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A discrete Hardy-type inequality (
∑∞

n=1(
∑n

k=1dn,kak)qun)1/q ≤ C(
∑∞

n=1 a
p
nvn)1/p is consid-

ered for a positive “kernel” d = {dn,k}, n,k ∈ Z+, and p ≤ q. For kernels of product type
some scales of weight characterizations of the inequality are proved with the correspond-
ing estimates of the best constant C. A sufficient condition for the inequality to hold in
the general case is proved and this condition is necessary in special cases. Moreover, some
corresponding results for the case when {an}∞n=1 are replaced by the nonincreasing se-
quences {a∗n }∞n=1 are proved and discussed in the light of some other recent results of this
type.

Copyright © 2006 Christopher A. Okpoti et al. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Let us consider the following special case of an interesting result in [4] (see also [5]) by
Gol’dman.

Theorem 1.1. Let 0 < r ≤ p ≤ q < ∞, σ = pr/(p − r) (for p = r, σ = ∞). Then the
inequality

( ∞∑

n=1

( n∑

k=1

(
akϕk

)r
)q/r

u
q
n

)1/q

≤ C

( ∞∑

n=1

(
anvn

)p
)1/p

(1.1)

for three weight sequences {ϕn}, {un}, and {vn} (n= 1,2, . . .) holds if and only if the (Muck-
enhoupt type) condition

BG := sup
n≥1

( n∑

k=1

(
ϕkv

−1
k

)σ
)1/σ( ∞∑

k=n
u
q
k

)1/q

<∞. (1.2)

It holds with the usual maximum interpretation for the case p = r (σ =∞).
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2 Hardy’s inequality

Moreover, for the best constant C in (1.1), C ≈ BG (but without explicitly specifying the
equivalence constants).

In this paper we will prove a result (see Corollary 3.3) showing that the Gol’dman
condition (1.2) in fact can be replaced by some scales of conditions and also the estimate
C ≈ BG can be given in a much more precise form.

Partly guided by the development in the continuous case (see [6] and the literature
therein) we will study the general inequality

( ∞∑

n=1

( n∑

k=1

dn,kak

)q

un

)1/q

≤ C

( ∞∑

n=1

a
p
nvn

)1/p

, 1 < p ≤ q <∞, (1.3)

with a general kernel d = {dn,k}∞n,k=1, dn,k ≥ 0, involved.
We note that the first contribution in this direction was due to Andersen and Heinig

[1, Theorem 4.1], who proved a sufficient condition for (1.3) to hold for the case 1≤ p ≤
q <∞ with special nonnegative kernels {dn,k}∞n,k=1 that was assumed to be nonincreasing
in k and nondecreasing in n.

In this paper, using the result in [8] (see Proposition 2.2), we will prove some scales of
characterizations for the special case with product weight kernel dn,k = lnhk, n,k = 1,2, . . .
(see Theorem 3.1). Moreover, we will prove a sufficient condition also for the general case
with an arbitrary nonnegative kernel (see Theorem 3.7), which at least for a special case
is also necessary (see Remark 3.8).

Finally, partly guided by recent results by Sinnamon [12] (see also [11]), we will prove
the surprising fact that we get the same characterizations in our Proposition 2.2 when
restricting the set of positive sequences {an}∞n=1 to the cone of nonincreasing sequences
if, in addition, the weight sequence {vn} is nonincreasing (see Theorem 3.9).

The paper is organised as follows: in order not to disturb our discussions later on
we present some preliminaries in Section 2. The main results together with some related
remarks are presented in Section 3 and the proofs are given in Section 4. Finally, some
concluding remarks and open questions can be found in Section 5.

2. Preliminaries

In this paper {an}∞n=1 denotes an arbitrary (weight) sequence of nonnegative numbers.
Moreover, {un}∞n=1, {vn}∞n=1, {ln}∞n=1, and {hk}∞k=1 denote fixed weight sequences and d =
{dn,k}∞n,k=1 is a nonnegative discrete kernel, that is, a sequence of nonnegative numbers.

We will need the following technical lemma.

Lemma 2.1. Let Ak =
∑k

n=1 an, A0 = 0 and, for n= 1,2, . . . , let an > 0.
(a) If 0 < λ < 1, then, for k = 1,2, . . . ,

λAλ−1
k ak ≤ Aλ

k −Aλ
k−1 ≤ λAλ−1

k−1ak. (2.1)
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(b) If λ < 0 or λ > 1, then, for k = 1,2, . . . ,

λAλ−1
k−1ak ≤Aλ

k −Aλ
k−1 ≤ λAλ−1

k ak. (2.2)

Proof. The proof follows by using the mean value theorem in an appropriate way; for
details see [8]. �

Recently Sinnamon [12] proved a remarkable result, which, in particular, means that
some Hardy-type inequalities for nonincreasing sequences in fact are equivalent to the
corresponding Hardy-type inequalities for general nonnegative sequences. Hence, they
can be characterized by the same condition(s); see the books [6, 9] but also the more
recent results, for example, in [10, 13, 14]. Here we also mention the following special
case of a recent result in [8] (see also [7]), which we will need later on.

Proposition 2.2. Let 1 < p ≤ q <∞. Then the inequality

( ∞∑

n=1

( n∑

k=1

ak

)q

un

)1/q

≤ C

( ∞∑

n=1

a
p
nvn

)1/p

(2.3)

holds if and only if

A1(s) := sup
N≥1

( N∑

n=1

v
1−p′
n

)s
⎛

⎝
∞∑

n=N
un

( n∑

k=1

v
1−p′
k

)q(1/p′−s)⎞

⎠

1/q

<∞, (2.4)

for some s, 0 < s≤ 1/p′, or

A2(s) := sup
N≥1

( N∑

n=1

v
1−p′
n

)−s⎛

⎝
N∑

n=1

uk

( n∑

k=1

v
1−p′
k

)q(1/p′+s)⎞

⎠

1/q

<∞, (2.5)

for some s, 0 < s≤ 1/p, or

A3(s) := sup
N≥1

( ∞∑

n=N
un

)s
⎛

⎝
N∑

n=1

v
1−p′
n

( ∞∑

k=n
uk

)p′(1/q−s)⎞

⎠

1/p′

<∞, (2.6)

for some s, 0 < s≤ 1/q, or

A4(s) := sup
N≥1

( ∞∑

n=N
un

)−s⎛

⎝
∞∑

n=N
v

1−p′
n

( ∞∑

k=n
uk

)p′(1/q+s)
⎞

⎠

1/p′

<∞, (2.7)

for some s, 0 < s≤ 1/q′.
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Moreover, for the best constant C in (2.3), the following estimates hold:

sup
0<s<1/p′

(
ps

ps+ 1

)1/p

A1(s)≤ C ≤ inf
0<s<1/p′

A1(s)

(
p− 1

p(1− s)− 1

)1/p′

, (2.8)

sup
0<s<1/p

(ps)1/pA2(s)≤ C ≤ 1
(p− 1)1/q

(
q− p

pβ
(
p/(q− p), p(q− 1)/(q− p)

)

)(q−p)/pq

A2

(
1
p

)

(2.9)

if p < q and

A2

(
1
p

)

≤ C ≤ p′A2

(
1
p

)

(2.10)

if p = q,

sup
0<s<1/q

(
q′s

q′s+ 1

)1/q′

A3(s)≤ C ≤ inf
0<s<1/q

A3(s)

(
q′ − 1

q′(1− s)− 1

)1/q

, (2.11)

sup
0<s<1/q′

(q′s)1/q′A4(s)

≤ C ≤ (q− 1)1/p′
(

q− p

(p− 1)qβ
(
q/(q− p),q(p− 1)/(q− p)

)

)(q−p)/pq

A4

(
1
q′

)

(2.12)

if p < q and

A4

(
1
q′

)

≤ C ≤ pA4

(
1
q′

)

(2.13)

if p = q.

Remark 2.3. (a) The conditions A3(s) <∞ and A4(s) <∞ are just the natural duals of the
conditions A1(s) <∞ and A2(s) <∞, respectively (cf. [6]).

(b) It is pointed out in [8] that as endpoint cases of some of the conditions above we
just obtain some well-known conditions by Bennett (see [2, 3]).

3. Main results

First we state the following generalization and unification of Theorem 1.1 and Proposi-
tion 2.2.
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Theorem 3.1. Let 1 < p ≤ q <∞ and consider the kernel d = {dn,k}∞n,k=1, where dn,k = lnhk,
n,k = 1,2, . . . . Then the inequality

( ∞∑

n=1

( n∑

k=1

dn,kak

)q

un

)1/q

≤ C

( ∞∑

n=1

a
p
nvn

)1/p

(3.1)

holds if and only if

D1(s) := sup
N≥1

( N∑

n=1

h
p′
n v

1−p′
n

)s
⎛

⎝
∞∑

n=N
l
q
nun

( n∑

k=1

h
p′

k v
1−p′
k

)q(1/p′−s)⎞

⎠

1/q

<∞, (3.2)

for some s, 0 < s≤ 1/p′, or

D2(s) := sup
N≥1

( N∑

n=1

h
p′
n v

1−p′
n

)−s⎛

⎝
N∑

n=1

l
q
nun

( n∑

k=1

h
p′

k v
1−p′
k

)q(1/p′+s)⎞

⎠

1/q

<∞, (3.3)

for some s, 0 < s≤ 1/p, or

D3(s) := sup
N≥1

( ∞∑

n=N
l
q
nun

)s
⎛

⎝
N∑

n=1

h
p′
n v

1−p′
n

( ∞∑

k=n
l
q
kuk

)p′(1/q−s)⎞

⎠

1/p′

<∞, (3.4)

for some s, 0 < s≤ 1/q, or

D4(s) := sup
N≥1

( ∞∑

n=N
l
q
nun

)−s⎛

⎝
∞∑

n=N
h
p′
n v

1−p′
n

( ∞∑

k=n
l
q
kuk

)p′(1/q+s)
⎞

⎠

1/p′

<∞, (3.5)

for some s, 0 < s≤ 1/q′.
Moreover, for the best constant C in (3.1), the following estimates hold:

sup
0<s<1/p′

(
ps

ps+ 1

)1/p

D1(s)≤ C ≤ inf
0<s<1/p′

D1(s)

(
p− 1

p(1− s)− 1

)1/p′

, (3.6)

sup
0<s<1/p

(ps)1/pD2(s)≤ C ≤ 1
(p− 1)1/q

(
q− p

pβ
(
p/(q− p), p(q− 1)/(q− p)

)

)(q−p)/pq

D2

(
1
p

)

(3.7)

if p < q and

D2

(
1
p

)

≤ C ≤ p′D2

(
1
p

)

(3.8)
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if p = q,

sup
0<s<1/q

(
q′s

q′s+ 1

)1/q′

D3(s)≤ C ≤ inf
0<s<1/q

D3(s)

(
q′ − 1

q′(1− s)− 1

)1/q

, (3.9)

sup
0<s<1/q′

(q′s)1/q′D4(s)

≤ C ≤ (q− 1)1/p′
(

q− p

(p− 1)qβ
(
q/(q− p),q(p− 1)/(q− p)

)

)(q−p)/pq

D4

(
1
q′

)

,

(3.10)

if p < q and

D4

(
1
q′

)

≤ C ≤ pD4

(
1
q′

)

(3.11)

if p = q.

Remark 3.2. For the case d ≡ {1} we obtain Proposition 2.2 and we can also derive the
following more precise version of Theorem 1.1.

Corollary 3.3. Let 0 < r ≤ p ≤ q <∞ and σ = pr/(p− r) (for p = r, σ =∞). Then the
inequality (1.1) holds if and only if

B1(s)= sup
N≥1

( N∑

n=1

(
ϕnv

−1
n

)σ
)s/r

⎛

⎝
∞∑

n=N
u
q
n

( n∑

k=1

(
ϕkv

−1
k

)σ
)(q/r)(r/σ−s)⎞

⎠

1/q

<∞, (3.12)

for some s, 0 < s≤ (r/σ).
Moreover, for the best constant C in (1.1), the following estimates hold:

sup
0<s<r/σ

(
ps

ps+ r

)1/p

B1(s)≤ C ≤ inf
0<s<r/σ

(
p− r

p
(
1− s)− r

)1/σ

B1(s). (3.13)

Remark 3.4. If s= r/σ in (3.12), then we have

B1

(
r

σ

)

= sup
n≥1

( n∑

k=1

(
ϕkv

−1
k

)σ
)1/σ( ∞∑

k=n
u
q
k

)1/q

<∞, (3.14)

which coincides with (1.2) (i.e., B1(r/σ)= BG) and the statement in Theorem 1.1 follows.

Remark 3.5. Remark 3.4 means that the scale of conditions in Corollary 3.3 has the
Gol’dman condition in its right endpoint. However, there exist also other scales of condi-
tions of completely different types for characterizing (1.1). See [7], our Remark 5.5, and
Example 5.6.
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Remark 3.6. When r = 1 and ϕk = 1, k = 1,2, . . . , in Corollary 3.3, then the inequality

(1.1) with vn replaced by v
1/p
n and un replaced by u

1/q
n coincides with (2.3). In particular,

for the case s= 1/p′ in (3.12), we have

B1

(
1
p′

)

= sup
n≥1

( n∑

k=1

v
1−p′
k

)1/p′( ∞∑

k=n
uk

)1/q

<∞, (3.15)

which coincides with Muckenhoupt’s condition A1(1/p′) <∞ (cf. (2.4) and also Bennett
[2]).

Next we state the following result for the case with a general kernel.

Theorem 3.7. Let 1 < p ≤ q <∞. If

E(s) := sup
N≥1

( N∑

n=1

v
1−p′
n

)s
⎛

⎝
∞∑

n=N
d
q
n,kun

( n∑

m=1

v
1−p′
m

)q(1/p′−s)⎞

⎠

1/q

<∞ (3.16)

holds for some s∈ (0,1/p′), then the inequality (1.3) holds with

C ≤ inf
0<s<1/p′

(
p− 1

p− sp− 1

)1/p′

E(s). (3.17)

Remark 3.8. For the case dn,k = 1, n,k = 1,2, . . . , the condition (3.16) coincides with the
condition (2.4) and, thus, according to Proposition 2.2, in this case the condition (3.16)
is both necessary and sufficient for the inequality (1.3) to hold.

Inspired by a recent result of Sinnamon [12], we also state the following.

Theorem 3.9. Let 1 < p ≤ q <∞. Then the inequality

( ∞∑

n=1

( n∑

k=1

a∗k

)q

un

)1/q

≤ C

( ∞∑

n=1

(
a∗n
)p
vn

)1/p

(3.18)

holds for all nonincreasing sequences {a∗n }∞n=1 with the additional condition that {vn}∞n=1 is
nonincreasing if and only if the condition (2.4) holds. Moreover, for the best constant C in
(3.18), the estimate (2.8) holds.

Remark 3.10. For the case vn = 1, n = 1,2, . . . , the statement in Theorem 3.9 is a special
case of a recent remarkable result of Sinnamon [12, pages 300–301].

4. Proofs

Proof of Theorem 3.1. With the kernel {dn,k} = {lnhk} the inequality (3.1) becomes

( ∞∑

n=1

( n∑

k=1

lnhkak

)q

un

)1/q

≤ C

( ∞∑

n=1

a
p
nvn

)1/p

, (4.1)
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that is,

( ∞∑

n=1

( n∑

k=1

hkak

)q

l
q
nun

)1/q

≤ C

( ∞∑

n=1

a
p
nvn

)1/p

. (4.2)

We now put bk = hkak in the inequality (4.2) and note that (4.2) is equivalent to

( ∞∑

n=1

( n∑

k=1

bk

)q

l
q
nun

)1/q

≤ C

( ∞∑

n=1

b
p
nh
−p
n vn

)1/p

. (4.3)

Considering l
q
nun = ũn and h

−p
n vn = ṽn to be our new fixed nonnegative weight sequences,

we have that the inequality

( ∞∑

n=1

( n∑

k=1

bk

)q

ũn

)1/q

≤ C

( ∞∑

n=1

b
p
n ṽn

)1/p

(4.4)

is equivalent to the Hardy-type inequality (2.3). Thus, by replacing un by l
q
nun and vn

by h
−p
n vn in the conditions (2.4)–(2.7) (i.e., those described by A1(s)–A4(s)) and using

Proposition 2.2, we obtain that the conditions (3.2)–(3.5) (i.e., those described by D1(s)–
D4(s)) are necessary and sufficient conditions for (4.4), and, thus, (3.1) to hold. Sub-
sequently, by replacing Ai(s) with Di(s), i = 1, . . . ,4, respectively, in the estimates (2.8)–
(2.2), we obtain the estimates for the best constant C in (3.1) to be those described in
(3.6)–(3.10). The proof is complete. �

Proof of Corollary 3.3. In the inequality (3.1) with dn,k = lnhk, we let hk = ϕr
k and let ln =

u
(qr−1)/q
n and replace an with arn and vn with v

pr
n :

( ∞∑

n=1

( n∑

k=1

ϕr
ka

r
k

)q

u
qr
n

)1/q

≤ C

( ∞∑

n=1

a
pr
n v

pr
n

)1/p

. (4.5)

Moreover, replace p with p/r and q with q/r, and we obtain

( ∞∑

n=1

( n∑

k=1

ϕr
ka

r
k

)q/r

u
q
n

)1/q

≤ Co

( ∞∑

n=1

a
p
nv

p
n

)1/p

, (4.6)

with Co = C1/r which is equivalent to the inequality (1.1).
This means that for the case 0 < r < p ≤ q <∞, we can characterize the inequality (1.1)

by using Theorem 3.1. Thus, in condition (3.2) we first let ln = u
(qr−1)/q
n , hn = ϕr

n, vn = v
pr
n ,

after that replace p by p/r and q by q/r, and finally raise the condition to the power 1/r.
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Hence, by Theorem 3.1, we conclude that the condition (3.12) (i.e., that described by
B1(s)) characterizes (1.1). Moreover, the estimate (3.13) follows in a similar way from the
estimate (3.6). The proof is complete. �

Proof of Theorem 3.7. Put b
p
n = a

p
nvn in (1.3). Then (1.3) is equivalent to

( ∞∑

n=1

( n∑

k=1

dn,kbkv
−1/p
k

)q

un

)1/q

≤ C

( ∞∑

n=1

b
p
n

)1/p

. (4.7)

Assume that the condition (3.16) holds and let

Vn =
n∑

k=1

v
1−p′
k . (4.8)

Applying Hölder’s inequality, Lemma 2.1(a) with ak = v
1−p′
k (0 < λ = (p− sp− 1)/(p−

1) < 1), and Minkowski’s inequality to the left-hand side of (4.7), we find that

( ∞∑

n=1

( n∑

k=1

dn,kbkv
−1/p
k

)q

un

)1/q

=
( ∞∑

n=1

( n∑

k=1

dn,kbkV
s
kV

−s
k v

−1/p
k

)q

un

)1/q

≤
( ∞∑

n=1

( n∑

k=1

d
p
n,kb

p
kV

sp
k

)q/p( n∑

k=1

V
−sp′
k v

−p′/p
k

)q/p′

un

)1/q

=
( ∞∑

n=1

( n∑

k=1

d
p
n,kb

p
kV

sp
k

)q/p( n∑

k=1

V
−sp/(p−1)
k v

1−p′
k

)q/p′

un

)1/q

≤
(

p− 1
p− sp− 1

)1/p′( ∞∑

n=1

( n∑

k=1

d
p
n,kb

p
kV

sp
k

)q/p

V
q((p−sp−1)/p)
n un

)1/q

≤
(

p− 1
p− sp− 1

)1/p′( ∞∑

k=1

b
p
kV

sp
k

( ∞∑

n=k
d
q
n,kV

q(1/p′−s)
n un

)p/q)1/p

≤
(

p− 1
p− sp− 1

)1/p′

sup
k≥1

Vs
k

( ∞∑

n=k
d
q
n,kV

q(1/p′−s)
n un

)1/q( ∞∑

k=1

b
p
k

)1/p

.

(4.9)

Hence, (4.7), and, thus, (1.3) hold. By taking infimum over s∈ (0,1/p′), we find that also
(3.17) holds. The proof is complete. �

Proof of Theorem 3.9

Sufficiency. The proof follows by just using Proposition 2.2 in the present situation and
also the upper estimate in (2.8) is obtained. However, here we make the following inde-
pendent proof.
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Assume that the condition (2.4) holds and let {a∗n }∞n=1 be an arbitrary nonincreasing
sequence and define a∗n = (

∑∞
m=n tm)1/p, n = 1,2, . . .. The inequality (3.18) can equiva-

lently be rewritten as

( ∞∑

n=1

( n∑

k=1

( ∞∑

m=k
tm

)1/p)q

un

)1/q

≤ C

( ∞∑

n=1

( ∞∑

m=n
tm

)

vn

)1/p

= C

( ∞∑

m=1

tm

m∑

n=1

vn

)1/p

.

(4.10)

Taking Vn as it is defined in (4.8) and applying Hölder’s inequality, Lemma 2.1(a) (with
λ= (p− sp− 1)/(p− 1)), Minkowski’s inequality, and changing the order of the summa-
tion to the left-hand side of (4.10), we have that

( ∞∑

n=1

( n∑

k=1

( ∞∑

m=k
tm

)1/p)q

un

)1/q

=
( ∞∑

n=1

( n∑

k=1

( ∞∑

m=k
tm

)1/p

Vs
kV

−s
k v

1/p
k v

−1/p
k

)q

un

)1/q

≤
( ∞∑

n=1

( n∑

k=1

( ∞∑

m=k
tm

)

V
sp
k vk

)q/p( n∑

k=1

V
−sp/(p−1)
k v

1−p′
k

)q/p′

un

)1/q

≤
(

p− 1
p− sp− 1

)1/p′( ∞∑

n=1

( n∑

k=1

( ∞∑

m=k
tm

)

V
sp
k vk

)q/p

V
q(p−sp−1)/p
n un

)1/q

≤
(

p− 1
p− sp− 1

)1/p′
( ∞∑

k=1

( ∞∑

m=k
tm

)

V
sp
k vk

( ∞∑

n=k
V

q(p−sp−1)/p
n un

)p/q)1/p

=
(

p− 1
p− sp− 1

)1/p′( ∞∑

m=1

tm

m∑

k=1

vkV
sp
k

( ∞∑

n=k
V

q(1/p′−s)
n un

)p/q)1/p

≤
(

p− 1
p− sp− 1

)1/p′

sup
k≥1

Vs
k

( ∞∑

n=k
V

q(1/p′−s)
n un

)1/q( ∞∑

m=1

tm

m∑

k=1

vk

)1/p

.

(4.11)

Hence, by taking infimum over s∈ (0,1/p′), (4.10), and thus, (3.18) hold with a constant
C satisfying the right-hand inequality in (2.8).

Necessity. Assume that (3.18) holds and for fixed N ∈ Z+ apply the following test se-
quence:

a∗k =
⎧
⎪⎨

⎪⎩

V
−((1+ps)/p)
N v

1−p′
k for k = 1, . . . ,N ,

V
−((1+ps)/p)
k v

1−p′
k for k =N + 1, . . .

(4.12)

to (3.18). (Note that with our assumptions {a∗k }∞k=1 is a nonincreasing sequence.)
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For the left-hand side of (3.18) we have that

( ∞∑

n=1

( n∑

k=1

a∗k

)q

un

)1/q

=
( ∞∑

n=1

( N∑

k=1

V
−((1+ps)/p)
N v

1−p′
k +

n∑

k=N+1

V
−((1+ps)/p)
k v

1−p′
k

)q

un

)1/q

≥
( ∞∑

n=N

( N∑

k=1

V
−((1+ps)/p)
N v

1−p′
k +

n∑

k=N+1

V
−((1+ps)/p)
k v

1−p′
k

)q

un

)1/q

≥
( ∞∑

n=N

(

V
1/p′−s
N +V

−(1+ps)/p
n

n∑

k=N+1

v
1−p′
k

)q

un

)1/q

=
( ∞∑

n=N

(
V

1/p′−s
N +V

−(1+ps)/p
n

(
Vn−VN

))q
un

)1/q

≥
( ∞∑

n=N

(
V

1/p′−s
N +V

1/p′−s
n −V

−(1+ps)/p
N VN

)q
un

)1/q

=
( ∞∑

n=N
V

q(1/p′−s)
n un

)1/q

.

(4.13)

For the right-hand side of (3.18), by applying Lemma 2.1(b) we find that

( ∞∑

n=1

(
a∗n
)p
vn

)1/p

=
( N∑

n=1

V
−(1+ps)
N v

1−p′
k +

∞∑

n=N+1

V
−(1+ps)
k v

1−p′
k

)1/p

≤
(

V
−ps
N +

1
ps
V
−ps
N

)1/p

≤
(

1 +
1
ps

)1/p

V−s
N =

(
ps+ 1
ps

)1/p

V−s
N .

(4.14)

Combining (4.14), (4.13), and (3.18) we have that

( ∞∑

n=N
V

q(1/p′−s)
n un

)1/q

≤ C

(
ps+ 1
ps

)1/p

V−s
N , (4.15)

that is, that

(
ps

ps+ 1

)1/p

Vs
N

( ∞∑

n=N
V

q(1/p′−s)
n un

)1/q

≤ C <∞. (4.16)
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Hence, by taking supremum over N ≥ 1 and supremum over s ∈ (0,1/p′), we conclude
that (2.4) and the left-hand side of the estimate (2.8) hold.

Summing up, we have proved that (3.18) is equivalent to (2.4) and that (2.8) holds.
The proof is complete. �

5. Concluding remarks

By comparing the statements in Theorem 3.7 and Remark 3.8 and the corresponding
knowledge from the continuous case (see [6]), it is natural to raise the following question.

Open question 5.1. Find necessary and sufficient conditions for (1.3) to hold for all non-
negative sequences {an}∞n=1 for as general kernels as possible.

Remark 5.2. For the case vn = 1, n = 1,2, . . . Proposition 2.2 holds also if the set of all
weight sequences {an}∞n=1 is restricted to the cone of all nonincreasing weight sequences
{a∗n }∞n=1 (cf. also Remark 3.10). This fact follows from a recent result of Sinnamon [12].

Remark 5.3. The result of Sinnamon [12] was recently generalized by Persson et al. [11]
to a more general case involving kernels and general measures. However, these kernels
still have some restrictions (monotonicity in the second variable). These results make it
natural to also raise the following question.

Open question 5.4. Find necessary and sufficient conditions for (1.3) to hold on the cone
of nonincreasing sequences for as general kernels as possible.

Remark 5.5. The statement in Corollary 3.3 follows by using just the conditions (3.2) and
(3.6) in Theorem 3.1. By using the other (equivalent) conditions, we can obtain other
scales of conditions for characterizing (1.1). See [7]; here we just give the following ex-
ample.

Example 5.6. Let 0 < r ≤ p ≤ q <∞ and σ = pr/(p − r) (for p = r, σ = ∞). Then the
inequality (1.1) holds if and only if

B2(s)= sup
N≥1

( N∑

n=1

(
ϕnv

−1
n

)σ
)−s/r⎛

⎝
∞∑

n=N
u
q
n

( n∑

k=1

(
ϕkv

−1
k

)σ
)(q/r)(r/σ+s)

⎞

⎠

1/q

<∞, (5.1)

for some s, 0 < s≤ r/p.

Moreover, for the best constant C in (1.1) we have the following estimates:

sup
0<s<r/p

(
p

r
s

)1/p

B2(s)≤ C ≤
(
σ

p

)1/q(
q− p

pβ(p/(q− p), p(q− r)/r(q− p))

)(q−p)/pq

B2

(
r

p

)

(5.2)
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if p < q and

B2

(
r

p

)

≤ C ≤ p

p− r
B2

(
r

p

)

(5.3)

if p = q.

Remark 5.7. In [4, 5] by Gol’dman the case p > q was also treated and the results in this
paper indicate that the results of Gol’dman can be generalized in a similar way also for
this case. We aim to return to this question in a forthcoming paper.
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