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1 INTRODUCTION

By an orthogonal polynomial system (OPS), we always mean a sequence
of polynomials {Pn(x)} where deg(Pn) n n > 0, and there is ann--.0

increasing function/z(x) on an interval I such that

ern (x) en (x)dtz(x) Knmn, rn and n>0,

where Kn are positive constants. In this case, we say that {Pn (X)}n=O is
an OPS relative to a positive measure dlz(x) (or a positive weight w(x) if

dtz(x) w(x)dx) on I.

*Author for correspondence.

171



172 H.S. JUNG et al.

It is well known ([2, 8, 10]) that there are essentially (i.e., up to
a linear change of variable) only three distinct OPS’s (called classical

OPS’s) that arise as eigenfunctions of second order differential equation of
hypergeometric type:

A(x)y"(x) + B(x)y’(x) + Lny(x) O, (1.1)

where A(x) ax2+bx+c O, B(x) dx+e, andLn -n[a(n- 1)+d],
n 0, 1 2,... They are Jacobi polynomials {Pnc’) (x)} (or, /3 > -1),
Laguerre polynomials {Ln) (X)}n=0 (or > 1), and Hermite polynomials
Hn (x) }n__0 satisfying

(1 x2)y"(x) -I- [(fl or) (or -q- fl + 2)x]y’(x)

+n(n -+-ot + fl + 1)]y(x) 0

xy"(x) + (1 + t x)y’(x) + ny(x) 0

y"(x) 2xy’(x) + 2ny(x) 0

and are orthogonal relative to

for {Pna’) (X)}n=0
for {Lnc0 (x)}n=0
for {Hn(x)}n=o

(1.2)

(1 x)a(1 + x) on [-1, 1] for {Pn’t)(X)}n=0
w (x) xce-x on [0, ) for

e-x on (-, ) for {H(x)}0

(1.3)

For these three classical weights in (1.3), Guessab and Milovanovi6 [5] and
Guessab [4] obtained weighted L2-Markov or Bernstein type inequalities
for polynomials. In 1987, Varma 13] obtained weighted L2-Landau type
inequalities for w(x) e-x2 and later, Agarwal and Milovanovi6 [1]
extended Varma’s result to all three classical weights in (1.3).

Although these inequalities must remain valid under any linear change of
variable, it is not clear then what kinds of weights w(x) are allowed to ensure
such inequalities. In section two, we give weighted L2-Markov or Bernstein

type inequalities for classical weights in such a way that does not depend
on specific form of w(x) as in (1.3). In section three, we extend L2-Landau
type inequalities of Agarwal and Milovanovi6 for classical weights to any
semiclassical and positive-semidefinite weights. Finally we illustrate this
extension by two examples, one for a classical weight e-x2 and another
for a nonclassical weight Ix l2Ue-x2 (/z > -1/2). For similar Markov-type
inequalities for discrete classical weights we refer to [6, 7].
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All polynomials are assumed to be real polynomials unless stated
otherwise. We use the notation deg(P) to denote the degree of a polynomial
P (x) with the convention that deg(0) -1.

2 MARKOV-BERNSTEIN TYPE INEQUALITIES

The results in this section are not really new but some modifications ofresults
obtained by Guessab and’Milovanovi6 [5] and Guessab [4], which is based
on the following result (see [8, Theorem 2.9]) and [11, Theorem 2]).

THEOREM 2.1 The differential equation (1.1) has an OPS {Pn(x)}n=O as

solutions ifand only if

:=an + d :/:0 and
Sn--1 A (-(bn + e) ) >0, n>0.Sn

S2n S2n+ \
(2.1)

X oMoreover, {Pn )}n=0 is orthogonal relative to a weight w(x) on I, where
w(x) is any nonnegative solution ofPearson differential equation

(A(x)w(x))’ B(x)w(x) 0 on Int(I) (2.1)

and

[m, M]
I [m, cxz)

(-z, )

if A(x) has 2 real zeros rn and M
if deg(A)=l and A(m)=O
if deg(A) 0.

The first condition in (2.1) is the necessary and sufficient condition for the
differential equation (1.1) to have a unique monic polynomial solution Pn (x)
of degree n for each n > 0 and the second condition in (2.1) is the necessary
and sufficient condition for {Pn (x)} to be an OPS. Theorem 2.1 is usedn--0
in [8] to classify all classical OPS’s, up to a real linear change of variable,
including OPS’s orthogonal relative to signed measures.

In Theorem 2.1, we may take

e f B(x)
dx on Int(I), (2.3)w(x)

A (x---- exp A(x)

where e 4-1 depending on A(x) > 0 or A(x) < 0 on I respectively.
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We also note that when the equation 1.1 has an OPS as solutions, {)n n=0
must be strictly monotone. More precisely, {)n} is strictly increasing orn--0
strictly decreasing depending on A(x) > 0 or A(x) < 0 on I respectively.
It can be easily seen because {)n} remain unchanged under any linearn--0
change of variable and {)n }n=0 is strictly increasing in all three cases in

(1.2).
We set

11p[[2 :._ f p2(x)w(x dx.
Ji

TnnORM 2.2 [5] Let w(x) be any nonnegative solution of the equation
(2.2), where A(x) and B(x) satisfy the condition (2.1). Thenfor any integers
m and n with l < m < n

for any complex polynomial P (x) ofdegree <_ n, where

l,n,k ;-- --(n --k)[(n + k- 1)a + d], n > k > 0.

Moreover, the equality holds in (2.4) ifand only if P (x) CPn (x) for some
constant C, where {Pn (x)} is an OPS relative to w(x) on I.n---0

Now, Theorem 2.2 can be proved essentially in the same way as the one in

[5, Theorem 2.1] or [4, Lemma 3.1] even though they proved it only for three
classical weights in (1.3) and for real polynomials P (x) since the condition
(2.1) guarantees the existence of an OPS {Pn (x)},,=0 satisfying the equation
(1.1) by Theorem 2.1.

Using the inequality (2.4), Guessab [4] obtained another weighted Markov-
Bernstein type inequality for three classical weights in (1.3) and for real
polynomials. In much the same way as before, we can reformulate his
inequality [4, Theorem 2.1 as

THEOREM 2.3 [4] Let w(x) be the same as in Theorem 2.2 and win(x) :=
IA(x)lmw(x), m > 0 an integer. Then

m--1

I]( ]/Wm)(wmP(m))’llm In,m H n,kl IIPII0
k=0

(,n,-1 0)

(2.5)
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for any complex polynomial P(x) ofdegree n (> m), where

IIPII2m f IP(x)12Wm(X)dx

and

fln,m ".-- ,n,m [2(m 1)a + d].

Moreover, the equality holds in (2.5) ifand only ifP (x) CPn (x) for some
constant C.

Theorem 2.2 and Theorem 2.3 give conditions (2.1) on A(x) and B(x)
under which any nonnegative solution w(x) of the equation (2.2) give rise to
a corresponding weighted Markov-Bernstein type inequality for polynomials
in L2(1 w(x)dx).

3 SEMICLASSICAL WEIGHTS

All polynomials in section three are assumed to be real polynomials. Agarwal
and Milovanovi6 1 proved a Landau type inequality [9] for three classical

weights in (1.3): Let w(x) be one of the classical weights in (1.3). Then for
any integer n > 0,

(2)n + B’(x))II/-e’ll2 )n2llell2 + IIAP’II2 (3.1)

for any real polynomial P(x) ofdegree < n. Moreover, equality holds in (3.1)
if and only if P (x) CPn (x) for some real constant C. When w(x) e-x2

the inequality (3.1) was found first by Varma [13]. As in section two, we can
reformulate and extend (3.1) as:

THEOREM 3.1 Let w(x),be the same as in Theorem 2.2. Then

(2L+n’(x))llIP’II2<L2IIPII2+IIAP’II2 (3.2)

for any polynomial P (x) and any real constant ). Moreover, equality holds

if and only if . n and P (x) CPn (x) for some real constant C, where
n := deg(P).
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Note that we claim the inequality (3.2) holds for any ) and any polynomial
P(x) regardless of deg(P). We can further extend Theorem 3.1 into a more
general situation like: Let a be any moment functional on the space of
polynomials ([3]). We call a to be the positive-semidefinite if (a, pC) > 0
for any polynomial P (x). We call a to be semiclassical if there is a pair of
polynomials (A (x), B(x)) (0, 0) such that

(A(x)a)’ B(x)a, (3.3)

where (a’, b) := -(a, q’) and (pa, b) := (a, pb) for any polynomials
(x) and p (x). Note that here, we do not assume a to be regular contrary

to the usual definition of semiclassical moment functionals (see [12]). Any
classical weight w(x) satisfying the condition (2.1) and (2.2) defines a

positive-definite semiclassical moment functional a by

(a, P) := fl P(x)w(x)dx. (3.4)

THEOREM 3.2 Let a be a positive-semidefinite and semiclassical moment

functional satisfying

(A(x)a)’ (B(x) + D(x))a and (D(x)a)’ E(x)a (3.5)

for some polynomial A, B, D, E with A2(x) 4- B2(x) 0. Then for any
polynomial C(x) (which may depend on some parameters), we have

(a, (AB’ 4- 2AC 4- BD)(P’)2)
_< (a, (AC" + BC’ + C2 4- 2C’D + CE)P2) + (a, (AP")2)

(3.6)

for any polynomial P(x). Moreover, if a is positive-definite, then equality
holds in (3.6) ifand only if

L[PI(x) := A(x)P"(x) 4- B(x)P’(x) 4- C(x)P(x) =-- O. (3.7)
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Proof We have

(0", L[P]2) (or, (AP’t)2 --1- (B p,)2
__

(C p)2)
+ 2(a, ABP’P") + 2(a, ACPP") + 2(a, BCP P’).

(3.8)

We also have by (3.5)

2(a, ABP’P") (BAa, [(p,)21,) -((BAo)’, (p,)2)
-(a, (AB’ + B2 + BD)(P’)2) (3.9)

and

2(a, ACPP"} + 2{a, BCPP’) -2{(CPAa)’, P’) + 2(a, BCPP’}
-2((AC’ + CD)Pa, P’} 2(a, AC(P’)2}
-((AC’ + CD)a, (p2),} 2(a, AC(P’)2}
(((AC’ + CP)a)’, p2) 2{a, AC(P’)2)
(a, (AC" + BC’ + 2C’D + CE)P2} 2{a, AC(p’)2}.

(3.10)

Substituting (3.9) and (3.10) into (3.8), we obtain

(a, LIP]2) {a, (AP")2 d- (BP’)2 d- (CP)2)
(or, (AB’ d- B2 d- BD)(P’)2)

+ (a, (AC" + BC’ + 2C’D + CE)P2) 2(a, AC(P’)2)

from which (3.6) follows since (a, L[P]2) > 0. When cr is positive-definite,
(a, L[P]2) 0 if and only if L[P] 0 so that equality holds in (3.6) if and
only if L[P] O.
When a w(x)dx is a classical moment functional given by (3.4),

C(x) ;k is a constant, and D(x) E(x) =_ 0, Theorem 3.2 reduces to

Theorem 3.1.

Remark 3.1 Conversely, if a satisfies the inequality (3.6) with C(x) ),
an arbitrary constant, then cr must be positive-semidefinite since if we divide
(3.6) by Z2 and let . tend to cx, then we obtain (a, p2) > 0.
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COROLLARY 3.3
polynomial P (x)

Let cr be the same as in Theorem 3.2. Then for any

(or, (AB’ h- BD)(p’)2) <_ (or, (AP")2). (3.11)

Furthermore, if (or, p2) 0, then

(or, EP2) 2(or, A(P’)2) 0. (3.12)

If (or, p2 > O, then

(or, Ep2-2A(p’)2)2 <_ 4(or, P2)(cr, (AP")2-(AB + BD)(p’)2). (3.13)

Proof Take C (x) ), an arbitrary constant, in (3.6). Then we obtain

(or, p2))2 _+. (or, EP2 2A(p’)2),k -+- (or, (APt’)2 (AB’ q- BD)(P’)2) > O.
(3.14)

When ; 0 in (3.14), we obtain (3.11). If (or, p2) 0, then (3.14) becomes

Icr, EPe 2A(P’)e)) + (tr, (AP")e (AB’ + BD)(P’)e) > 0

so that (3.12) follows since ; is arbitrary. If (or, pe) > 0, then (3.14) implies
(3.13). []

When r w(x)dx on I is a classical moment functional, we can have
the following interesting Landau-type inequality"

COROLLARY 3.4 Let w(x) be any classical weight as in Theorem 2.2. Then

2llx/ P’IIz < Idl IIPII 2 + IIPIIx/dEIIPII / 411AP"II2 (3.15)

for any polynomial P (x).

Proof Any classical weight w(x) satisfies the condition (3.5) with D(x) =_

E(x) =_ 0 and A(x)B’(x) <_ 0 (see (1.2)). Hence, (3.13) becomes

(or, A(p’)2)2 _< (or, P2){(o’, (APtt)2) -4r (tr,

that is,

[[ [x/P’[[4 < [[PIIZ(IIAP"[[2 d-Idl IIx/P’ll2),
from which (3.15) follows immediately.
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Remark 3.2 When cr is a moment functional as in Theorem 3.2 satisfying
(3.5) with D(x) =-- E(x) _---- 0 and deg(B) = 1, we can obtain a similar
inequality as (3.15) for (or, A(p’)2).

Finally, we give two examples illustrating Theorem 3.2.

EXAMPLE 3.1 Varma 13] proved the inequality (3.1) for w(x) e-x2"

1 p. 2 2n2 p2IIe’ll2 < 2(2n- 1) ll II + 2n- III II, deg(P) < n. (3.16)

Equality holds in (3.16) if and only if P(x) CHn(x). Applying
Theorem 3.2 to cr e-X2dx with A(x) 1, B(x) -2x, D(x) E(x) =--
0, and C(x) ), we obtain

(2L 2)llP’ll2 _< IIP"ll2 + L2IIPII2 (3.17)

for any ) and any polynomial P(x), where equality holds if and only if
P(x) CHn(x), n "= deg(P).
When 2n, (3.17) becomes (3.16). We also have from (3.15)

IIP’II 2 _< IIPII 2 + /IIPII2 + IIP"II2. (3.18)

Replacing P(x) by P’(x) in (3.17) and then applying (3.17), we obtain

(2/z 2)(2X 2)llP"ll2 _< (2/z 2)llp(3)ll2 + x2(llP"ll2 +/z2llPll2),

that is,

(4(/z 1)() 1) .2)llP"ll2 _< 2(/z 1)llp(3)ll 2 -t- )2/z211PII2 (3.19)

for any constants .,/z and any polynomial P(x), where equality holds if and
only if P(x) CHn(x),/x 2n, and Z 2(n 1), n := deg(P),
When/z 2n and Z 2(n 1) (n > 1), (3.19) becomes

(2n- 1)lle3llz 4n2(n- 1)211PII2
Ie"ll2 _<

2(3n2 6n + 2)
+ 3n2 6n + 2

(3.20)

which was first obtained by Varma 13, Inequality (1.15)] for polynomials of
degree < n. Equality in (3.20) holds if and only if P(x) CHn(x).
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EXAMPLE 3.2 Let tr w(x)dx, w(x) Ixl2e-x (/ > -1/2). Then cr is a
positive-definite semiclassical moment functional satisfying

(xr)’ (2/z + 1 2x2)cr

and

(X20")’-- 2[(/x + 1)x -x3]o".

The corresponding OPS is the generalizedHermitepolynomials Hnu (x)}n=0
satisfying

x2y"(x) h- 2(/xx x3)y’(x) q- (2nx2 On)y(x) O,

where 02m 0 and 02m+l 2/z, m > 0 (see [3]).
If we take A(x) x2, B(x) 2[(/z + 1)x x3], C(x) 2nx2 On, and

D(x) =_ E(x) 0 in (3.6), then we have

2 [(2n 3)x2+/z + 1 -On](xP’(x))2w(x)dx

< (X2 p"(x))2w(x)dx

2 2+ [4nx2((n 2)x2 + 2/z + 3 -On) + O]P (x)w(x)dx,

where equality holds if and only if P(x) CHn(u+l) (x).

Ifwe take A(x) x2, B(x) 2(/zx-x3), C(x) 2nx2-On, D(x) 2x,
and E(x) 4/z + 2 -4x2 in (3.6), then we have

A(x, n)(xP’(x))2w(x)dx < B(x, n)p2(x)w(x)dx

if- (X2 p"(x))2w(x)dx,
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where

A(x, n) :-- (4n lO)x2 + 6/x 2On;

B(x, n) :-- (4n2 16n)x4 + [24n + (4- 4n)On + 16/zn]x2

nt- On (On 4/z 2)

and equality holds if and only if P(x) CH(n (x).
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