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For a wide class of weights, a systematic investigation of the convergence-divergence behavior
of Lagrange interpolation is initiated. A system of nodes with optimal Lebesgue constant is
found, and for Hermite weights an exact lower estimate of the norm of projection operators is
given. In the same spirit, the case of Hermite—Fejér interpolation is also considered.
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1 INTRODUCTION

Pointwise estimates of the error of Lagrange interpolation on the real line
are scarce and not quite satisfactory. Perhaps the most significant is Freud’s
[3] 1969 result on the roots of Hermite polynomials for functions being
uniformly continuous on R. Results of Nevai [11, 12] should also be
mentioned. The characteristic of these results is either the restriction of the
range of error estimate to a finite interval, and/or severe growth restrictions
at infinity on the function (like in Freud’s theorem). As Nevai mentions
in his survey paper [12] in 1986, “There have been no new developments
regarding pointwise convergence of Lagrange interpolation taken at zeros
of orthogonal polynomials associated with Hermite, Laguerre or possibly
Freud-type weights in the past ten years...”. Indeed, a systematic treatment of
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100 J. SZABADOS

weighted Lagrange interpolation for a wide class of weights and systems of
nodes is a basic problem here. Perhaps the lack of this type of results is due
to the fact that the theory of weighted polynomial approximation and that of
orthogonal polynomials for general weights has been developed only in the
last 20 years.

It seems that now we have sufficient knowledge to offer the beginning of
such a systematic treatment of weighted Lagrange interpolation. In this paper
we introduce the analogue of the Lebesgue constant, and investigate its order
of magnitude. Also, in case of a special weight we present a Faber type result
for general systems of nodes. In the proofs we make heavy use of estimates
of Lubinsky and his collaborates on orthogonal polynomials with respect to
Freud weights.

To begin with, let us mention that if the weight w(x) = e~ 2™ gatisfies

0w _

m =
|x|—o00 log |x|

¢))

(i.e. w™! tends to O faster than any polynomial when |x| — 00), as well as
some mild regularity conditions and the Akhiezer—Babenko relation

20 4y o

then for functions f(x) from the class

CyR) :={f: f iscontinuous on R and | llim w(x) f(x) =0}

we have
Ep(flw = inf [lw(f—p)Ill—>0 as n— oo,
pell,
where IT,, is the set of polynomials of degree at most r, and || - || denotes the
supremum norm over R.

Now let &, := {x1, x2, ..., x,} be an arbitrary set of (pairwise different)
nodes and

n
L(f, X, %) = ) fOl(X, X) 3)
k=1
the corresponding Lagrange interpolation polynomial of f € Cy,(R),

where I (X,,x) € Il,_; are the so-called fundamental polynomials, i.e.
I (X, xj) = 8;j, k, j =1, ..., n. The classical way of estimating the error
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of Lagrange interpolation is the following: take a p,—1 € Il,_; such that
E,—1(Nw = ||lw(f — pa-1)|| (the existence of such a p is obvious), and

consider

Hw@)Lf (x) — L(f, Xn, O < Hw)Lf (x) — pO]I
+ lw@)L(p = f, An, 0|
) : “

< En-1(Pw (1 +lww Y i (X, )]

= wx)

Thus if we introduce the Lebesgue function

Ik (X, x)]
w(xk)

n
M, X = w(x) Y
k=1
and Lebesgue constant

Ay = A (X, X)ull,
then (4) takes the form

Nw(f = L{f, X, XD < En—1(fw(d + A(X)w).

Under different structural properties on the function, we have a consider-
able knowledge of the behavior of the quantity E,_1(f), (see e.g. the recent
survey paper [8] of D. S. Lubinsky). Thus what remains to be investigated is
the Lebesgue constant A(X},),.

2 THE LEBESGUE CONSTANT OF SOME SPECIAL SYSTEMS
OF NODES

In general, the weight w and nodes &), are chosen independently. However, if
we expect areasonable upper estimate for the Lebesgue constant A(X},),, then
we have to assume some connection between the two data. The most natural
assumption, as we shall see, is that X}, is the set of roots of the orthogonal
polynomials with respect to the weight w?. Quite surprisingly, it will turn
out that for a wide class of weights, this is not an optimal choice with respect
to the order of magnitude of A(&},),,. Therefore we shall construct another
system of nodes to achieve this optimal order.
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The class of weights WW we are dealing with is defined as follows (see
e.g. Criscuolo, Della Vecchia, Lubinsky and Mastroianni [1]). We say that
w(x) = e~ 2™ if Q : R — Ris even, continuous in R, Q” is continuous in
(0, 00), Q' > 01in (0, >0), and for some A, B > 1,

GOy
B4 C) R

Of course, if w € W, then w? € W. The model case is the Freud type
weights w(x) = e ™I, & > 1, when @ = A = B. It is also easy to see that
for any w € W the conditions (1)-(2) are satisfied.

In Theorem 1 below we will be concerned with the orthonormal polyno-
mials {p,(x)}2,, with respect to a weight w? € W. We shall denote by
X1 > x2 > -+ > xp, the roots of p,, and letl, := {x1, ..., x,}. With a little
effort, one can deduce from Theorem 1.1 of Matjila [9] that for any w € W
we have

A B (x € (0, 0)).

AUpn)w = O (n'/5).

On the other hand, Sklyarov [13, Theorem 2(b)] proved for the Hermite
weight

wo(x) := e %72 (5)

that A(Up)w, ~ nl/6. (Here and in what follows ~ means that the ratio of
the quantities on the left and right hand sides remains between two positive
bounds independent of », but possibly depending on the weight.) As we shall
see after the proof of Lemma 5, this can be easily extended to

AU)w ~ 0l (wew). (©6)

Our purpose in this section is to define a system of nodes such that the
corresponding Lebesgue constant is of smaller order. Let xo > O denote a
point such that

| Pn(x0) lw(x0) = || prw]| )
(we will see that xg # 0).
THEOREM 1  For any w € W, with the notation V, 1, := U, U {xg, —xo} we

have

A(Vns2)w ~ logn.
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Theorem 1 shows that the system of nodes V,47 is superior over the

set of roots U, of the orthogonal polynomials. An obvious consequence of
Theorem 1 is the following

CoroLLARY 1 Letw € Wand f € C,(R). If
1
E,(f) =0 (1 )
ogn

Jm {lwCOLf () = LS, Vatz, DI = 0.

then

The proof of Theorem 1 is divided into a series of lemmas. First we recall
(cf. e.g. Mhaskar and Saff [10]) that to any w € W and n € Ny, there exists
a positive real number a, = a,(w) (called the Mhaskar-Rahmanov-Saff
number associated with w) such that

{Ilpwll = MaXy|<q, |[P(X)|w(x) forall p € Il,, and ®
[lpw]] > |p(x)|w(x) for |x| > ay.

(In this section we will use the shorthand notation a,, since the weight w will
be the same everywhere.)

Lemmal IfweW, m,neNandqgr € 11, k=1,...,m are arbitrary
polynomials then

m
w Y gkl
k=1
Proof Lety be such that

m
w ) gl
k=1

and consider the polynomial g(x) := Y j_;qx(x) sgn g(y) € Il,.
Evidently,

= |§‘|13§ [w(x) Z |g (x)l] .
=an k=1

=w(®) Y g,
k=1

2 [lwpll Z w()Ig(| =

’

m m
wY lgkl w ) lgxl
k=1 k=1

i.e. “>" here can be replaced by equality. But then by the above definition
(7) of the Mhaskar-Rhamanov-Saff number |y| < a,. The lemma is proved.
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LemMma 2 For any w € W we have

1
with some constant ¢; > 1 mdependent of n.
(In what follows, c1, c3, ... will denote constants independent of n, but

possibly depending on w.)

Proof By Corollary 1.4 in Levin-Lubinsky [5] we have for all n € Ny

llpnwl] > caay /2n'/® (10)
and
Ipn(@)|w(x) < cza, Y () < 30,20 (xeR) (1)
where
Yn(x) := max [n-2/3, 1- 'x—'} ) (12)
an
(These imply that ¢; < c¢3.) Hence by the definition (7) of xo we have

~1/2,,1/6

ca, < |pn(xo)lw(xo) < caay 2 (x0)~V4,

whence

4
Y (x0) < (0—3) n=2/3, 13)
e

Thus if xg < a,(1 — n=%/3) then by (12) ¥ (x0) = 1 — 2, which together

with (13) implies the left hand side inequality in (9) with ¢; := (53)4 The

right hand side inequality in (9) follows from (7) and (8). Lemma 2 is proved.
Denote lo(V,+2, x) and I, 42(Vy42, x) the fundamental polynomials of

Lagrange interpolation with respect to the nodes xo and —xp, respectively.

LEmMMA 3 We have

lo(Vn+2, x)

= 0(1). 14
w(x0) 1 (14)

o

Ly 2(Wnga, x)
“ ®) w(—x0)

Proof Since Q is even, the norms in (14) are evidently equal. Consider
w(x) lloWVn+2, 1)| _ w)|pa(¥)llx0 + x|
w(xo) 2x0| pn (x0)|w (x0)
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By (7), it is sufficient to estimate this quantity for |x| < a,—1 < a,. Thus
using (11), (7), (10) and Lemma 2 we obtain

~1/2,1/6,
w2 D __cm n7% o)
w(xo) 2a, (1 — 55) caa, ' "nl/®
This proves Lemma 3.
Lemma 4 We have
IXo — Ixell ~ an¥n(x)  (k=1,...,n). (15)

Proof In proving the lower estimate in (15), we distinguish two cases.

Case 11 1—|xkl/an, <2c1/ n2/3 (¢, is the constant appearing in Lemma 2).
Using the inequality

Pn(x)w(x)
X — Xk

< C4nan"3/21//,,(x)1/4 k=1,...,n, x eR)

(cf. [5, Theorem 12.3(a)]) we obtain by (7), (10) and (13)

—-1/2
| Pn (x0) |w (x0) cray Pn1/6
canay P Y, (xo)V4 T~ canay*(c3/cr)n=1/6

2 2

c5 a c |k

> D oy D (1)
c3cq n?/ 2c1c3¢4 an

lxo — |xll =

ie.
2

c
2
[xo — |xkl| = AnVYn(Xk)-
2cic3¢4

CasE2: 1 — |xkl/an = 2c1/n?® > n=2/3. Then by (12) ¥, (xx) =
1 — |x¢|/a,, whence and by Lemma 2

C1an
273

|xo — Ixk|l = (an — |xk]) — (an — x0) = an¥n(xx) —
1 1
> an P (xx) — Ean'/fn(xk) = Eanllfn(xk).

In order to prove the upper estimate in (15), again we distinguish two cases.
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Cast 1:  |x¢| < ap,. Then by Lemma 2 and (12)

c1a

X0 — [xkl| < lan — %ol +an — x| < =57 +an¥n(xk) < (€14 1Dan¥n (xi).
023

(16)

Casg 2:  |xg| > a,. Then, using the inequality

X1
1-2%
an

cs
=023

(cf. [1, Lemma 4.4]) we get

an
IXo — |xkll < lan — xol + Xk —an < 2/3 txi—an = (ates)m

< (c1 + cs)an ¥ (xi). an

Lemma 4 is completely proved.
Let

AXy = Xp — Xg+1 k=1,...,n=1).
LemMa 5 We have
W Vns2, 0l _ ) [( Yn(x) )3/“ Axy ]
|

w(xg) Y (Xk) x — xi|
tk=1,....,n—=1; k# j; |x| < ant1).

Proof Obviously,
2 _ 2

x
kWni2, x) = 55—l Un, x) k=1,...,n). (18)
xo xk

Here |x¢ — x| can be esimated as |xo — x¢| in (16), and we get

[x0 — x| < (c1 + Dapn(x)
for |x| < a,. Now if g, < |x| < ap+1, then using the relation
C6
ans1 < an (14 ;) (19)
(cf. [1, Lemma 4.5(c)]) we obtain, like in (16)

Ceap ciay
|xo — x| < |an — x|+ |x0 —an| < — m + == i = < (c1 + ce)an¥n(x).
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Thus

|0 — x| = O(@n¥n(x)) (x| < any1),

and we obtain from (18), (19), Lemmas 2 and 4

_ anVn(x)an _ Y (x)
lkWVnt2,x) = 0 (—dnllfn(xk)an) [l Un, x)| = O (Wn(xk)) |\l Un, x)|

k=1,...,n; |x| <any1, €=0 or 1). 20)

Now here by (11) and the relations

1P, lw k) ~ na 32t (k=1,...,n) 1)
(cf. [S, Corollary 1.3]) and

an

AkaW k=1,...,n—1) 22)
(cf. [1, Lemma 4.4]) we get
Wb Un, )| _ [ pn (x)|w(x)
w(xk) [ Pp (i) |w i) X — x|

an
=0 (m/fn(x)‘/“%(xk)”“lx - xkl)
-0 (‘/’n(xk))l/4 Axy
a Vax) ) I —xl

k=1,...,n—=1; x| < ant+1)- (23)

This together with (20) proves the lemma.

Now we are in the position to prove the lower estimate in (6). We have by
Lemma 2, (7), (10) and (21)

-1/2_1/6
Z (x0)|w(xo) a, '“n
0<x¢<a,/2 |Pn (xk)|w(xk)x0 0<xp<an/2 nay an

> C7n_5/6 Z 1> anl/é,
0<x;<a,/2

since by (22), there are at least con terms in the last sum.
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Let us introduce the notation
[x —xj| = min |x — x| (x eR) (24)
1<k<n

LEMMA 6 We have

el 0(a,™) if 0<a <1,
Axy ; —

o=t oo O(logn) 1 if =1, (x € R).
— o a—

T WY R

Proof Evidently, it suffices to prove the lemma for |x| < xj. It is easily
seen that (cf. [5], relation (11.10))

A
*__o0) (k=1,...,n—1,k#j, xeR)
[x — x|
and
A
* _o1y *k=2,...,n-1.
Axr—1
Thus
n—1 Jj— n—1
Axp AXp_1
— ) +o0q
;lx—xkl" ,;Ix-xkl" (k;j;rzlx—xkl"‘) @
k#j
Xj+1 X1 d
=0 / +f Y _)+o.
Xn Xj-1 [x —yl

(One of the two sums and integrals here may be empty, depending on the
position of x.) Hence performing the integrations for0 < o < 1, = 1 and
a > 1 separately, and using that

an = O(n'/*)

(cf. [1, Lemma 4.5(b)]), as well as |x|, |x1| = O(a,) we get the lemma.

Proof of Theorem 1. 'We may assume that |x| < a1, by Lemma 1. Using
the relation

“ w(x)lk Un, x)

=0 k=1,...,n) (25)
w(xe)
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(cf. Lubinsky—Moricz [7, Lemma 2.6(b)]) we obtain from Lemmas 3 and 5

|l (Vn, %)

o) =
w0 +0(®)

n—1
AWVni2, Dw =w@) Y

k#j

n—1 1/4—¢
Y (X)) Axy
(0] E 1).

k=1 (V’n(x)) |x — x| +0om

ki

Evidently

Yn(x) < [x — x|
Yu(xe) — an"/’n(xk)’

whence by arithmetic-geometric means inequality and Lemma 6 (used with
a=1)

= ( Vn(x) )3/4 Axg

= \ Yn (x1) |x — x| -

k]

"z_:l Axy + Axy

k=1 Ix - xkl gl _n—=2/3 (an - xk)3/4|x - xk|1/4
. xg|<an (1-n )

k#j kj.n

+n1/2 Axp
3/4 Z — 1/4
n [xg|>an (1-n—2/3) lx xkl
k#j.n

—1
Axy % Axg
=0 | logn + E z
T R % — xcl
k#jn k#j

1/2 -2/3
n apn
= 2. e | = Oleen),

An’  yl>an-n—23) Gn
ket jon

since in the last sum there are only O(1) terms by (22). Thus the upper
estimates of Theorem 1 are proved.
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Now we prove the lower estimate in Theorem 1. According to Lemma
4.2(d) in [1], there exist constants cjg, 11 > O such that for y := cjpan/n
we have

172 1/2

P w(y) > cna, '“y = caa, '*.

Hence and by (21), (22)

3 = Y)pn M |w(y)
AVt2, y) =
Ore2:9) an/4§k5¢1n/2 (x(% - x}%)lp;l(xk)‘w(xk)(xk =)

a 1
>cp3— —

N ja<m<an2 ¥
Ccish

> c14 Z % ~ logn,

k=6‘15

and Theorem 1 is completely proved.

3 LOWER ESTIMATE OF THE NORM OF PROJECTION
OPERATORS FOR HERMITE WEIGHTS

The problem of stating a Faber-type theorem for general systems of nodes is
anatural question. In this respect, unfortunately, we have to restrict ourselves
to the special Hermite weight (5). As we will see, the main reason for this
restriction is the lack of proper asymptotics for orthogonal polynomials with
respect to weights w € W.

On the other hand, the result we are going to state is more general from
another point of view. Namely, instead of Lagrange interpolation, we will
consider linear projection operators L, : C,,(R) — II, endowed with the
finite weighted norm

llwo()La(f, 0|
Lulllw, = ke AV E2A1 26
Enlllun = 2 oy Two@ FOOI 20)

THEOREM 2  For any projection operator L, we have

1 Lnllw, = c16logn.
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In particular,
CoROLLARY 2 For any system of nodes X, we have

n
e 2N 2|l (Xn, X))
k=1

M) w, = > ci6logn. @27

COROLLARY 3 Suppose the weight w(x) = e~ 2™ satisfies

lim inf Q(f )1 (28)
x—>00 X 2

and f € Cy(R) is such that the n-th partial sum S,(f, x) of the expansion

of f in terms of the orthogonal polynomials { pi(x)}72, with respect to w(x)
exists. Then

n

3 pe®)pe(y)

k=0

1Snlllwy, = dy

o0
X2 / Py

—00

> c16logn.

29

In order to prove these corollaries, we have to show that the stated
expressions (27) and (29) are indeed the norms of the corresponding operators
defined in the sense of (26). First, note that by (28) the integral in (29) exists.
Then, on the one hand, the expressions in the middle of (27) and (29) are

easily seen to be majorized by the corresponding norms on the left hand sides,
by using (3) and

o0 n

S0 = [ w0 Y p@no)dy,
0 k=0

respectively. On the other hand, denoting by x a point where the norms in
(27) and (29) are attained, we can define an fy € Cy, (R) by

folxx) = ¥ 2sgn (X, %) (k=1,...,n),

fo(x) be linear and continuous between these nodes, constant in R\ (x,, x1);
and

fox) = &sgn Y p(pe(),
k=0

respectively. Applying the operators for these functions we can see the
opposite inequalities in (27) and (29), whence the equalities.
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To prove Theorem 2 we need some lemmas. Let 4, (x) be the nth degree
orthonormal Hermite polynomial (with respect to the weight e ™ ’ ), and define

n X

1/4 2
wn(x) = m1/2 (5) (1 - 2n—+—1) By (x). (30)

LemMA 7  We have

o0
.2
] e * wﬁ(x) dx > c174/n.
—0oQ

Proof We get

/00 - 2(x)dx—n\/E 1 2 foo e x2h(x)d
. Om W2l Tz n(¥) X

! /oo e_"zx“hn(x)2 dx] . 31

+(2n +1)? J_

Using the recurrence relation

XV 2Ry (%) = 1hp_1(x) + V0 + 1y (x)

(cf. Szego [14], formula (5.5.8) rewritten for the orthonormal polynomials),
we get

n n+1
x?hi(x) = —Z-hﬁ_lm + T”3+1"‘) + V@ + DAy (X)hnt1 (),

ie.

© ., 2n+1
/ e x*hi(x)dx = .
—00

Iterating the above recurrence relations we get

-1

x4hﬁ(x) = ______n(n )
4

where the dots mean either the square of Hermite polynomials with positive

coefficients, or the product of two Hermite polynomials of different degrees.
Hence

B2 ) +...,

o0
-1
/_oo e"x2x4hi(x) dx > r_zg_n_z‘_)

Substituting these values in (31) we get the lemma.
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For |x| < +/2n + 1, introduce the notation

x =+/2n + 1cos¢,. 32)
Lemma 8 We have

sin®? ¢, sin [ 5L (sin 2 — 2¢) + 2] + O(n™1/2)
if x| <20 +1— S5,

O(n-—l/Z)
if |lx| —2n+1] < 55,

where c1g > 0 is an arbitrary constant.

e"‘z/zwn x) =

Proof We make use of the following asymptotic formula:

2n

1
: (sin 2¢y,

3 1
—2¢n) + T”] 40 (nsin3 ¢n) © < <)

(cf. Erdélyi [2], formula (6.12) transformed to the orthonormal Hermite
polynomials). Hence and from (30)

e 2p,(x) = w22 A4 in= 12 ¢, sin [

2n

4

1
+0<m> (O<¢n<ﬂ).

By symmetry, it is sufficient to prove the lemma for x > 0. Now if
O0<x<+2n+1- ,f,——‘}%, then it is easily seen that

singn > Y1, (33)
n

1 3
e 20, (x) = sin®? ¢, sin[ + (sin2¢, — 2¢,) + —H

whence the first statement of the lemma is obtained. To prove the second
statement we use the estimate

c
@) =007 (Ix— V2 F 1l = 1)
n

(see Szegd [14], formula (8.22.14), transformed again to the orthonormal
Hermite polynomials). Hence and from (30)
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e 2 g ()] = O An~2Bn=112) = 0 (n=1/2)
(k-vn+il= %)
nl/6

LemmA 9 We have

n1/4]

[Z Ok (X)On—k (¥) = Opk (X)On £ ()
k

_a24?
e 2

=0(1) (x,yeR).

k=3

Proof We distinguish two cases.

Case 1 |x|, |yl <2 —[nV/4]) +1 - G:[;lm]-)l—,g Then we can use the
first asymptotic formula in Lemma 8 for all w, 4 in question. From (32)

x=4+2n+1cos¢, =+/2(n £ k) + 1cos¢,ir
1
- 1741 _
(k_3,...,[n ], sin¢g, > 2n1/3)'

Consider the function

g(k) := sin2¢n4x — 2Pn+k

2n+1 2 +1
=2 1-— 2
°°S¢"\/2n+2k+1< 2kl d"’)

2 arccos n+1 cos ¢,
Von+2k+1 "

1
147
(lkl S [n ]3 Sln¢n Z 2n1/3) .

We obtain
) 4/2n 4+ 1cos ¢, 2n+1
! k) = — ! 2 = - 2 ’
g ke S Pk = o AV T 2ok 1 o O
whence

2 sin 2¢,
/ —
g0 =5 —1
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and
1
2nt1 ) = 0(n™/3)
nz\/ 1 ~ 53ty cos? ¢n

1
1/4 :
(lkl <[, sing, > W) .

, 1
8" ()| =0 (—2 +
n

Thus a second degree Taylor expansion of g(k) about k = 0 yields

2 sin 2¢,
2n+1

$in 2@n+k — 2¢n+k = Sin2¢y — 26 + k+ O0(n~/%)

1
(lk| =< [n1/4], sin g, > m) .

Hence
2n+2k+1 .
—————4———(sm 20n+k — 2¢n1k)
2 1
- ”: (5in 26 — 2) + (sin 26 — )k + O(n~V/5)

1
1/4 :
(|k| <[n / ], sing, > W) .

Similarly, we can easily check that

sin Gpik = sing, + O ( ) =sing, + O(n~*3)

n sin ¢,
1
/47 o
(|k| <[n'*, sing, > W) .
Thus the first part of Lemma 8 applied for n + k instead of n gives

¢ 2 wyar (x) = sin>? ¢, sin(Eek + B) + O(n~1/5)

1
_ 1/47 o _
(k_3,...,[n 1, singn = 2n1/3)'
where

2n

1 (6in 26, — 26n).

oy 1= 8in2¢, — Py, PBn = 7
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Similarly to (32), let
y=+2n+1cosy, =+/2(n Lt k) + 1cos¥n+x
1
_ 1/47 o .
(k—3’~~-’[n / ]9 Sm'/fn Z 2”1/3) 3
then

¢V 2 wpar(y) = sin®? Y, sin(£ynk + 8,) + 0(n~ /),
where

2n+1

Yo = SIN 29y, — ¥y, 8, = 7

(sin 29, — 291).

Hence we obtain

[%] On—k (X)0n—k (¥) — O (X)On1£(Y)

k=3 k

242
2

[n1/4)  sin(ek+By,) sin(ynk+8,) log n
o . —si ( nk“' n) i (nk_‘sn)
= (sin ¢y sin y,)? ; AL S | + 0 (,,1/6)

‘”S'S] sin(an — yn)k

k

']

sin(o, + yn)k
+Y p

k=3

=o(
k=3

Case2: 2+ D) +1 — oopmpm < max(xl,ly) <

V2 — [nV4) + 1+ (—n_—[n%,q—]wg Then at least for one of x and y, the second
part of Lemma 8 applies. Since the first part automatically yields the bound
0(1), we get in this case

logn
+ n1/6> = 0(1).

1/4
B 0p—k () On—k (9) — Otk (X)On £ ()

k

24y
e 2

k=3

Since for sufficiently large n’s

2
V2 + [nV/4) +1 - G E A =

V2(n =AY +1 - !
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the lemma s proved so far forall |x|, |y| < v/2(n — [n1/4]) + 1+(7'_F11/4—W‘/3.
But it is easily seen that the Mhaskar-Rahmanov-Saff result (8) extends to
polynomials of two variables in an obvious way. (One just has to fix one
variable, and apply the one variable result to the other variable.) In our
case, for the weights e'/2, ¢=¥'/2 and polynomials of degree at most
n + [n1/4] + 2 in both variables, the M-R-S number is

V201 + 1V +2) < V20— D + 1+

for sufficiently large n’s, which means that the lemma is proved for all
x,y€R.

Proof of Theorem 2. Consider the polynomial
T 0k () 0n k() = Dk (V) 0n—k (Y)
k k(y) — wn— -
On(x,y) = ) ————t g L
k=3 k

of two variables, and apply the projection operator L, for it with respect to
x. Using the reproducing property we obtain

n') _
La@ny) )= 3 On+k (V) Ln (@nks X) — On—k (X)0n—k (¥)

k=3 k

whence

n'

Lo(QnC3),9) = )

k=3 k

Ontk (V) L (@nks ¥) — WP ()

Multiplying both sides by e™” ’ integrating over R and using the orthog-
onality of the Hermite polynomials (see (30)), as well as Lemma 7 we get

/4

®© 2 1 © 2
f e Ln(Qn(,y), dy =Y % [ eV op_ (dy (34
k=3 e

—00

[n'/4] 1

2017~/ﬁz %

k=3

> ci9+/nlogn.
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By a result of Freud [4], here with suitable cy9, c21 > 0

Czlﬁ 5
Sczof e |Ly(Qn(, y), dy

—C14/ 1

< 2¢20¢214/1€ % | L (Qn (-, Y0), Y0)!

< 2c20c214/n€ 2|6 2 Ly (Qn (-, y0), X
35)

\ f € Lu(Qn(+ y), y) dy

—00

with a properly chosen |yo| < c214/n. Since by Lemma 9
12 Qn(x, yo)ll = O (e472),
we finally obtain from (34) and (35)

e~ PLa(@C,y0) D oy
e 72Qn (e, yo)ll - = '

I Ln |l lwy =

Remark It is clear from the proof that if in the definition of the norm
of projection operator, instead of f € Cy,, we restrict ourselves to f €
I1,, (144}, then the statement remains true.

4 HERMITE-FEJER INTERPOLATION

Take two arbitrary weights wi(x) < wz(x) (x € R) both satisfying the
conditions (1)—(2), and for an arbitrary f € C,,(R) and system of nodes &,
consider the uniquely determined Hermite-Fejér interpolating polynomial
H(f, &,, x) € Ilp,—; subject to the conditions

H(f, X, x0) = fO), H'(f, X, x)=0 (k=1,...,n).

In analogy with the finite interval case, we are interested in the following
problem: under what conditions on w1, wa, &, will the relation

lim_ {|wy ()f (¥) — H(f, X, 0)][| =0 forall f € Cu,(R)  (36)

hold.

The reader will at once notice that, compared to the Lagrange interpolation,
there is an essential difference in posing this question, namely we have two
weights instead of one. Of course, the ideal situation would be w;(x) =
wz(x), but at present we are unable to state any result in this respect.



LAGRANGE AND HERMITE-FEJER INTERPOLATION 119
Let us mention that Lubinsky [6, Corollary 2.4(a)] proved (36) when

w?(x)
A+1Q @D+ |x)’
Wa(x) = wX(x)(1+ Q' @NPA + Ix)?,

wi(x) =

and X, = U, are the roots of the orthogonal polynomials p, (x) with respect
to any weight w € W. Here « > 1, B > 2 depend on the weight w and on
the orthogonal polynomials p, in a complicated way.

Our purpose in this section is to improve this result, and also to give an
error estimate similar to the case of finite interval.

THEOREM 3 Letw € W,

w?(x)

A+ |xD173° w2 (x) = w2(x)(1 +1Q'X))).

wi(x) =

Then for an arbitrary f € Cy,(R) we have

Hwi()Lf () = H(f, Un, )11l =
0 (nrer+ (%) oan £ EL=) - n <2

k=0 37

where ap = 1 and ay, k > 1 are the M-R-S numbers associated with w.

Remarks 1. The parameter m < 2n — 1 is arbitrary, and has to be chosen
optimally. It is readily seen that if m tends to infinity sufficiently slowly then
we have convergence in (37). In the particular case

wx)=e P, E(fly,=00"P)  (@>1, >0)

we obtain (with a proper choice of m)

B
0(%%”) if 1a+p8<1,
@)~ HE U 0l = {0 (854) i Ya+p=1,

0(%%5) if 1o+ B> 1.
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2. Since

Wi(x) Swi(x) Swr(x) <w2(x)  (x €R),

our theorem is stronger than the quoted result of Lubinsky [6] (namely, it holds
for a wider class of functions, with a larger weight in the error estimate).

Proof of Theorem 3. Letm < 2n — 1, and let g,, € I1,, be a polynomial
such that

llwi @)L &) = gn @] < [[w? @LF*) — gm )]
< Mlw2(f — gmll = En(f)w,-
Using well-known formulas for the Hermite-Fejér interpolation we get

Nwi(xX)Lf (x) — H(f, Un, x)]]
< w1 Lf (x) = gm O + w1 () gm (x) — H(gm, Un, x)]I|
+ llw1 ) H (gm — f, Un, x)|

1 " w2 () Uy, x)
Em(Fw, | 14 | ———=
= En(P) [+ a7 & e+ 10D
1 = 2,872

+ (—I—W;mm(xk)nx—xuw @ Un, )|
where

vk(x):=1—%j'—g—’3(x—xk) k=1,...,n).
Since

@) =00+ A+ 1QDIx—x)  *k=1,...,n)
(cf. Lubinsky [6], Lemma 4.3(iii)), we get

Z": w2 () Up, x)

w2 (xx)

Nw1()Lf ) = H(f, Un, O < Em(w, [1 +

|

(38)

k=1

HEm(Fw, + [lwg,11]

1 i x — xe|w? (0)IZ Un, x)
(1 + XD &~ w?(xx)
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Here using the notation (24), as well as (25), (11), (21) and Lemma 6 with
o =2,

n 20,112 —1,,~1/2
DR ACE) =0<1>+0(Z a; 'y ) )

= v 7 n2an Y () V2 (x — xi)?

Axg
=01+ 0 —Q0 =001 R).
M+ (% )1/2>Z(x_x)2 M e )(39)

Similarly, we obtain for the other sum

Z It = i w2 ) Uy, %)
a+ |x|>1/3 wE(xk)

—1/21//—1/4( )
=0
nay Py’ () (1 + 1x )13
o an Axy
n¥n 2 () (1 + 1xD3 ) (Gt 18 — %l

aplogn
-0 (40)
( 2+ Ix|)1/3)

Here, considering the definition (12) of v, (x) we get

1
2 + |x /3

whence and from (38), (39) and (40)

=0m'a;'? (xeR),

Nwi(D)Lf %) = H(f, Un, O]l = O(Em(f)w,)

+lwiq ||0((n) logn> @1)

Thus it remains to estimate ||w?q/, ||. Let 2° < m < 25*!, and consider

N
Gn =40+ Y_(@2—1 — q2r-1-1) + (gm — g2 -1). (42)
k=1
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Here

Hw?(g2e—1 — ga-1-DII < llwa(gar—1 — OIl + llwa(ga-1-1 — Ol
52E2“"—1(f)w2 (k"_': 1,...,S)

and similarly

lw?(@m — g2 -DIl < 2E2—1(f)uw,-

Hence by the Markov type estimate for the weighted norm of the derivative
of a polynomial (see Levin and Lubinsky [5])

2*E k-1 _ w 21 E; ws
llw? @y — gyr_)ll = O (-——2——@—) —0 ( )3 _@_)

a1 ik, G
k=2,...,5+1),

and similarly

Ej_ wy 2 E; wy
1wy — g3l = O (%) =0 (Z —(-D—) :

m - G
(Here we used the obvious relation ax_j (w?) < ax(w?) = aye-1(w).) Thus
by differentiating (42)

i @

2° m
ZE(f)w ZEi(f)w
2 1 —_ 1] 2 _ )
Substituting this into (41), the theorem is completely proved.

Remark It is interesting to note that the use of the system of nodes V2
instead of U, does not improve the result (in sharp contrast to Lagrange
interpolation).
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