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A new mathematical model of generalized vector quasiequilibrium problem with set-
valued mappings is introduced, and several existence results of a solution for the gen-
eralized vector quasiequilibrium problem with and without Φ-condensing mapping are
shown. The results in this paper extend and unify those results in the literature.
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1. Introduction

Throughout this paper, let Z, E, and F be topological vector spaces, let X ⊆ E and Y ⊆ F
be nonempty, closed, and convex subsets. Let D : X → 2X , T : X → 2Y and Ψ : X ×Y ×
X → 2Z be set-valued mappings, and let C : X → 2Z be a set-valued mapping such that
C(x) is a closed pointed and convex cone with intC(x) �= ∅ for each x ∈ X , where intC(x)
denotes the interior of the set C(x). Then the generalized vector quasi-equilibrium prob-
lem with set-valued mappings (GVQEP) is to find (x, y) in X ×Y such that

x ∈D(x), y ∈ T(x), Ψ(x, y,z) �− intC(x), ∀z ∈D(x). (1.1)

The GVQEP is a new, interesting, meaningful, and general mathematical model, which
contains many mathematical models as special cases, for some examples, we have the
following.

(i) If Ψ is replaced by a single-valued function f : X ×Y ×X → Z and C(x)= C for all
x ∈ X , then the GVQEP reduces to finding (x, y) in X ×Y such that

x ∈D(x), y ∈ T(x), f (x, y,z) /∈− intC, ∀z ∈D(x). (1.2)

It was investigated by Chiang et al. in [7].
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If Ψ is replaced by a scalar function f : X ×Y ×X → R and C(x)= {r ∈ R : r ≥ 0} for
all x ∈ X , then the GVQEP reduces to finding (x, y) in X ×Y such that

x ∈D(x), y ∈ T(x), f (x, y,z)≥ 0, ∀z ∈D(x). (1.3)

This was investigated in [5, 6, 12, 13, 19] and contains the generalized quasi-variational
inequality in [4, 8, 20, 21] as a special case.

(ii) If D(x) = X for all x ∈ X and f = −Ψ, then the GVQEP reduces to finding (x, y)
in X ×Y such that

x ∈ X , y ∈ T(x), f (x, y,z) �⊆ intC(x), ∀z ∈ X. (1.4)

It is the model of GVEP3 by Fu and Wan in [10]. Fu and Wan also introduce another kind
of general vector equilibrium problem (i.e., GVEP1 in [10]) which is to find x in X such
that for all z ∈ X , ∃y ∈ T(x), f (x, y,z) �⊆ intC(x).

(iii) If Y = {y} and T(x) = {y} for all x ∈ X , define a function ϕ : X × X → 2Z as
ϕ(x,z)= F(x, y,z), then the GVQEP reduces to finding x in X such that

x ∈D(x), ϕ(x,z) �⊆ − intC(x), ∀z ∈D(x). (1.5)

This was studied in [1, 16].
In this paper, by some maximal element theorems, we prove the existence results of a

solution for the GVQEP with and without Φ-condensing mappings, and we also present
some existence results of a solution for the special cases of the GVQEP. The results in
this paper extend and unify those results in [1, 5–7, 10, 12, 13, 15, 19] and the references
therein.

2. Preliminaries

In this section, we recall some definitions and some well-known results we need.

Definition 2.1 (see [2]). Let C : X → 2Z be a set-valued mapping with intC(x) �= ∅ for
all x ∈ X . Let ϕ : X × X → 2Z be a set-valued mapping. Then ϕ(x,z) is said to be Cx-
quasiconvex-like if for all x ∈ X , y1, y2 ∈ X , and α∈ [0,1], either

ϕ
(
x,αy1 + (1−α)y2

)⊆ ϕ
(
x, y1

)−C(x) (2.1)

or

ϕ
(
x,αy1 + (1−α

)
y2)⊆ ϕ

(
x, y2

)−C(x). (2.2)

Definition 2.2 (see [15]). Let C : X → 2Z be a set-valued mapping such that C(x) is a
closed pointed and convex cone with intC(x) �= ∅ for each x ∈ X . Then the set-valued
mapping ϕ : X ×X → 2Z is called to be Cx-0-diagonally quasiconvex if for any finite set
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{z1,z2, . . . ,zn} in X , and for all x ∈ X with x ∈ Co{z1,z2, . . . ,zn}, there exists some j ∈
{1,2, . . . ,n} such that ϕ(x,zj) �⊆ − intC(x).

Remark 2.3. (i) It is clear that if Z = R and C(x) = {r ∈ R : r ≥ 0} for all x ∈ X , and ϕ
is a single-valued function, then the C(x)-0-diagonal quasiconvexity of ϕ reduces to the
0-diagonal quasiconvexity in [22, 23], here γ = 0.

(ii) The following example shows that theCx-0-diagonal quasiconvexity of a set-valued
map F is a true generalization of Cx-convex-likeness of the same F.

Let E be a real normed space with dual space E∗, X ⊂ E, Z = R. Let ‖ • ‖ denote the
norm on E. Let C : X → 2Z be defined as C(x)= [‖x‖,+∞), for all x ∈ X , and let [e1,e2]
denote the line segment joining e1 and e2. Choose p ∈ E∗, we define a set-valued map
F : X ×X → 2Z as

F(x,z)= {〈u,z− x〉 : u∈ [− 2‖x‖‖z‖p,−‖x‖‖z‖p]}, ∀x ∈ X. (2.3)

Then, F is Cx-0-diagonal quasiconvex in the second argument. Otherwise, there exists
finite set {z1,z2, . . . ,zn} ⊆ X , and there is x ∈ X with x =∑n

j=1αjzj (αj ≥ 0,
∑n

j=1αj = 1)
such that for all j = 1,2, . . . ,n, F(x,zj)⊆− intC(x). Then for each j, for all λj ∈ [0,1], we
have

〈
λj
(− 2‖x‖∥∥zj

∥
∥p
)

+
(
1− λj

)(−‖x‖∥∥zj
∥
∥p
)
,zj − x

〉
<−‖x‖ ≤ 0. (2.4)

It follows that

〈
p,zj − x

〉
> 0, j = 1,2, . . . ,n. (2.5)

Then we have

0 <
n∑

j=1

αj
〈
p,zj − x

〉= 〈p,x− x〉 = 0, (2.6)

a contradiction.

Definition 2.4 (see [3, 14]). Let E and F be two topological spaces and let T : E→ 2F be a
set-valued mapping.

(1) A subset X ⊆ E is said to be compactly open (resp., compactly closed) in E if for
any nonempty compact subset K of E, X ∩K is open (resp., closed) in K .

(2) T is said to be upper semicontinuous if the set {x ∈ E : T(x)⊆V} is open in E for
every open subset V of F.

(3) T is said to have open (resp., compactly open) lower sections if the set T−1(y) =
{x ∈ E : y ∈ T(x)} is open (resp., compactly open) in E for each y ∈ F.

Remark 2.5. Clearly each open (resp., closed) subset of E is compactly open (resp., com-
pactly closed), and the converse is not true in general.

Definition 2.6 (see [9]). Let E be a Hausdorff topological space and L a lattice with least
element, denoted by 0. A map Φ : 2E → L is a measure of noncompactness provided that
the following conditions hold for all M,N ∈ 2E:
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(i) Φ(M)= 0 if and only if M is precompact (i.e., it is relatively compact);
(ii) Φ(CoM)=Φ(M), where coM denotes the convex closure of M;

(iii) Φ(M∪N)=max{Φ(M),Φ(N)}.
Definition 2.7 (see [9]). Let Φ : 2E → L be a measure of noncompactness on E and D ⊆ E.
A set-valued mapping T : D → 2E is called Φ-condensing provided that if M ⊆ D with
Φ(T(M))≥Φ(M), then M is relatively compact.

Remark 2.8. Note that every set-valued mapping defined on a compact set is Φ-
condensing for any measure of noncompactness Φ. If E is locally convex and T : D→ 2E

is a compact set-valued mapping (i.e., T(X) is precompact), then T is Φ-condensing for
any measure of noncompactness Φ. It is clear that if T : D → 2E is Φ-condensing and
T∗ : D→ 2E satisfies T∗(x)⊆ T(x) for all x ∈D, then T∗ is also Φ-condensing.

Let CoA denote the convex hull of the set A.

Lemma 2.9 (see [11]). Let X be a nonempty convex subset of a Hausdorff topological vector
space E and let S : X → 2X be a set-valued mapping such that for each x ∈ X , x /∈ Co(S(x))
and for each y ∈ X , S−1(y) is open inX . Suppose further that there exist a nonempty compact
subset N of X and a nonempty compact convex subset B of X such that Co(S(x))∩B �= ∅
for all x ∈ X \N . Then there exists a point x ∈ X such that S(x)=∅.

Lemma 2.10 (see [14]). Let X be a nonempty closed and convex subset of a locally convex
topological vector space E and let Φ : 2E → L be a measure of noncompactness on E. Suppose
that S : X → 2X is a set-valued mapping such that the following conditions are satisfied:

(i) for each x ∈ X , x /∈ S(x);
(ii) for each y ∈ X , S−1(y) is compactly open in X ;

(iii) the set-valued mapping S : X → 2X is Φ-condensing. Then there exists x ∈ X such
that S(x)=∅.

3. Existence results

Some existence results of a solution for the GVQEP without Φ-condensing mappings are
first shown.

Theorem 3.1. Let Z be a topological vector space, let E and F be two Hausdorff topological
vector spaces, let X ⊆ E and Y ⊆ F be nonempty and convex subsets, let C : X → 2Z be a set-
valued mapping such that C(x) is a closed pointed and convex cone with intC(x) �= ∅ for
each x ∈ X , let D : X → 2X and T : X → 2Y be set-valued mappings with nonempty convex
values and open lower sections, and the set W = {(x, y)∈ X ×Y : x ∈D(x) and y ∈ T(x)}
is closed in X ×Y . Let Ψ : X ×Y ×X → 2Z be a set-valued mapping. Assume that

(i) M = Z\(− intC) : X → 2Z is upper semicontinuous;
(ii) for each y ∈ Y , Ψ(x, y,z) is Cx-0-diagonally quasiconvex;

(iii) for all z ∈ X , (x, y) �→ Ψ(x, y,z) is upper semicontinuous on X × Y with compact
values;

(iv) there exist nonempty and compact subsets N ⊆ X and K ⊆ Y and nonempty, com-
pact, and convex subsets B ⊆ X , A⊆ Y such that for all (x, y)∈ X ×Y\N ×K ∃u∈
B, v ∈A satisfying u∈D(x), v ∈ T(x) and Ψ(x, y,u)⊆− intC(x).
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Then, there exists (x, y) in X ×Y such that

x ∈D(x), y ∈ T(x), Ψ(x, y,z) �⊆ − intC(x), ∀z ∈D(x). (3.1)

That is, the solution set of the GVQEP is nonempty.

Proof. Define a set-valued mapping P : X ×Y → 2X by

P(x, y)= {z ∈ X : Ψ(x, y,z)⊆− intC(x)
}

, ∀(x, y)∈ X ×Y. (3.2)

It is needed to prove that x /∈ Co(P(x, y)) for all (x, y)∈ X ×Y . To see this, suppose, by
way of contradiction, that there exist some points (x, y)∈X ×Y such that x∈Co(P(x, y)).
Then there exist finite points z1,z2, . . . ,zn in X , and αj ≥ 0 with

∑n
j=1αj = 1 such that

x =∑n
j=1αjzj and zj ∈ P(x, y) for all j = 1,2, . . . ,n. That is, Ψ(x, y,zj) ⊆ − intC(x), j =

1,2, . . . ,n, which contradicts the fact that Ψ(x, y,z) is Cx-0-diagonal quasiconvex. There-
fore, x /∈Co(P(x, y)), for all (x, y)∈X ×Y . Now, it is needed to prove that the set P−1(z)=
{(x, y)∈ X ×Y : Ψ(x, y,z)⊆− intC(x)} is open for each z ∈ X . That is, P has open lower
sections on X ×Y . It is only needed to prove that Q(z) = {(x, y) ∈ X ×Y : Ψ(x, y,z) �⊆
− intC(x)} is closed for all z ∈ X . In fact, consider a net (xt, yt)∈Q(z) such that (xt, yt)→
(x, y)∈ X×Y . Since (xt, yt)∈Q(z), there exists ut ∈Ψ(xt, yt,z) such that ut /∈− intC(xt).
From the upper semicontinuity and compact values of Ψ on X × Y and [17, Proposi-
tion 1], it suffices to find a subset {utj} which converges to some u ∈ Ψ(x, y,z), where
utj ∈ Ψ(xtj , ytj ,z). Since (xtj , ytj ) → (x, y), by [3, Proposition 7, page 110] and the up-
per semicontinuity of M, it follows that u /∈ − intC(x), and hence (x, y)∈ Q(z), Q(z) is
closed.

Hence, P has open lower sections, and by [18, Lemma 2], we know that CoP : X ×Y →
2X also has open lower sections. Also define another set-valued mapping S : X × Y →
2X×Y by

S(x, y)=
⎧
⎪⎨

⎪⎩

[
D(x)∩CoP(x, y)

]×T(x) if (x, y)∈W ,

D(x)×T(x) if (x, y) /∈W.
(3.3)

Then, it is clear that for all (x, y)∈ X ×Y , S(x, y) is convex, and (x, y) /∈ Co(S(x, y))=
S(x, y).

Since for all (u,v)∈ X ×Y ,

S−1(u,v)= [CoP−1(u)∩ (D−1(u)×Y
)∩ (T−1(v)×Y

)]

∪ [(X ×Y \W)∩ (D−1(u)×Y
)∩ (T−1(v)×Y

)]
,

(3.4)

and D−1(u)× Y , T−1(v)× Y , CoP−1(u), and X × Y \W are open in X × Y , we have
S−1(u,v) open in X ×Y .

From condition (iv), there exist nonempty and compact subset N ×K ⊆ X ×Y and
nonempty, compact, and convex subset B×A ⊆ X ×Y such that for all (x, y) ∈ X ×Y\
N ×K , ∃(u,v)∈ S(x, y)∩ (B×A). And so Co(S(x, y))∩ (B×A) �= ∅. Hence, by Lemma
2.9, ∃(x, y)∈ X ×Y such that S(x, y)=∅. Since for all (x, y)∈ X ×X , D(x) and T(y) are
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nonempty, we have (x, y)∈W and D(x)∩CoP(x, y)=∅. This implies that (x, y)∈W
and D(x)∩P(x, y)=∅. Therefore,

x ∈D(x), y ∈ T(x), Ψ(x, y,z) �⊆ − intC(x), ∀z ∈D(x). (3.5)

That is, the solution set of the GVQEP is nonempty. The proof is completed. �

Theorem 3.2. Let Z be a topological vector space, let E and F be two Hausdorff topological
vector spaces, let X ⊆ E and Y ⊆ F be nonempty and convex subsets, let C : X → 2Z be a set-
valued mapping such that C(x) is a closed pointed and convex cone with intC(x) �= ∅ for
each x ∈ X , let D : X → 2X and T : X → 2Y be set-valued mappings with nonempty convex
values and open lower sections, and the set W = {(x, y)∈ X ×Y : x ∈D(x) and y ∈ T(x)}
is closed in X ×Y . Let Ψ : X ×Y ×X → 2Z be a set-valued mapping. Assume that

(i) M = Z\(− intC) : X → 2Z is upper semicontinuous;
(ii) for all x ∈ X , for all y ∈ Y , Ψ(x, y,x) �⊆ − intC(x);

(iii) for each (x, y)∈ X ×Y , the set P(x, y)= {z ∈ X : Ψ(x, y,z)⊆− intC(x)} is a con-
vex set;

(iv) for all z ∈ X , (x, y) �→ Ψ(x, y,z) is upper semicontinuous on X × Y with compact
values;

(v) there exist nonempty and compact subsets N ⊆ X and K ⊆ Y and nonempty, com-
pact, and convex subsets B ⊆ X , A⊆ Y such that for all (x, y)∈ X ×Y\N ×K ∃u∈
B, v ∈A satisfying u∈D(x), v ∈ T(x), and Ψ(x, y,u)⊆− intC(x).

Then, there exists (x, y) in X ×Y such that

x ∈D(x), y ∈ T(x), Ψ(x, y,z) �⊆ − intC(x), ∀z ∈D(x). (3.6)

That is, the solution set of the GVQEP is nonempty.

Proof. By Theorem 3.1, it is only needed to prove that Ψ(x, y,z) is Cx-0-diagonally qua-
siconvex for all y ∈ Y . If not, then there exist y ∈ Y and some finite set {z1,z2, . . . ,zn}
in X , and some point x ∈ X with x ∈ Co{z1,z2, . . . ,zn}, such that for each j = 1,2, . . . ,n,
Ψ(x, y,zj) ⊆ − intC(x). Since P(x, y) = {z ∈ X : Ψ(x, y,z) ⊆ − intC(x)} is a convex set,
x ∈ P(x, y), that is, Ψ(x, y,x)⊆− intC(x), which contradicts the condition (ii). The proof
is completed. �

Then, some existence results of a solution for the GVQEP with Φ-condensing map-
pings are shown as follows.

Theorem 3.3. Let Z be a topological vector space, let E and F be two locally convex topo-
logical vector spaces, let X ⊆ E and Y ⊆ F be nonempty, closed, and convex subsets, let
C : X → 2Z be a set-valued mapping such that C(x) is a closed pointed and convex cone
with intC(x) �= ∅ for each x ∈ X , D : X → 2X , and T : X → 2Y be set-valued mappings
with nonempty convex values and compactly open lower sections, and the set W = {(x, y)∈
X ×Y : x ∈D(x) and y ∈ T(x)} is compactly closed in X ×Y . Let Ψ : X ×Y ×X → 2Z be a
set-valued mapping and Φ : 2E → L be a measure of noncompactness on E. Assume that

(i) M = Z\(− intC) : X → 2Z is upper semicontinuous on each compact subset of X ;
(ii) for each y ∈ Y , Ψ(x, y,z) is Cx-0-diagonally quasiconvex;
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(iii) for all z ∈ X , (x, y) �→Ψ(x, y,z) is upper semicontinuous on each compact subset of
X ×Y with compact values;

(iv) the set-valued map D×T : X ×X → 2X×Y defined as (D×T)(x, y)=D(x)×T(y),
for all (x, y)∈ X ×X , is Φ-condensing.

Then, there exists (x, y) in X ×Y such that

x ∈D(x), y ∈ T(x), Ψ(x, y,z) �⊆ − intC(x), ∀z ∈D(x). (3.7)

That is, the solution set of the GVQEP is nonempty.

Proof. Let P : X × Y → 2X and S : X × Y → 2X×Y be the same as defined in the proof
of Theorem 3.1. Following similar argument in the proof of Theorem 3.1, we have for all
(x, y)∈ X ×Y , S(x, y) is convex, (x, y) /∈ S(x, y), and S has compactly open lower sections
in X ×Y .

By the definition of S, S(x, y) ⊆ D(x)×T(x) for all (x, y) ∈ X ×Y . Since D×T is Φ-
condensing, so is S. Hence, by Lemma 2.10, ∃(x, y)∈ X ×Y such that S(x, y)=∅. Since
for all (x, y) ∈ X ×X , D(x), and T(y) are nonempty, we have (x, y) ∈W and D(x)∩
CoP(x, y)=∅. This implies that (x, y)∈W and D(x)∩P(x, y)=∅. Therefore,

x ∈D(x), y ∈ T(x), Ψ(x, y,z) �⊆ − intC(x), ∀z ∈D(x). (3.8)

That is, the solution set of the GVQEP is nonempty. The proof is completed. �

By Theorem 3.3, and by similar argument to those in the proof of Theorem 3.2, it is
easy to obtain the following result.

Theorem 3.4. Let Z be a topological vector space, let E and F be two locally convex topo-
logical vector spaces, let X ⊆ E and Y ⊆ F be nonempty, closed, and convex subsets, let
C : X → 2Z be a set-valued mapping such that C(x) is a closed pointed and convex cone
with intC(x) �= ∅ for each x ∈ X , let D : X → 2X and T : X → 2Y be set-valued mappings
with nonempty convex values and compactly open lower sections, and the set W = {(x, y)∈
X ×Y : x ∈D(x) and y ∈ T(x)} is compactly closed in X ×Y . Let Ψ : X ×Y ×X → 2Z be a
set-valued mapping and let Φ : 2E → L be a measure of noncompactness on E. Assume that

(i) M = Z\(− intC) : X → 2Z is upper semicontinuous on each compact subset of X ;
(ii) for all x ∈ X , for all y ∈ Y , Ψ(x, y,x) �⊆ − intC(x);

(iii) for each (x, y)∈ X ×Y , the set P(x, y)= {z ∈ X : Ψ(x, y,z)⊆− intC(x)} is a con-
vex set;

(iv) for all z ∈ X , (x, y) �→Ψ(x, y,z) is upper semicontinuous on each compact subset of
X ×Y with compact values;

(v) the set-valued map D×T : X ×X → 2X×Y defined as (D×T)(x, y)=D(x)×T(y),
for all (x, y)∈ X ×X , is Φ-condensing.

Then, there exists (x, y) in X ×Y such that

x ∈D(x), y ∈ T(x), Ψ(x, y,z) �⊆ − intC(x), ∀z ∈D(x). (3.9)

That is, the solution set of the GVQEP is nonempty.
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Remark 3.5. If for each y ∈ Y , Ψ(x, y,z) is Cx-convex-like, then the condition (iii) in both
Theorems 3.2 and 3.4 holds. In fact, for any z1,z2 ∈ P(x, y), that is, z1,z2 ∈ X ,Ψ(x, y,z1)⊆
− intC(x) and Ψ(x, y,z2)⊆− intC(x). Then, for all λ∈ [0,1], λz1 + (1− λ)z2 ∈ X since X
is convex. And since Ψ(x, y,z) is Cx-quasiconvex-like for all y ∈ Y , we have either

Ψ
(
x, y,λz1 + (1− λ)z2

)⊆Ψ
(
x, y,z1

)−C(x)⊆−C(x)− intC(x)⊆− intC(x), (3.10)

or

Ψ
(
x, y,λz1 + (1− λ)z2

)⊆Ψ
(
x, y,z2

)−C(x)⊆−C(x)− intC(x)⊆− intC(x). (3.11)

In both cases, we get Ψ(x, y,λz1 + (1− λ)z2)⊆− intC(x). Hence, λz1 + (1− λ)z2 ∈ P(x, y)
for all (x, y)∈ X ×Y , and therefore P(x, y) is convex.

Remark 3.6. Theorems 3.1, 3.2, 3.3, and 3.4, respectively, generalize those results in [5–
7, 12, 13, 19] from scalar or vector-valued case to set-valued case with noncompact and
nonmonotone conditions.

By [10, Lemma 2], we know that if x is a solution of GVEP3, then it is also is a solution
of GVEP1. Fu and Wan [10] got some existence results of a solution for GVEP1. Let
f =−Ψ and D(x)= X for all x ∈ X , by Theorems 3.1 and 3.3, respectively, we can obtain
the existence results of a solution for GVEP3 as follows.

Corollary 3.7. Let Z be a topological vector space, let E and F be two Hausdorff topological
vector spaces, let X ⊆ E and Y ⊆ F be nonempty and convex subsets, let C : X → 2Z be a
set-valued mapping such that C(x) is a closed pointed and convex cone with intC(x) �= ∅
for each x ∈ X , let T : X → 2Y be a set-valued mapping with nonempty convex values and
open lower sections, and the set W = {(x, y) ∈ X ×Y : y ∈ T(x)} is closed in X ×Y . Let
f : X ×Y ×X → 2Z be a set-valued mapping. Assume that

(i) M = Z\(− intC) : X → 2Z is upper semicontinuous;
(ii) for each y ∈ Y , − f (x, y,z) is Cx-0-diagonally quasiconvex;

(iii) for all z ∈ X , (x, y) �→ − f (x, y,z) is upper semicontinuous on X ×Y with compact
values;

(iv) there exist nonempty and compact subsets N ⊆ X , K ⊆ Y and nonempty, compact,
and convex subsets B ⊆ X , A ⊆ Y such that for all (x, y) ∈ X ×Y\N ×K ∃u ∈ B,
v ∈ A satisfying v ∈ T(x) and f (x, y,u)⊆ intC(x).

Then, there exists x in X and y ∈ T(x) such that f (x, y,z) �⊆ intC(x), for all z ∈ X . That
is, the solution set of the GVEP3 is nonempty.

Corollary 3.8. Let Z be a topological vector space, let E and F be two locally convex
topological vector spaces, let X ⊆ E and Y ⊆ F be nonempty, closed and convex subsets, let
C : X → 2Z be a set-valued mapping such that C(x) is a closed pointed and convex cone with
intC(x) �= ∅ for each x ∈ X , let T : X → 2Y be set-valued mapping with nonempty convex
values and compactly open lower sections, and the set W = {(x, y) ∈ X ×Y : y ∈ T(x)}
is compactly closed in X × Y . Let f : X × Y × X → 2Z be a set-valued mapping and let
Φ : 2E → L be a measure of noncompactness on E. Assume that

(i) M = Z\(− intC) : X → 2Z is upper semicontinuous on each compact subset of X ;
(ii) for each y ∈ Y , − f (x, y,z) is Cx-0-diagonally quasiconvex;
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(iii) for all z ∈ X , (x, y) �→ − f (x, y,z) is upper semicontinuous on each compact subset of
X ×Y with compact values;

(iv) the set-valued map T : X → 2Y is Φ-condensing.
Then, there exists x in X and y ∈ T(x) such that f (x, y,z) �⊆ intC(x), for all z ∈ X . That is,
the solution set of the GVEP3 is nonempty.

Remark 3.9. The condition (iii) of both Corollaries 3.7 and 3.8 can be replaced by the
following conditions:

(a) for all x ∈ X , for all y ∈ Y , f (x, y,x) �⊆ intC(x);
(b) for each (x, y)∈ X ×Y , the set P(x, y)= {z ∈ X : f (x, y,z)⊆ intC(x)} is a convex

set.

If C(x) = C for all x ∈ X and Ψ is replaced by a single-valued mapping f , then by
Theorems 3.1 and 3.3, respectively, we have the following two results which are general-
izations of [7, Theorems 3.2 and 3.5] and [19, Theorems 6 and 7].

Corollary 3.10. Let Z be a topological vector space, let E and F be two Hausdorff topo-
logical vector spaces, let X ⊆ E and Y ⊆ F be nonempty and convex subsets, let C ⊆ Z
be a closed pointed and convex cone with intC �= ∅, let D : X → 2X and T : X → 2Y be
set-valued mappings with nonempty convex values and open lower sections, and the set
W = {(x, y)∈ X ×Y : x ∈D(x) and y ∈ T(x)} is closed in X ×Y . Let f : X ×Y ×X → Z
be a single-valued mapping. Assume that

(i) for each y ∈ Y , f (x, y,z) is C-0-diagonally quasiconvex;
(ii) for all z ∈ X , (x, y) �→ f (x, y,z) is continuous on X ×Y ;

(iii) there exist nonempty and compact subset N ⊆ X and K ⊆ Y and nonempty, compact,
and convex subset B ⊆ X , A ⊆ Y such that for all (x, y) ∈ X ×Y\N ×K ∃u ∈ B,
v ∈ A satisfying u∈D(x), v ∈ T(x) and f (x, y,u)∈− intC.

Then, there exists (x, y) in X ×Y such that

x ∈D(x), y ∈ T(x) f (x, y,z) /∈− intC, ∀z ∈D(x). (3.12)

Corollary 3.11. Let Z be a topological vector space, let E and F be two locally convex
topological vector spaces, let X ⊆ E and Y ⊆ F be nonempty, closed, and convex subsets, let
C ⊆ Z be a closed pointed and convex cone with intC �= ∅, let D : X → 2X and T : X → 2Y

be set-valued mappings with nonempty convex values and compactly open lower sections,
and the set W = {(x, y) ∈ X ×Y : x ∈ D(x) and y ∈ T(x)} is compactly closed in X ×Y .
Let f : X ×Y ×X → Z be a single-valued mapping and let Φ : 2E → L be a measure of non-
compactness on E. Assume that

(i) for each y ∈ Y , f (x, y,z) is C-0-diagonally quasiconvex;
(ii) for all z ∈ X , (x, y) �→ f (x, y,z) is continuous on each compact subset of X ×Y with

compact values;
(iii) the set-valued map D×T : X ×X → 2X×Y defined as (D×T)(x, y)=D(x)×T(y),

for all (x, y)∈ X ×X , is Φ-condensing.
Then, there exists (x, y) in X ×Y such that

x ∈D(x), y ∈ T(x), f (x, y,z) /∈− intC, ∀z ∈D(x). (3.13)
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Remark 3.12. The condition (ii) in both Corollaries 3.10 and 3.11 can be replaced by the
following conditions:

(a) for all x ∈ X , for all y ∈ Y , f (x, y,x) /∈− intC;
(b) for each (x, y) ∈ X ×Y , the set P(x, y) = {z ∈ X : f (x, y,z) ∈ − intC} is a convex

set.

Let Y = {y}. Define a set-valued mapping T : X → 2Y as T(x)= {y} for all x ∈ X and
define another set-valued mapping Ψ : X ×Y ×X as Ψ(x, y,z)= ϕ(x,z), for all (x, y,z)∈
X ×Y ×X . Then by Theorems 3.1 and 3.3, respectively, we have following results which
are generalizations of [1, Corollary 3.1].

Corollary 3.13. Let Z be a topological vector space, let E be a Hausdorff topological vector
space, let X ⊆ E be a nonempty and convex subset, let C : X → 2Z be a set-valued mapping
such that C(x) is a closed pointed and convex cone with intC(x) �= ∅ for each x ∈ X , let
D : X → 2X be a set-valued mapping with nonempty convex values and open lower sections,
and the set W = {x ∈ X : x ∈ D(x)} is closed in X . Let ϕ : X × X → 2Z be a set-valued
mapping. Assume that

(i) M = Z\(− intC) : X → 2Z is upper semicontinuous;
(ii) ϕ(x,z) is Cx-0-diagonally quasiconvex;

(iii) for all z ∈ X , x �→ ϕ(x,z) is upper semicontinuous on X with compact values;
(iv) there exist nonempty and compact subsetN ⊆ X and nonempty, compact, and convex

subset B ⊆ X such that for all x ∈ X\N ∃u ∈ B satisfying u ∈ D(x) and ϕ(x,u) ⊆
− intC(x).

Then, there exists x in X such that

x ∈D(x), ϕ(x,z) �⊆ − intC(x), ∀z ∈D(x). (3.14)

Corollary 3.14. Let Z be a topological vector space, let E be a locally convex topological
vector space, let X ⊆ E be nonempty, closed, and convex subset, let C : X → 2Z be a set-valued
mapping such that C(x) is a closed pointed and convex cone with intC(x) �= ∅ for each
x ∈ X , let D : X → 2X be set-valued mapping with nonempty convex values and compactly
open lower sections, and the set W = {x ∈ X : x ∈ D(x)} is compactly closed in X . Let ϕ :
X ×X → 2Z be a set-valued mapping, and let Φ : 2E → L be a measure of noncompactness
on E. Assume that

(i) M = Z\(− intC) : X → 2Z is upper semicontinuous on each compact subset of X ;
(ii) ϕ(x,z) is Cx-0-diagonally quasiconvex;

(iii) for all z ∈ X , x �→ ϕ(x,z) is upper semicontinuous on each compact subset of X with
compact values;

(iv) the set-valued map D : X → 2X is Φ-condensing.
Then, there exists x in X such that

x ∈D(x), ϕ(x,z) �⊆ − intC(x), ∀z ∈D(x). (3.15)

Remark 3.15. The condition (ii) in both Corollaries 3.13 and 3.14 can be replaced by the
following conditions:

(a) for all x ∈ X , ϕ(x,x) �⊆ − intC(x);
(b) for each x ∈ X , the set P(x)= {z ∈ X : ϕ(x,z)⊆− intC(x)} is a convex set.
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