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We study the weighted Hardy inequalities on the semiaxis of the form

for functions vanishing at the endpoints together with derivatives up to the order k 1. The case
k 2 is completely characterized.
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1 INTRODUCTION

In the theory of the weighted Hardy inequalities for higher-order derivatives

the problem, when functions vanish together with derivatives at the endpoints,
is still undecided. The case k 1 has been solved by P. Gurka 1 and activity
in this area has increased in recent years mostly due to the efforts ofA. Kufner,
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who contributed to various other cases by himself and with coauthors as well
[2-6].
We study the problem on the semiaxis, which is different in some aspects

from the case of a finite interval [3,9] since the inequality (1), k > 1, becomes
non-trivial with only one condition F(cx) 0. We give a complete solution
for the ase k 2 and hope that our approach can be extended to the general
situation on the semiaxis.
The inequality (1), k > 1, with the boundary conditions

F(i) (0) O, F(j) (oc) 0 for some 0 < i, j < k 1 (2)

becomes non-trivial, if the right-hand side of (1) for all functions, having
absolutely continuous derivative F(k- 1) (x) and satisfying (2), is a norm in a

corresponding weighted space. We suppose throughout the paper, that u (x) as

well as v(x) and Iv(x)1-1 be locally square integrable; the last is necessary and
sufficient for the condition, that any function F satisfying F(k)v 112 < cxz,
can be represented by a Riemann-Liouville integral.

Let o/=(o/0, o/1 0/k-l), o/j-0, 1; j=0, 1 k- 1; lal--
O<j<k-1

Put
F(’) (0) 0 . F(j) (0) 0 for all j, when o/j 1,

and

F() ((x) 0 F(i) (cxz) 0 for all i, when fli 1

ACI’2 (O/
2

F() (0) F() (oc) 0}.
For a finite interval and k > 1 the boundary value problem

F() (x) 0, F(a) (0) 0, F() (a) 0 (3)

has a non-trivial solution, if 1 < lal / I1 _< k 1. Hence, it might have
only the trivial solution, only if lal / I1 >_ k. On the other hand, (3) has
only the trivial solution, if la1-4- I1 >_ 2Ck 1) while if lal / I1 >_ 2k, then
functions belonging to AC(a, ) can be approximated by C functions in
the norm of ACe (o/, ). Thus, on a finite interval we have

(2k)!
Nk 22k- -t

2(k !)2
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spaces ACke(ot, fl), k < I1 + I1 2k; however, for some of them

IIFIIAc(,,) is not a norm. The last number is given by rather more

complicated formulae. The situation on (0, cx) is slightly different and
affected by the following observation. Let (1) holds and fl(1) and fl2) be
multiindices such, that min{i" jl) 1} min{i" fl2) 1}. Then

ACk2(ot, fl(1)) AC(ot, fl(2)). It implies an heuristic principle, that the
characterization problems of (1) for functions with the boundary couples
(or, fl(1)) and (or, fl(2)) are equivalent. Similar effects take place on (-x, 0)
or (-x, x).

For simplicity we restrict ourselves to case of L2-norm, however the
methods of the present paper in conjunction with the results 12-14] provide
the Lp-Lq case as well.

Throughout the paper uncertainties of the form 0.c, 0/0, x/x are taken
equal to zero, the inequality A << B means A < cB with an absolute constant
c, perhaps, different in different places, however the relationship A B is

interpreted as A << B << A or A cB. XE denotes the characteristic function
of a set E.

2 REMARKS ON GENERAL CASE

If k > l, then the following characterization are known.

(1) k 1. Io1 / I/1 1 [7], I1 / Itl 2 [1].
(2) k > 1. Icl k, I1 0 or I1 0, I1 k [10].
(3) k > 1. I1 / I/1 k, max{j otj 1} + 1 min{i fli 1} [2].
(4) k > 1. Finite interval, Icl / I1 k [9].
(5) k > 1. Finite interval, Icl / I1 k / 1, Ok/ /k/l 1 and the

remaining parts of multiindices satisfy the P61ya condition [4-5].

Below (Theorem 1.2) we supplement this list by the following

(6) k > 1. Infinite interval (a, x), 1 < Io1 / I1 < k, I1 >_ 1, j 1,
j 0, 1 Io1, I1 / 1 min{i /i 1}.

Let (a, b)

_
(-cx, o), a < b and k > 1. We need the following notations.

Le, v L2,v,(a,b)-- [if" II/vll <

1
(x y)-I f(y) dy, x e (a, b),Ikf (x) lk,(a,b)f (x)

1-’(k)
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if bJkg(X) Jk,(a,b)g(x)
I"(k)

(y x)k-l g(y) dy, x (a, b),

e,o ek,o;(a,b),u,v2 sup (X t)2(k-1)lu(x)12 dx Iv1-2,
a<t<b

e2 e2 sup lul 2 (t x)2(k-1)lv(x)1-2dxk,1 k,l’(a,b),u,v
a<t<b

fa )2(k-l) 12f
bn, 2 sup (t x lu(x) dx Iv1-20 Bk,O;(a,b),u,v

a<t<b

B, 2 sup lu[ 2 (x t)2(l-l)lv(x)l-2 dxBk, 1" (a,b),u,v
a<t<b

a a;(a,b),u,v max(a2,0, a2k,1),
S B;(a,b),u, v max(B,0, B,I).

Also we apply throughout the paper the following.

THEOREM 1.1 [10--12] Necessary and sufficient conditionsfor the inequality
(1) to be valid on interval (a, b) are:

(1) At < cx, when F(a)- F’(a) ...-- F(k)(a)= OandthenC A,
(2) Bk < o, when F(b) Ff(b) F() (b) 0 and then C , Bk.

Our first result is the following simple observation.

THEOREM 1.2 Let -x < a < cxz. Necessary and sufficient conditionsfor
the inequality (1) to be validon (a, cxz), when F(cxz) O, is B;(a,),u,v < cxz
and then C , Bk;(a,),u,v.

Proof Necessity follows from Theorem 1.1. For sufficiency suppose
[[F(k)vl[2 < x, F(x) 0 and Bk;(a,),u,v < x. Denote F(k) f
and let

P(x) Jf(x)
r(k)

(Y x)k-1 f(Y) dy, x > a.

Since Bk;(a,c),u,v < cx, we see, that

1 (fxx )1/2IF(x)l < --llfvll2 (y x)e(-l)[v(y)[-2 dy O, x

and conclude, that F . Applying Theorem 1.1 again, we obtain the
sufficiency.
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Remark 1.1 Theorem 1.2 implies the limiting case of the assertion (6)
above, when I1 0, I1 1. The remaining part follows similarly by
application of the result of [2]. The situation on the left semiaxis is similar,
however, for the real line the only limiting cases of (6), that is Io1 0,

fl (1, 0 or I11 0, (1, 0 ), are valid.

3 THE CASEk=2

In this section we consider the inequality

on (0, oo). The full list of non-trivial cases is the following.

(3)

Icl + I/1 1. (1.1) F(oo) --0.

I1 + I/1 2. (2.1) F(0) F(oo) --0,
(2.2) V(0) V’(0) 0,
(2.3) F(oo) F’(oo) 0,
(2.4) V(0)= V’(oo) 0,
(2.5) F’(0) F(oo) 0.

I1 + I/1 3. (3.1) F(0) F’(0) V(oo) 0,
(3.2) F(0) F’(0) F’(oo) 0,
(3.3) F(0) F(oo) V’(oo) --0,
(3.4) F’(0) F(oo) F’(oo) 0.

Icl + I/1 4. (4.1) F(0) F’(0) F(oo) F’(oo) 0.

The case (1.1) follows from Theorem 1.2, (2.2) and (2.3) from
Theorem 1.1, (2.4) from [2]. Applying the heuristic principle we show
that

(1.1) (2.3), (2.1) (3.3), (2.5) (3.4), (3.1) (4.1).

Thus, the only four cases of subsection lal + I11 3 need to be treated.
Moreover, we show that the cases (3.2), (3.3) and (3.4) are similar to each
other and begin with the first of them.

CASE (3.2). It is easy to see, that the characterization problem

IIFull2 _< C IIv" ll , F(0)= F’(0)= F’(oo)= 0
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is equivalent to the following

ll(/2f) ull2 < Cllfvll2, f --O. (4)

Let r 6 (0, c) be defined by

fo fIv1-2 Iv1-2 (5)

and put

lul 2 (z- X)2 Iv(x)1-2 dx.

THEOREM 2.1 The leastpossible constant C in (4) is sandwichedasfollows

C ,, A2;(o,r),u,v + Dr + A1;(r,o),u,(x_r)-lv(x) + B;(r,c),x-r)ux),v. (6)

Proof If fo f 0, then for x > r we have

’,-fo (fosts-fo (o)s+f (fots_
fo fX(fs )(r y)f(y)dy f ds

fo 1 fx(r y)f(y)dy (x r) f (y r)f(y)dy. (7)

For the upper bound we use Theorem 1.1 and Cauchy’s inequality and find

r(r y)f(y)dy

X[r’,](x)(x r)u(x) f
2

x

X[r’,](x)u(x) (y r)f(y)dy

(A2;(o,r’),u,v + Dr, h- A1;(r’,o),u,(x-r)-,v(x) q- B;(r’,),(x-r)u(x),v) Ilfvll2.
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For the lower bound it is sufficient to arrange a one-to-one isometrical map
or between the cones

and

1 {f L2,v f >_. O, supp f c_ [0, z]}

such that

/22={fL2,v f<0, supp f___[z, cx])

(f q- cot f) 0, f (8)

We construct cot below, using an idea from ([8], Section 1.8). Now, suppose
(4) is tree and the right-hand side of (5) is finite. Since for any function of
the form f -+- ogr f, f /21 or o) f + f, f /22 the right-hand side of (7)
is nonnegative, we obtain the following inequalities

[IX[O,r] (I2f)ul[ 2 < ll(I2(f + rf)) ull2 C II(f + rf)vll2

2C Ilxt0,foll, f c
and

IIt,a (I2f u[12 2c [[t,afllz, f

Then the required lower bound follows from Theorem 1.1. For a possible
infinite right hand side of (5) we proceed as before, replacing the weight
v(x) by (1 + ex)v(x) and then using limiting guments with 0.
To construct the map wr we define for f 6 1

(-i()[ (-, <)i
(wrf)(x)

Iv(x)l2
x v,

where p [0, r] Iv, ] is given by

Iv Iv1-2, s e [0,
(s)

Then (8) is valid d

t,f [2 t,<f [[2’ f
Theorem 2.1 is proved.
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Remark 2.1 Theorem 2.1 has a complete analog for a finite interval,
(-cx, 0) or (-cx, cxz) and for an Lp-Lq setting. For a finite interval the

Lp-Lq version of Theorem 2.1 follows from the characterization (6) above,
which has independently been proved by a different method in [5].

CASE (3.4). In this case the characterization of

IIFull2 C IIF" l12, F’(0)- F(cx)- F’()= 0

is equivalent to the problem

II(J2g) ul12 < C Ilgvll2, g 0,

which is dual to (4). Put

D2 12a,r u (x z’)2 Iv(x)1-2 dx.

(9)

THEOREM 2.2 The least possible constant C in (9) is estimated by

C B2;(r,oo),u,v + Dl,r -+- A1;(o,r),(r-x)u(x),v -+- B1;(O,r),u,(r-x)-lv(x) (10)

Proof This time we use a decomposition for 0 < x < r of the form

Jg(x) (y r)g(y) dy ( x) g (r y)g(y) dy

and proceed as in the proof of Theorem 2.1.

CASE (3.3). Now we have

Ilfull2 _< C IIf’ l12, f(0)- F(cz)- F’(oc)= 0,

which equivalent to the problem

II(Jg) ull < C Ilgvll y g(y) dy O.

Making the substitution y g(y) -+ g(y), we make (11) equivalent to

(11)
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where vl (x) -v(x) and

J2g(x) 1 --f g(y) dy.

By a known criterion 14]

2211L2,vl,(r,c)-+ L2,u,(r,c) L2,v,(r,ee) L2,u,(r,)

Thus, using the decomposition

-2g(x) x fr dy
(y- "c)g(y)

y
z-x foX Xfxr dy

g (3 y)g(y), 0 < x < r
r. y

and arguing as in the proof of Theorems 2.1 and 2.2 we obtain

THEOREM 2.3 The least constant C in (11) is estimated by

C B2;(r,),u,v -+- z"-1 (D2,r -t- A1;(O,r),(r-x)u(x),x-lv(x)
-’l-Bl.(O,r),xu(x),(r-x)-Iv(x))

where

f0D2 x2lu(x)l2 dx (x z-)2lv(x)1-2 dx2,r

CASE (3.1). Now we have equivalence of

IlFull2 C [[F"v[[ 2 F(0) F’(0) F(cx) 0

and

f0c(f0y )II(lzf) ullz _< C Ilfvll2, f dy O,

where the integral is interpreted in the Riemann sense.
We need the following simple note.

(12)

(13)
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LEMMA A locally integrablefunction f satisfies

fo(foY )f dy 0 (14)

ifand only if there exist ) (0, cxz) such, that

foZf--O and fo
z (fZf)dy-- fz (fzy f) dy. (15)

Proof
we have

Suppose (14) be valid, then the first assertion in (15) is trivial. Then

O-- ji (foYf) dY-- foL (foYf) dy-t- fc (foYf) dy-
-ji’ (fy’f) dy-k- f (fYf) dy.

Conversing the last line, we prove the "if" part.
Suppose ) 6 (0, c) and put

f0vz 101-2 101-2.

THEOREM 2.4 The least possible constant C in (13) is given by

C A2;(0,c),u,v + sup (Al’(rz,Z),u,(x-rz)-’v(x) + Bl’(rz,.),(x-r)u(x),v).
)>0

(16)

Proof We begin with the upper bound. Let f L2,v and (14) be valid.
Hence, (15) is true for some ) 6 (0, cx). Then for x > . we have

foI2f (x) (;k y)f (y) dy + (x y)f (y) dy.

Using this and applying Theorems 1.1 and 2.1, we obtain
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sup A2;(O,r),u,v + lu (’cz x)21v(x)1-2 dx+

A1; (rx,Z),u, (x-rx)-l v(x) -t-

lul 2 (z x)21v(x)1-2 dx + Aa;(x,,,

For the lower bound we suppose ; 6 (0, x) and define the function

Pl [0, rz] -- [rz, )] by

f0 Iv1-2- Iv1-2 s[0
l(s)

Given f L2,v, supp f c_ [0, rz], f(x) > 0 we define fl(x) to be zero
outside [:, )] and

f (x) x (rx, .).
Iv(x)l

Then, by the argument from the proof of Theorem 2.1 we have

f + fl 0. (17)

Now, given ) (0, cx) we find IX IX()) (0, cx) from equation

f0 x21v(x)1-2 dx (Ix x)21v(x)1-2 dx

and define the function/92 [0, )] -+ [), Ix] by

fo x2lv(x)1-2 dx (Ix x)2lv(x)1-2 dx. (18)
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Put

f0 f+fl

and define fz(x) O, x t [k, tt] and

/2(x) -1 12/92 (x)Iv(x)
(19)

Then

Now, put

f fo+ f2.

Then (17) implies

Let us show that

) dy fc (fy ) dy.

Indeed, applying (18) and (19) we find

cx Y

f dy (lZ Y) f2(Y) dy (lZ pz(s)) f2(P2(s)) dp2(s)

sfo(s)ds=foZ(fyZf) dy.

The lemma implies that 37 satisfies (14) and, consequently, admissible for
(13). Since functions f0 form a cone used for the lower bound in the proof
of Theorem 2.1, we obtain

C >> sup (Aa;(o,rx),u,v + Dr + Al.(rx,z.),u,(x_vx)-lv(x) -t-- Bl.(rx,z.),(x-rx)u(x),v)
)>o

>> sup (A1;(rx,)),u,(x-rx)-v(x) + Bl’(rx,.),(x-rDu(x),v).
)>0
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For the remaining part of lower bound we suppose, that 0 < )v < a < co
and choose/z (), a) such that

(0" x)21v(x)1-2 dx (a x)21v(x)1-2 dx.

Obviously,/z -- co, whereas a -- co. Let f L2,v, supp f [;k,/z],
f(x) >_ O. Define the function p [;,/z] -+ [/z, a] such that

)2 -2(a x Iv(x)l dx (a x)2lv(x)1-2 dx
(s)

and define fl (x) 0, x [/x, a] and

=
fl (X) X (/Z, o’).

(a -p-l(x))lv(x)l 2

Put

Then it is routine to verify that

2Ilfvll 2llfvll2

and

fo(foYf) dy-O.

Applying Theorem 1.1 we find

C >> A2;(;,z),u,v, 0 < . < lZ < co.

Letting a - co and then ;k --+ 0, we obtain the remaining part of the lower
bound.
Theorem 2.4 is proved.

CASE (2.5). We have

Fu 112 _< c F"v 2, F’(0) F(co) 0. (20)
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THEOREM 2.5
by (10).

The estimate for the least constant C in (20) is established

Proof Since

{F" F’(0) F(c) 0} {F" F’(0) F(cx) F’(cx) 0},

we find by Theorem 2.2, that

C >> B2;(r,oo),u,v + Dl,r + A1;(o,r),(r-x)u(x),v + B1;(o,r),u,(r-x)-lv(x).

Now, suppose

B2;(r,oo),u,v + Dl,r + Al’(O,r),(r-x)u(x),v + Bl’(O,r),u,(r-x)-v(x) < (x)

and, consequently,

(x-s Iv(x)l dx < oo, s > r.

Hence, the function

l(s) (x s)F"(x) dx

is defined for all s > 0,/(cxa) 0 and P" F". It implies that P F and
by Theorem 2.2 we obtain the upper bound.

CASE (2.1). Now we have

IIFull2 C [[F"v[[ 2 F(0)= F(oo)- 0.

Analogously to the case (2.5) we prove the following.

(21)

THEOREM 2.6
by (12).

The estimate for the least constant C in (21) is established

CASE (4.1). Now the problem is to characterize

Ilgull2 c liE"vii2, F(0)= F’(0)= F(cx)- F’(c)= 0. (22)
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The estimate for the least constant C in (22) is established

Proof The upper bound immediately follows from Theorem 2.4. For
the lower bound suppose (22) is valid. Then it is valid for the weight
re(x) (1 + ex)lv(x)[ instead of v(x). It is easy to see that

{F" IlF’Zvell2 < cx3, F(0) F’(0) F(cxz)- F’(c)- 0}

{F" IIF’vll2 < , F(0)= F’(0)= F(cx)- 0}.

Consequently, by Theorem 2.4 we have

C >> A2;(a,),u,v + sup (Al.(zx,)O,u,(x-rz)-,v(x) + Bl’(rx,)),(x-rz)u(x),v).
)>0

The Fatou theorem brings the required lower bound.

Remark 2.2 The characterization of cases (2.1), (2.5) and (4.1) on a finite

interval is different (for (2.1) and (2.5) see [6]) and (4.1) is so far unknown.
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