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In this note isoperimetric bounds are derived for the maximum of the solution to the Poisson
problem for a plane domain. This extends previous bounds ofPayne valid for the torsion problem.
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1 INTRODUCTION

The boundary value problem

Ar+I=0 in cIR2

p 0 on
(1.1)

is usually called the torsion problem because of its mechanical interpretation.
Another interpretation relates (1.1) to a laminar flow in a pipe of cross-section
f2. Then, p is proportional to the flow velocity. A third important possibility
is a stationary heat flow problem with measuring the temperature.
An important quantity in all these contexts is

s f lvrl2 dx f dx (dx areaelement).

In the mechanical interpretation of (1.1) S is called the torsional rigidity. A
second quantity of interest is

1/rm max lr(x)
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Many bounds for lpm and S are known, see e.g. 1, 2, 4]. In particular P61ya
and Szeg6 proved that

A
1/rrn < (1.2)

with A denoting the area of f2 and furthermore that

A2

s < . (.3)

Later on Payne [3] proved the sharper inequality

S 1/2
(1.4)

and also gave the lower bound

4re lpm >_. A (A2 87/’S) 1/2 (1.5)

In all these inequalities the equality sign holds if is a disk.
In this note the primary concern is to give an extension of Payne’s

inequalities (1.4), (1.5.) to the Poisson problem in the plane, i.e. the boundary
value problem

Au+p(x)=0 in g2
(1.6)

u=0 on 02

where p(x) is a smooth, strictly positive function satisfying

A(log p)
2p

< K (1.7)

for some constant K. If K > 0 an additional requirement is that

K f p dx < 4zr (1.8)

Remark Problem (1.6) is equivalent to problem (1.1) for a domain on

A(log p) (see [1, 4] for morea surface of Gaussian curvature K 2p
details).

2 EXTENSION OF PAYNE’S INEQUALITIES

The analogue of inequalities (1.4) and (1.5) can be stated as
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THEOREM Suppose p(x) satisfies (1.7) and (1.8) in the simply connected
plane domain fa and set

Then one has for Um max u the inequalities

1 K.S
Um (1- e-Kum) < (2.1)

4:re

and

) K.SA 1
(eKum 1) > (2.2)Um-+-

4rg K 4re

Equality holds in (2.2), (2.3) if fa is a disk and p is of the form

(1 q- r2)2’

c positive number

r distance from the center of the disk.

Remark For K --+ 0 inequalities (2.1) and (2.2) reduce to the inequalities
(1.4) and (1.5) of Payne as a Taylor expansion with respect to K shows.

Proof of the Theorem: Let 1-’t be the level-line where u and fat the
domain enclosed by Ft. We set for v 6 (0, urn)

S())=fUm(t,u, ds) dt, (2.3)

Then

dv IVul ds p dx =: a(v) (2.4)

where we have used Green’s identity and defined the quantity a(v) such that

a(O) f p dx =- A and a(um) O

Next we make use of the fact that (see 1], p. 53)

da fr ds

dv P IVul
a.e. in (0, urn) (2.5)
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By Schwarz’s inequality one has

> ds (2.6)I’ulds" P IVul

At this point we can use Bol’s inequality (see 1], p. 36) which states that if
p(x) satisfies (1.7) and (1.8) then

( fr /-ds)Z > a(v)(4yr Ka(v)) (2.7)

Combining now (2.4), (2.6) and (2.7) we e led to the inequality

d2S dS
4 (2.8)

dv2
K"

dv

or in equivalent form as

d (_Kv dS) e_e > 4 (2.9)
dv dv

Integration of (2.9) from a value v v0 to v =Um gives after some

reangement
dS 4

> (1 e-K(um-v)) (2.10)
dv vo- K

since dS
Um

O.

For v0 0 (2.10) reads

4 e_Kum)A>(1-
K

or equivalently

(2.11)

led to

S(0) IXZul ds dt IVul2dx S

4r[ 1 ]> Um (1 e-Kum)

which is inequality (2.1).

(2.13)

1 ( 4zr ) (2.12)Um < - log
4zr-KA

as noted by Bandle (see [1]).
If we now integrate (2.10) one more time from v0 0 to v Um we are
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(For the second equality sign in (2.13), see e.g. [4], p. 190). Inequality
(2.2) is obtained in a completely analogous manner: the first integration of
(2.9) is now from v 0 to v v0 and the second is from v0 0 to v Um
as before.

3 REMARKS

(a) It was shown by Bandle (see [1]) that

47/"
S < - log

If we write (2.13) as

4zr A
4r KA K

4zr 4r
S-+- -- (1- e-Kum) >" Um

and use (2.11).and (2.12), we see that the upper bound for Um given
in (2.1) is sharper than the bound (2.12), but it requires the knowledge
of S or a close upper bound for S.

(b) There are other types of bounds that can be obtained from the
differential inequality (2.8). For example if we write it in terms of
a(v) as

da
> 4re Ka(v)

dr-
and then change the independent variable and writing u in the place
of v it becomes

du 1
< (.3.2)

da 4re Ka
This inequality can be integrated in many ways. As an example we perform
a double integration as follows:

foA[fsA(_dlg__, in f. foA[fs A da In.a/ da ds un p dx < ds
4r Ka

(3.3)

( are ) upper bound for/gm one has e.g.Setting f log 4r-Ka

fo 2( A 4zr )u2pdx<- 27rf2-1 f (3.4)
-K K K
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If instead of the double integral f0A fsA we select f0a f then we obtain

1 A
S >_ A’um d- "- (47r KA). f K

(3.5)

(c) A number of other types of bounds for problems (1.1) and (1.6) can
be found in 1, 2, 4].
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