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For a wide class of weights, a systematic investigation of the convergence-divergence behavior
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1 INTRODUCTION

Pointwise estimates of the error of Lagrange interpolation on the real line
are scarce and not quite satisfactory. Perhaps the most significant is Freud’s
[3] 1969 result on the roots of Hermite polynomials for functions being
uniformly continuous on R. Results of Nevai [11, 12] should also be
mentioned. The characteristic of these results is either the restriction of the
range of error estimate to a finite interval, and/or severe growth restrictions
at infinity on the function (like in Freud’s theorem). As Nevai mentions
in his survey paper [12] in 1986, "There have been no new developments
regarding pointwise convergence of Lagrange interpolation taken at zeros
of orthogonal polynomials associated with Hermite, Laguerre or possibly
Freud-type weights in the past ten years...". Indeed, a systematic treatment of
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100 J. SZABADOS

weighted Lagrange interpolation for a wide class of weights and systems of
nodes is a basic problem here. Perhaps the lack of this type of results is due
to the fact that the theory of weighted polynomial approximation and that of
orthogonal polynomials for general weights has been developed only in the
last 20 years.

It seems that now we have sufficieiat knowledge to offer the beginning of
such a systematic treatment ofweighted Lagrange interpolation. In this paper
we introduce the analogue of the Lebesgue constant, and investigate its order
of magnitude. Also, in case of a special weight we present a Faber type result
for general systems of nodes. In the proofs we make heavy use of estimates
of Lubinsky and his collaborates on orthogonal polynomials with respect to

Freud weights.
To begin with, let us mention that if the weight w(x) e-o(x) satisfies

Q(x)
lim (1)
Ixlo log Ixl

(i.e. w-1 tends to 0 faster than any polynomial when Ixl ), as well as
some mild regularity conditions and the Akhiezer-Babenko relation

Q(x)
dx cx (2)

l+x2

then for functions f(x) from the class

Cw(R) := {f f is continuous on R and lim w(x)f(x) 0}

we have

En(f)w "= inf IIw(f- P)II 0 as n --+ cxz,
pE I’ln

where Fin is the set of polynomials of degree at most n, and II- II denotes the
supremum norm over R.
Now let R’n "= {xl, x2 Xn be an arbitrary set of (pairwise different)

nodes and

n

,n, X) "= f(Xk)lk(,n, X) (3)L(f
k=l

the corresponding Lagrange interpolation polynomial of f 6 Cw(R),
where lk(Xn, x) l’In-1 are theso-called fundamental polynomials, i.e.

l (,’Vn, xj 3kj, k, j 1 n. The classical way of estimating the error
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of Lagrange interpolation is the following: take a Pn-1 E [’In-1 such that

En-1 (f)w [Iw(f pn-1)ll (the existence of such a p is obvious), and
consider

(4)

Thus if we introduce the Lebesgue function

n Ilk(Xn, x)l

k=l

and Lebesgue constant

then (4) takes the form

IIw(f L(f, A:, x))ll < En-1 (f)w(1 A" X(n)w).

Under different structural properties on the function, we have a consider-
able knowledge of the behavior of the quantity En-1 (f)w (see e.g. the recent
survey paper [8] of D. S. Lubinsky). Thus what remains to be investigated is
the Lebesgue constant )(A’n)w.

2 THE LEBESGUE CONSTANT OF SOME SPECIAL SYSTEMS
OF NODES

In general, the weight w and nodes Xn are chosen independently. However, if
we expect a reasonable upper estimate for the Lebesgue constant X(2(n)w then
we have to assume some connection between the two data. The most natural
assumption, as we shall see, is that Xn is the set of roots of the orthogonal
polynomials with respect to the weight w2. Quite surprisingly, it will turn
out that for a wide class of weights, this is not an optimal choice with respect
to the order of magnitude of )(Xn)w. Therefore we shall construct another
system of nodes to achieve this optimal order.
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The class of weights W we are dealing with is defined as follows (see
e.g. Criscuolo, Della Vecchia, Lubinsky and Mastroianni [1]). We say that
w(x) e-Q(x) if Q R --+ R is even, continuous in R, Q,t is continuous in
(0, c), Q’ > 0 in (0, x), and for some A, B > 1,

(xQ’(x))’
A < < B (x (0, cx)).

a’(x)

Of course, if w 6 V, then w2 6 ]/V. The model case is the Freud type
weights w(x) e-Ixl" ct > 1, when ot A B. It is also easy to see that
for any w 6 A; the conditions (1)-(2) are satisfied.

In Theorem 1 below we will be concerned with the orthonormal polyno-
xmials {Pn( )}n=0 with respect to a weight w2 6 W. We shall denote by

Xl > x2 > > Xn the roots of Pn, and let b/n := {Xl Xn}. With a little
effort, one can deduce from Theorem 1.1 of Matjila [9] that for any w 6 V
we have

.(l.’[n)w O(nl/6).
On the other hand, Sklyarov [13, Theorem 2(b)] proved for the Hermite

weight

wo(x) :-- e-x2/2 (5)

that ,(lgn)wo n 1/6. (Here and in what follows means that the ratio of
the quantities on the left and right hand sides remains between two positive
bounds independent of n, but possibly depending on the weight.) As we shall
see after the proof of Lemma 5, this can be easily extended to

,(lgn)w n 1/6 (w W). (6)

Our purpose in this section is to define a system of nodes such that the
corresponding Lebesgue constant is of smaller order. Let x0 >_ 0 denote a

point such that

IPn(Xo)lw(xo) IlPnWll (7)

(we will see that xo # 0).

THEOREM 1
have

For any w 1/V, with the notation ]’;n+2 .’= Atn [,3 {x0, --X0 we

(n+2)w log n.
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Theorem 1 shows that the system of nodes Vn+a is superior over the
set of roots/gn of the orthogonal polynomials. An obvious consequence of
Theorem 1 is the following

COROLLARY 1

then

Let w A; and f Cw(R). If

En(f) o iogn

lim IIw(x)[f(x) L(f, "l,)n+2, x)]ll 0.
n---o

The proof of Theorem 1 is divided into a series of lemmas. First we recall
(cf. e.g. Mhaskar and Saff 10]) that to any w 6 W and n 6 No, there exists
a positive real number an an(W) (called the Mhaskar-Rahmanov-Saff
number associated with w) such that

Ilpwll maxlxl<_an Ip(x)lw(x) for all p Fin, and
(8)Ilpwll > Ip(x)lw(x) for Ixl > a.

(In this section we will use the shorthand notation an, since the weight w will
be the same everywhere.)

LEMMA 1 If W l/V, m, n N and q Fin, k 1 m are arbitrary
polynomials then

gn

w Iql
k=l

max w(x) Iqc(x)l
Ix <-a" k=l

Proof Let y be such that

to Iqkl w(y) Iq(y)l,
k=l k=l

and consider the polynomial q(x) := Zkm__l qk(x) sgn q(y) Fin.
Evidently,

wy Iql >_ Ilwpll _> w(y)lq(y)l-- w Iql
k=l k=l

i.e. ">" here can be replaced by equality. But then by the above definition
(7) of the Mhaskar-Rhamanov-Saff number lYl < an. The lemma is proved.
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LEMMA 2 For any w
_

142 we have

( c,)an 1 n- < xo < an (n No) (9)

with some constant Cl > 1 independent ofn.

(In what follows, cl, c2 will denote constants independent of n, but
possibly depending on w.)

Proof By Corollary 1.4 in Levin-Lubinsky [5] we have for all n 6 No

[Ipnwl[ >_ c2al/2n 1/6

and

Ip(x)lw(x) <_ c3al/2n(x)-l/4 <_ c3al/2n 1/6 (x R)

where

n(X) :-- max ln-2/3 1----Ixl}an
(These imply that c2 < c3.) Hence by the definition (7) of x0 we have

(10)

(11)

(12)

whence

c2al/2n 1/6 < IPn(XO)lW(xo) <_ c3al/2n(XO)-1/4,

(--2)
4

c3 n_2/37(xo) <_ (13)

Thus if xo < an(1 n-2/3) then by (12) grn(XO) 1 xo which togetheran
C3with (13) implies the left hand side inequality in (9) with c "= The

right hand side inequality in (9) follows from (7) and (8). Lemma 2 is proved.
Denote lo(Vn+, x) and 1,+(V,+, x) the fundamental polynomials of

Lagrange interpolation with respect to the nodes x0 and -x0, respectively.

LEMMA 3 We have

w(x)
lO()n+2’ x)

w(xo)

Proof Since Q is even, the norms in (14) are evidently equal. Consider

1/0(’12n+2, x)l w(x)lp(x)llxo / xlw(x)
w(xo) 2xoIPn(XO)lW(XO)
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By (7), it is sufficient to estimate this quantity for Ix[ an-1 < an. Thus
using (11), (7), (10) and Lemma 2 we obtain

1/002n+2, x)[ c3al/2nl/62an
< o().w(x)

W(xo) 2an (1 n--/3 ) c2al/2nCl /6

This proves Lemma 3.

LEM4A 4 We have

Ixo Ixll ann (Xk) (k 1 n). (15)

Proof In proving the lower estimate in (15), we distinguish two cases.

CASE 1: 1--lXkl/an < 2cl/n2/3 (Cl istheconstantappearinginLemma2).
Using the inequality

p(x)w(x)
X Xk

<_ c4na3/2n(x)l/4 (k 1 n, x R)

(cf. [5, Theorem 12.3(a)]) we obtain by (7), (10) and (13)

[Pn (xo w(x0) c2a1/2n 1/6
Ix0 Ixkll >_ >_

c4na3/2n(xo)l/4 c4na3/2(c3/c2)n-1/6
>c22an c

c3c4 n2/3
> an 1

2Cl C3C4 an ]

i.eo

Ix0- Ixkll > ann(Xk).2Cl c3 c4

CASE 2: 1 --Ixkl/an >_ 2cl/n:z/3 > n -:z/3. Then by (12) lrn(Xk)
1 Ixl/an, whence and by Lemma 2

Ix0 Ixll (an Ixl) (an xo) >_ ann(Xk)

1 1
>__ ann(Xk) "ann(Xk) -ann(Xk).

Clan

n2/3

In order to prove the upper estimate in (15), again we distinguish two cases.
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CASE 1" [Xk[ < an. Then by Lemma 2 and (12)
Clan

Ixo-Ixgll _< lan -xol +an lxkl < +anaPn(Xk) < (Cl + 1)ann(Xk).
(16)

CASE 2: Ixkl > an. Then, using the inequality

1 Xl c5<
n2/3an

(cf. 1, Lemma 4.4]) we get

Clan an
Ixo- Ixkll _< lan x0l + xk an < q-Xl- an < (el d-C5)n2/3

_< (Cl + c5)anrn(Xk). (17)

Lemma 4 is completely proved.
Let

AXk "= Xk Xk+l (k 1 n 1).

LEMMA 5 We have

11) (Xk) n(Xk) Ix Xk[

(k 1 n 1; k :fi j; Ixl an+l).

Proof Obviously,

x x2

2 lk (/’n, x)IkO2n+2, x) x xk
(k= 1 n).

Here Ixo x can be esimated as Ixo xl in (16), and we get

(18)

IX0- Xl <__ (Cl + 1)anOn(x)

for Ixl an. Now if an < Ixl an+l, then using the relation

( c6)an+l <an l+--

(cf. 1, Lemma 4.5(c)]) we obtain, like in (16)

(19)

C6an C an
Ix0- xl < lan- xl + Ixo- anl < + < (Cl q-c6)ann(X).
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Thus

Ix0- xl-- O(ann(X)) (Ixl _< an+l),

and we obtain from (18), (19), Lemmas 2 and 4

) (n(x)) Ilk(lMnx)[lk()2n+2, x)-- 0 (a--n.lrn.(X)an Ilk(lg, x)l- O
,(x)Ik ann (Xk)an

(k 1 n; Ix <_ a/x, 0 or 1). (20)

Now here by (11) and the relations

IPn (x,) lw(x,) na3/2n (Xk) l/4 (k 1 n) (21)

(cf. [5, Corollary 1.3]) and

Ax (k 1 n 1) (22)
nn(Xk) 1/2

(cf. [1, Lemma 4.4]) we get

w(x)ll(L4n, x)l
W(Xk)

IPn(X)lW(X)
Ip’,, (xk)lW(xk)lx xkl

=0
nn(X)l/4n(X)l/41X Xll

litn (X) IX Xkl
(k 1 n- 1; Ixl an+l). (23)

This together with (20) proves the lemma.
Now we are in the position to prove the lower estimate in (6). We have by

Lemma 2, (7), (10) and (21)

)(lgn, xo)w >_
Ipn(xo)lw(xo)

> c7
O<Xk <a,/2 IPn (Xk)lw(x)x

>_ c7n-5/6 1 >_ c8nl/6,
O<Xk<an/2

-1/2nl/6an
-3/2

O<Xk<_an/2 nan an

since by (22), there are at least c9n terms in the last sum.
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Let us introduce the notation

Ix xj min IX Xk
l<k<n

(x 6 R) (24)

LEMMA 6 We have

0 1-t(an if 0<or< 1,
O(logn) ot (x 6 R).if 1,

kjk=l
x Xklt 0 k, a. -1 if Ct > 1

Proof Evidently, it suffices to prove the lemma for Ix _< X l. It is easily
seen that (cf. [5], relation (11.10))

and

AXk
Ix Xk

=O(1) (k= 1 n-l, kj, x 6R)

Axk
AXk-1

O(1) (k 2 n- 1).

Thus

AXk Axk Axk-1
Ix x Ix x n +0 +o(1)

=1 \k=j+2 Ix Xk
kj

((lxj+l fxf ) dy )=0 + +0(1).
\x

_ Ix-yl

(One of the two sums and integrals here may be empty, depending on the
position of x.) Hence performing the integrations for 0 < ot < 1, ot 1 and
ot > 1 separately, and using that

an O(n 1/A)

(cf. [1, Lemma 4.5(b)]), as well as Ixl, Ixll O(an) we get the lemma.

ProofofTheorem 1. We may assume that Ix _< an/l, by Lemma 1. Using
the relation

w(x)l(btn, x)
w(x)

O(1) (k-- 1 n) (25)
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(cf. Lubinsky-M6ricz [7, Lemma 2.6(b)]) we obtain from Lemmas 3 and 5

Evidently

n(x Ix Xk
<2+

l[tn (Xk an aPn (xk
whence by arithmetic-geometric means inequality and Lemma 6 (used with

or=l)

( l[rn(X 3/4 AXk
=1 Ik On (Xk ,] Ix x
#j

= Ix-xl
k#j

nl/2
3/4an

Axk- (an Xk)3/4lx Xkl 1/4
Ix I<_an (1-n-2/3)

kTj,n

IXkl>an(1-n-2/3) IX xkll/4
kCj,n

AXk
nt-0 log n +

iXkl<an(l_n_2/3) an Xk Ix xkl
kTj,n k#j

nl/2 ann_23 t3/4 1/4 /6
O(logn),

an iXkl>an(l_n-2/3) an rt-
k#j,n

since in the last sum there are only O(1) terms by (22). Thus the upper
estimates of Theorem 1 are proved.
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Now we prove the lower estimate in Theorem 1. According to Lemma
4.2(d) in [1], there exist constants Cl0, Cll > 0 such that for y := cloan/n
we have

-1/2IPn(Y)Iw(Y) >_ Cllal/2y cl2an

Hence and by (21), (22)

Z(Vn+2, y) >
(xg y2)lpn(y)lw(y)-" (x -X)[pn(X)IW(X)(Xk- y)a/4<_x<a./2

>_ 13--
n

/4<x,<a,,an /2 Xk

>__. C14 logn,
k-’cl5

and Theorem 1 is completely proved.

LOWER ESTIMATE OF THE NORM OF PROJECTION
OPERATORS FOR HERMITE WEIGHTS

The problem of stating a Faber-type theorem for general systems of nodes is
a natural question. In this respect, unfortunately, we have to restrict ourselves
to the special Hermite weight (5). As we will see, the main reason for this
restriction is the lack of proper asymptotics for orthogonal polynomials with

respect to weights w
On the other hand, the result we are going to state is more general from

another point of view. Namely, instead of Lagrange interpolation, we will
consider linear projection operators Ln Cwo (R) --+ IIn endowed with the
finite weighted norm

IIwo(x)Zn(f,x)ll
IllLnlll00 :- sup (26)

ofeCoo(R Ilwo(x)f(x)ll

THEOREM 2 For any projection operator Ln we have

IIILlll00 >_ Cl61ogn.
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In particular,

COROLLARY 2 For any system ofnodes ,n we have

Z(,,,),o
n

e-x2/2 eX/211k(,n, x)[
k=l

>_. C16 log n. (27)

COROLLARY 3 Suppose the weight w(x) e-Q(x) satisfies

Q(x) 1
lim inf > (28)
x x2 2

and f Cw(R) is such that the n-th partial sum Sn(f x) of the expansion

off in terms ofthe orthogonalpolynomials {p(x)}=o with respect to w(x)
exists. Then

F n

Illanlllwo e-X2 ey2/2w(y) pk(x)pl(y) dy Cl610gn.

(29)

In order to prove these corollaries, we have to show that the stated
expressions (27) and (29) are indeed the norms ofthe corresponding operators
defined in the sense of (26). First, note that by (28) the integral in (29) exists.

Then, on the one hand, the expressions in the middle of (27) and (29) are

easily seen to be majorized by the corresponding norms on the left hand sides,

by using (3) and

Sn(f x) w(y)f(y) p(x)p(y) dy,

respectively. On the other hand, denoting by : a point where the norms in

(27) and (29) are attained, we can define an f0 6 Cw(R) by

fo(xl) eXk/2sgn ll(?(n, ) (k= 1 n),

f0 (x) be linear and continuous between these nodes, constant in R \ (Xn, X1);
and

n

fo(x) ex2/Zsgn Z p()p(x),
k=0

respectively. Applying the operators for these functions we can see the

opposite inequalities in (27) and (29), whence the equalities.
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To prove Theorem 2 we need some lemmas. Let hn(x) be the nth degree
orthonormal Hermite polynomial (with respect to the weight e-X2), and define

O)n(X)--Trl/2 (Ft)l/4 ( x2 )1
2n+1

hn(x). (30)

LEMMA 7 We have

f

_
2
X dx > /-.e-xZ o)n C17

Proof We get

2
X nn (X) dxe-xZo)n (x) dx :rt" 1 e-X 2 ,_2

2n+l

+
(2n + 1)2

e-Xx4hn(x)2 dx

Using the recurrence relation

(31)

xc/-hn x /hn-1 x -+- /n d-- lhn+l (x)

(cf. Szeg6 [14], formula (5.5.8) rewritten for the orthonormal polynomials),
we get

n + 1 2 /n(n 1)hn- (x)hn+l(X),
rt 2 (x) q- hn+ (x) q- -’1-xZhZn(x) - hn-1 2

i.e.

2n+l-x 2e x nn(x) dx--.
2

Iterating the above recurrence relations we get

4 2 n(n-1) 2x hn(x
4

hn_2(x) "k-

where the dots mean either the square of Hermite polynomials with positive
coefficients, or the product of two Hermite polynomials of different degrees.
Hence

4 2e-Xx hn (x) dx >
n(n 1)

Substituting these values in (31) we get the lemma.
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For Ix /2n + 1, introduce the notation

x /2n + 1 cos qn- (32)

LEMMA 8 We have

3rr 1/2)sin3/2 tn sin ILl-[ (sin 24n 2qn) + q-] + O(n-

e_X2/2O)nZX, if Ixl < /2n + 1 c18
rill6

O(n-/)
if lxl /2n + 11 n--’<

where c18 > 0 is an arbitrary constant.

Proof We make use of the following asymptotic formula:

e-XU2hn(x) 7r-1/221/4n-1/4 sin-1/2 4n sin F 2n +, 1
(sin 24,,

4

( 1 )-2b,) + + O (0
n sin 4n

(cf. Erd61yi [2], formula (6.12) transformed to the orthonormal Hermite

polynomials). Hence and from (30)

e-X/2oon (x) sin3/2 bn sin 2n .+,, 1

k 4

(1)+O
n sin3/2

(sin 2bn 2bn) q- ]
(0 < 4. <

By symmetry, it is sufficient to prove the lemma for x > 0. Now if
0 _< x _< /2n + 1 n--’c18 then it is easily seen that

sin qn >
hi

(33)

whence the first statement of the lemma is obtained. To prove the second
statement we use the estimate

e-X2/2lhn(x)l-- O(n-1/12) c18 )Ix- /2n + 11_< n-
(see Szeg6 [14], formula (8.22.14), transformed again to the orthonormal
Hermite polynomials). Hence and from (30)
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LEMMA 9

e-X2/2lOgn(x)l O(nl/4n-2/3n-1/12) O(n-1/2)
c18+

We have

x2+y
e

O)n-k(X)O)n-k(y) Wn+k(X)Wn+k(y)

k=3 k
0(1) (x, y 6 R).

Proof We distinguish two cases.

Then we can use theCASE 1" IXl, [Y[ < V/2(n [nl/4]) q- 1 (n_[nl/4])l/6.
first asymptotic formula in Lemma 8 for all COn+/-k in question. From (32)

x /2n + 1 cos bn V/2(n 4- k) + 1 cos dPn+/-k

( 1 )k--3, [n 1/4] sin4n >
2n/

Consider the function

g(k) :- sin 2bn+k 2n+k
2n + 1 (1 2n + 1

=2cosqn
2n+2k+l -2n+2k+l

2 arccos
2n + 2k + 1

cos 4n

Ikl < [n/4], sin4n >
2n/3

COS2

We obtain

g’(k) -4dPn+k sin2 qbn+k

whence

4/2n + 1 cos qn 2n + 1

(2n + -k 13- l-
2n+Zk+l

g’(0)
2 sin 2bn
2n+1

C0S2 n,
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and

1 1
Ig’(k) O -g+ x/1n2 2n+l cos22n-2["1i]+

I1 _< [n/], sin4n > 2nl/3

Thus a second degree Taylor expansion of g(k) about k 0 yields

O(n-5/3)

2 sin 2bn -7/6)sin 2qn+k 2qbn+k sin 2qn 2dpn +k+ O(n
2n+1

Ikl <_ [nl/4], sinn >
2i)3

(sin 2cn+k 2bn+k)
4

+___.1 (sin2qn2n 2bn) + (sin 2bn bn)k + O(n-1/6)
4

Ikl < [nl/4], sin4n _>

Similarly, we can easily check that

Hence

2n + 2k + 1

sindpn+k=sinqbn+O( 1 )n sin bn
sin bn + O(n-2/3)

Ikl _< [hi/4], sin4n > 2ni
Thus the first part of Lemma 8 applied for n 4- k instead of n gives

e-XZ/2OOn+k(X) sin3/2 bn sin(4-cnk + n) + O(n-1/6)

( 1)k 3 [rtl/4], sinbn >_

where

Cn := sin 2bn bn,
2n+l

fin =’- (sin2qn 2qn).
4
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Similarly to (32), let

y /2n + 1 cos n q/2(n 4- k) + 1 cos l[tn4-k

k 3 [n/4], sin n >

then

e-y2/20)n4-k(y) sin3/21/tn sin(4-ynk + 3n) + O(n-1/6),
where

Yn "= sin 2lPn n,

Hence we obtain

2n+ln :-- (sin 2/n 2n).
4

x2+Y22 [] On--k(X)OOn--k(y) O)n+k(X)OOn+k(y)

k=3 k

sin(ot,k+fl) sin(’nk+n)

(sin )n sin &n)3/2 sin(otnk-fln) sin(ynk-Sn)

kk=3

k---3 k
[] sin(otn + yn)k

kk=3

CASE 2: V/2(n -+" [nl/4]) -+- 1 2
(n.4r[nl/4])l/6 max(Ixl, lyl)

2 Then at least for one ofx and y, the second42(n [hi/a]) -[- 1-[- (n_[nl/4])l/6
part of Lemma 8 applies. Since the first part automatically yields the bound
O (1), we get in this case

x2+y
e [n] wn-k(X)Wn-k(y) On+k(X)OOn+k(y)

kk=3

([] 1 ) (logn)--0 --0

Since for sufficiently large n’s

V/2(n + [nl/4]) + 1

ff2(n [nl/41) -+- 1

2

(n -4c- [nl/4]) 1/6
1

(n [nl/4]) 1/6’
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the lemmais proved so far for all Ixl, lYl q/2(n [51/4]) + 1%- (n[ni/,l])l/6.
But it is easily seen that the Mhaskar-Rahmanov-Saff result (8) extends to

polynomials of two variables in an obvious way. (One just has to fix one
variable, and apply the one variable result to the other variable.) In our
case, for the weights e-x2/2, e-yU2 and polynomials of degree at most
n + In 1/4] + 2 in both variables, the M-R-S number is

V/2(n + [n 1/4] h- 2) < v/2(n [nl/4]) h- 1 +
(n [nl/4]) 1/6

for sufficiently large n’s, which means that the lemma is proved for all
x,yR.

ProofofTheorem 2. Consider the polynomial

[nl/4]
09n+k (X )O.)n+k (y O)n-k (X)O)n-k (y)Qn (x, y)--

k=3
k

of two variables, and apply the projection operator Ln for it with respect to
x. Using the reproducing property we obtain

Ln(Qn(., y), x)
[n 1/4] On+k(y)Ln(wn+tc, x) Wn-t(x)wn-l(y)

k
k---3

whence

[nl/4] O)n+k(y)Ln(O)n+k, y) 2 (y)g’On-k
Ln(Qn(’, y), y)

_
k--3 k

Multiplying both sides by e-yz, integrating over R and using the orthog-
onality of the Hermite polynomials (see (30)), as well as Lemma 7 we get

[n 1/4]

f e-y2Ln(Qn(’, y) y) dy - e-YZw2n-(Y) dy

IF/1/4 1
> C17/- Y >-- Cl9,/-logrt.

k=3

(34)
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By a result of Freud [4], here with suitable c20, 21 > 0

f; fc21J;
y2e ILn(Qn(., y), y)l dye-Y2Ln(Qn(", y), y)dy <_ c20

d-c21J-ff
< 2c20c21V/-e-y ILn(Qn(., yo), yo)l

< 2c20c21/-ffe-y2/2[le-X2/2Ln(Qn(’, yo), x)ll
(35)

with a properly chosen ly01 < C21V/’. Since by Lemma 9

ile-X/2 an(x, y0)[[-- O (eye
we finally obtain from (34) and (35)

[[e-XU2Zn(a(’, yo), x)ll
IllLnll[00 > > c22 logn.[[e-xVZan(x, y0)l[

Remark It is clear from the proof that if in the definition of the norm
of projection operator, instead of f Cwo, we restrict ourselves to f
I-In.4_[nl/4], then the statement remains true.

4 HERMITE-FEJC:R INTERPOLATION

Take two arbitrary weights Wl(X) _< l/-)2(X) (X R) both satisfying the
conditions (1)-(2), and for an arbitrary f Cw(R) and system of nodes
consider the uniquely determined Hermite-Fej6r interpolating polynomial
H(f, ,n, x) 1712n_ subject to the conditions

H(f, "n, Xk) f(Xk), H’(f, 2(n, Xk) 0 (k 1 n).

In analogy with the finite interval case, we are interested in the following
problem: under what conditions on Wl, WE, A’n will the relation

lim [ItOl (x)[f(x) H(f, ,n, x)][[ 0 for all f Cto2 (R) (36)
n--->c

hold.
The reader will at once notice that, compared to the Lagrange interpolation,

there is an essential difference in posing this question, namely we have two

weights instead of one. Of course, the ideal situation would be Wl (x) _=

w2 (x), but at present we are unable to state any result in this respect.
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Let us mention that Lubinsky [6, Corollary 2.4(a)] proved (36) when

w2(x)
I(X)

(1 + IQ’(x)l)(1 + Ixl)’
l2(x) wE(x)(1 q-IQ’(x)l)(1 / Ixl),

and Xn bln are the roots of the orthogonal polynomials Pn (x) with respect
to any weight w W. Here ot > 1, / > 2 depend on the weight w and on
the orthogonal polynomials Pn in a complicated way.

Our purpose in this section is to improve this result, and also to give an
error estimate similar to the case of finite interval.

THEOREM 3 Let w W,

Wl(X)
(1 + Ixl)l/3’ w2(x) W2(x)(1 -F IQ’(x)l).

Thenfor an arbitrary f Cw2 (R) we have

Ilwl (x)[f (x) H(f bln, x)]ll

((_)2/3 m Ek(f,w2)0 Em(f)w + log n
ak=O

(m _<2n- 1)
(37)

where ao 1 and ak, k > 1 are the M-R-S numbers associated with w.

Remarks 1. The parameter m < 2n 1 is arbitrary, and has to be chosen
optimally. It is readily seen that ifm tends to infinity sufficiently slowly then
we have convergence in (37). In the particular case

w(x) e-Ixl", En(f)to O(n-) (or > 1, > O)

we obtain (with a proper choice of m)

O(lg-’-#i ’’’n)n//
,,llOl (X)[f(x) H(f [n, X)],, 0 ( lOg2n)n2/V

o (l_

if 1/or + < 1,

if 1/a+ 1,

if 1/or +fl > 1.
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2. Since

II(X) <__ Wl(X) __< W2(X) __< 2(X) (X E l),

ourtheorem is stronger than the quoted result ofLubinsky [6] (namely, it holds
for a wider class of functions, with a larger weight in the error estimate).

Proof of Theorem 3. Let m _< 2n 1, and let qm Fire be a polynomial
such that

Ilwl (x)[f (x) qm(X)ll < Ilwa(x)[f(x) qm(X)ll

< Ilwa(f- qm)ll-- Em(f)w2.
Using well-known formulas for the Hermite-Fej6r interpolation we get

Ilwl(x)[f(x) n(f l,tn, x)ll
< IlWl(x)[f(x) -qm(X)]ll / IlWl(x)[qm(x) n(qm,btn, X)]ll

+ Ilwl (x)n(qm f, bln, x)ll

IIll+ 1 n w2(x)l(l’tn’X) 1(1 -t-Ixl) 1/3 Ivk(X)lwZ(xk)(1 +lQ’(xk)l)
Era(f)w2

k=l

+
(1 -t- Ixl) 1/3

Iq’m(X)llx xklw2(x)l(bln, x)
k=l

where

Since

I!

v (x) 1 Pn (x) (x x/) (k 1 n).
p’,,(x)

Ip(x)l O(1 + (1 + IQ’(x)l)lx- xl) (k 1 n)

(cf. Lubinsky [6], Lemma 4.3(iii)), we get

IIw(x)[f(x) (f,, x)lll Em(f)w 1 + w(x)k=l

2 1 n Ix xlw2(x)l(n, x)
+[Em(f)w2 + IIw qmll]

(1 + ]xl)l/3 W2(Xk)k=l

(38)
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Here using the notation (24), as well as (25), (11), (21) and Lemma 6 with
Ot 2,

O(1) + O
k--I n2a3n(xk)l/2(x Xk)2

O(1)+O( an )kjn AXk
nn(X) 1/2 (X Xk)2

0(1) (x R).
(39)

Similarly, we obtain for the other sum

1 Ix x.lwZ(x)l(Hn, x)
(1 + Ixl)l/3 /’ W2(Xk)k=l

( a1/21/4(x)
O

| -3/,1- 1/3\nan Vn (xj)(1 / Ixl)

+O( an
nln/Z(x)(1 -Jr-[x[) 1/3

O
1/2 1/3"n (x)(1 + Ixl)

(40)

Here, considering the definition (12) of aPn (x) we get

nl/2(x)(1 -t-Ixl) 1/3
O(nl/3 /3an ) (x R),

whence and from (38), (39) and (40)

IlWl(x)[f(x) H(f, Hn, x)]ll O(Em(f)w2)

+llw qmllO logn

Thus it remains to estimate 2 2 2s+lW qm II. Let < m < and consider

qm qo -Jr

_
(q2k- q2k-l- 1) -- (qm q2 1).

k=l

(41)

(42)
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Here

IIw2(q2-I --q2--l)ll _< IIw2(q2-I f)ll + IIw2(q2--I f)ll
_< 2E2-_ (f)w (k = 1,..., s)

and similarly

Ilw2(qm q2,-1)ll _< 2E2,-1 (f)wz.

Hence by the Markov type estimate for the weighted norm of the derivative
of a polynomial (see Levin and Lubinsky [5])

IIw2(qk_l 2k-l-qk-l_l)ll O O
a2- i=2-2 ai

(k=2 s+ 1),

and similarly

-q2,-1)11 O O
am \i=1 ai

(Here we used the obvious relation a2-i (w2) < a2(w2) a2k-, (w).) Thus
by differentiating (42)

Ei(f)w Ei(f)w_""llw2q,ll... 0 Eoff)w q-
ai ai"= i=o

Substituting this into (41), the theorem is completely proved.

Remark It is interesting to note that the use of the system of nodes )2n+2
instead of b/n does not improve the result (in sharp contrast to Lagrange
interpolation).
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