ σe(B))⊆ σe(MC). Indeed we have

∂
(
σe(A)∪ σe(B)

)⊆ ∂σe(A)∪ ∂σe(B)⊆ σ+
e (A)∪ σ−e (B)⊆ σe

(
MC
)
, (2.16)

where the last inclusion follows from (2.13) and the second inclusion follows from the
punctured neighborhood theorem (cf. [7]): for every operator T ,

∂σe(T)⊆ σ+
e (T)∩ σ−e (T). (2.17)

This proves (2.15). Consequently, (2.15) says that the passage from σe(MC) to σe(A)∪
σe(B) is the filling in certain of the holes in σe(MC). But since, by (2.12), (σe(A)∪ σe(B)) \
σe(MC) is contained in σe(A)∩ σe(B), it follows that any holes in σe(MC) which are filled
in should occur in σe(A)∩ σe(B). This completes the proof. �

Corollary 2.6. If σe(A)∩ σe(B) has no interior points, then, for every C ∈�(�,�),

σe
(
MC
)= σe(A)∪ σe(B). (2.18)

Proof. This follows at once from Theorem 2.5. �
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The following lemma is used for proof of the main theorem.

Lemma 2.7 [9, Lemma 1]. If A is (p,k)-quasihyponormal operator and the range of Ak is
not dense, then A has the following matrix representation:

A=
(
A1 A2

0 A3

)

on ran
(
Ak
)⊕ ker

(
A∗k

)
, (2.19)

where A1 is p-hyponormal on ran(Ak) and A3
k = 0. Furthermore, σ(A)= σ(A1)∪{0}.

We are ready for proving the main theorem.

Theorem 2.8. If A∈�(�) and B ∈�(�) are quasisimilar (p,k)-quasihyponormal oper-
ators, then σ(A)= σ(B) and σe(A)= σe(B).

Proof. Suppose that X ∈�(�,�) and Y ∈�(�,�) are injective operators with dense
range such that XA= BX and AY = YB. If the range of Ak is dense, then BkX = XAk im-
plies that the range of Bk is also dense. Therefore A and B are quasisimilar p-hyponormal
operators, and hence the result follows from [14, Corollary 12]. If instead the range of
Ak is not dense, then AkY = YBk implies that the range of Bk is not dense. Therefore by
Lemma 2.7, A and B have the following matrix representations:

A=
(
A1 A2

0 A3

)

on ran
(
Ak
)⊕ ker

(
A∗k

)
,

B =
(
B1 B2

0 B3

)

on ran
(
Bk
)⊕ ker

(
B∗k

)
,

(2.20)

where A1 and B1 are p-hyponormal and A3
k = B3

k = 0. Since quasisimilar p-hyponormal
operators have equal spectra and essential spectra, in view of Corollary 2.6 and Lemma
2.7, it suffices to show that

(i) A1 and B1 are quasisimilar;
(ii) domain (A3)= {0} ⇔ domain (B3)= {0}.

Towards the statement (i), observe that

XAk = BXAk−1 = ··· = BkX , YBk =AYBk−1 = ··· = AkY. (2.21)

If we denote the X1 : ran(Ak)→ ran(Bk) and Y1 : ran(Bk)→ ran(Ak), then X1 and Y1 are
injective and have dense range. Now for any x ∈ ran(Ak), X1A1x = XAx = BXx = B1X1x

and for any y ∈ ran(Bk), Y1B1y = YBy = AY y = A1Y1y. Hence A1 and B1 are quasisim-
ilar.

For the statement (ii), assume that A∗kx = 0 for nonzero x in �. Then by (2.21) we
have that B∗kY∗x = 0. Since Y∗ is one to one, we have that domain(B3) = {0} implies
domain(A3) = {0}, and similarly, domain(A3) = {0} implies domain(B3) = {0}, which
completes the proof. �
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