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ABSTRACT

In this paper we investigate steady state reliability parameters of an F: r-out-
of-N redundant repairable system with m (1 _< m _< r- 1) repair channels in light
traffic conditions. Such a system can also be treated as a closed queueing net-
work of a simple kind. It includes two nodes, with infinite number of channels
and m channels, respectively. Each of the N customers pass cyclically from one

node to the other; the service time distributions are of a general form for both the
nodes.

It is an N-component system with a general distribution A(t) of free-of-fail-
ure periods of the components is considered. Failed components are repaired by
an m-channel queueing system with a general distribution B(t) of repair times.
The system is assumed to be failed if and only if the number of failed
components is at least r. (Only the rather difficult case r >_ rn + 1 is considered.)

Let # be the intensity of the stationary point process of the occurrences of
(partial) busy periods within which systems failures happen at least once, and let
Q be the steady-state unavailability of the system.

Two-sided bounds are established for Q and # based on the behavior of the re-

newal rate of an auxiliary renewal process. The bounds are used for deriving
some asymptotical insensitivity properties in light traffic conditions.
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1. Introduction

Light traffic approximation is an important branch of queueing theory. For some of the most
general results, see Baccelli and Schmidt [3] and Blaszczyszyn [4]; an excellent survey has been
published by Blaszczyszyn et al. [5]. It should be mentioned that from the early sixties asympto-
tic methods of mathematical reliability have been extensively investigated in Russia. The theory
having been developed can also be considered as contribution to light traffic theory. Soloviev [16]
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is the work of the most fruitful subsequent theory. Por a recent presentation of the approach, see

Soloviev [17] and Gertsbakh [6]. In an early paper by Kovalenko [9] a small parameter approach
was suggested for the analysis of the availability of a complex system. For further results see

Kovalenko [10-12], Pechinkin [14], Stadje [18], and Zazanis [19]. A small parameter approach was

used for deriving variance reduction methods of the simulation of rare events; see Reiman and
Weiss [15], Asmussen [1], Heidelberger et al. [8], Kovalenko and Kuznetsov [13], and Gnedenko
and Kovalenko [7].

In this paper we investigate the behavior of a closed queue in light traffic conditions. The
Markov process describing its behavior contains m supplementary variables and thus cannot be re-

duced to a semi-Markov model. On the other hand, no parametric model (such as thinning or 7-
dilation) is assumed. An interesting property is observed in the case of a closed queueing system:
some parameters of the system are asymptotically (as traffic intensity p-0) insensitive to the dis-
tribution of free-of-failure time; only the mean free-of-failure time period is essential. A contrast
can be observed in this point to open queues; see Atkinson [2].

2. System Description

Consider a system consisting of N machines subject to random failures and repaired by rn
repair channels. Usual i.i.d, and FIFO conditions are assumed to be satisfied. The following func-
tions and parameters will be considered throughout the paper:

A(t) -d.f. of a component’s free-of-failure time: (t)- 1- A(t), 4(t)- f A(x)dx;

B(t) d.f. of repair time: (t)- 1 B(t), B(t) f B(x)dx;

(z) f eztdB(t);

h(t) renewal rate of a renewal process formed by points 0, 0 + ri0 + 1, 0 -- rl0 -- 1 -- ri1 -(2,..-, where i and rii are totally independent and distributed according to i A(t),
B(t);

hu(t -sup h(x), hL(t -=lfth(x), , hu(O), A- N..
x>t

The time scale is assumed to be chosen in such a way that

/ tdB(t)-p, / tdA(t)-l-p; O<p< 1.

0 0
The following Markov process ((t) will be considered for describing the system’s behavior:

(t) (i(t), rii(t), 1 <_ <_ N),

where i(t) is the residual time to failure of machine if it is operating at time t; i(t) is not de-
fined otherwise; rii(t) is the residual repair time of machine if it is being repaired; rii(t) is not
defined otherwise. [Thus, neither i(t) nor rii(t)is defined for a queueing machine.]

In what follows it is assumed that the process (t) and some point processes connected to it
that are required for our purposes are stationary. Our aim consists of the derivation of upper and
lower bounds for the following parameters:

# -intensity of (partial) busy periods within which the queue length u(t) achieves a fixed level
r at least once (rn + 1 _< r _< N);
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Q steady state probability of the event {u(t) >_ r}, i.e., the unavailability of the system.

Both the upper and the lower bounds are obtained by a straightforward renewal argument.
The following properties are used: a compactness property of the process (t) yielding some
bounds for (0), analysis of busy periods in a time interval (0, T), analysis of a virtual busy
period starting at time T, and analysis of the renewal probability of all machines in the interval
(0, T). Essentially, the local independence of alternating renewal behaviors of machines as soon as

u(t) < m is used.

3. Upper Bounds

3.1 Ergodic bounds

The following inequalities hold true:

P{i(0) dx} <_ A(x)dx, P{r/i(0) dx} <_ B(x)dx.

In particular,

P{{i(O) >_ x} _< A(x), P{r/i(O)_> x} _< B(x),

and

(1)

(2)

P{u(O) >_ 1} _< Np. (3)

3.2 Upper bounds for the factorial moment intensity

For a fixed T > 0, machine called T-renewed if i(0) < T or if i(0) is not defined. Denote
by h (Zl,...,Xs_l)5s +o(s) the probability of such an event" {all the machines are T-
renewed; some different machines fail during time intervals (T, T + 6), (T + Xl, T + xI + ), (T +
x2, T-x2-t-5),...,(T+Xs_l,T+xs_ 1-t-5), 0< xI <...< Xs_l, 5--0}.

Consider the expressions

tIS) N[S])d(z)((1 -(A(z)(2Nz)/z))-lexp{Am + 1T99m(z)/(zm Azm 19(z)) } 11’4)k
where

0(z)-(1 +1/2N2z"(Nz)) pN(z), (5)

provided z and z0 are positive and the denominators are positive as well, and

"(0s, N[S](hb(T- TO)-4- S(N4(To- A)-4- N2fl4(To- A)-t- e ZlA0(z0))). (6)

Then the following upper bound holds true:

h)(*l,""Xs-1) Us) + Us) (7)

for every positive z, zi; the denominators are positive as well.

We also have
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h)(...) <_ (H) + 1)N[S]As <_ (H) + 1)As.

3.3 Upper bound for tt

We have

# -- #0 +/11 ///2,

where

1 ,(H(Or)+ ur))flr-1(r-l)
1

!(__1! + f x
0

if r--m+1,

ifr>_m+2,

#I(H0) + 1)Ar + l(2(z)/z)r,

#2- NA(T).

(8)

(9)

(o)

(11)

(12)

3.4 Upper bound Q

We have

where

with

Q -< Qo +Q1 +Q: +Qa,

Qo m!(r -m-ll),(H(or)+.Hr))/ xr--m-- lm(x)dx,
0

QI (r / 1)(H0) / 1)(A/z)r + l(2(z))r/2,

Q2 N4(T)(H0) /

Q3 2N(T)(H) + 1)AN + l(z)/(Z23)’

(13)

(14)

(15)

(16)

(17)

1 2A(z)/z, (18)

z > 0, 2Ap(z) < z. (19)

4. Lower Bounds

4.1 Lower bound for the joint p.d.f.

For 0 < xI < < xr + 1, denote by f(xl,...,Xr_ 1)5r+ o(5r) the (T-independent) probability
of the event {u(T)-0; 0<il(T)<5,..g,xr_l <i <xr-l/5 for some il,...,ir;
i(T)>xr-lfralltheri}" Then we have, for <A<T0:T,

f(xl,...,Xr_l) >_ N[r](1-e)(Co-ClXr_l), (20)
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where

e N(p(1 + 1/A) + A (TO A)),

Co-hrL(r-To)-)r+l((N2-r)p+NA+(N)(N-m)r(zp)rn)m

Cl Nr + 1.

(21)

(22)

(23)

4.2 Lower bounds for p

We have

where

I0

# >_ N[r](1 e)(coi0 c111)

1 ),.pr-1 if r rn + 1,(r-1
1 f X

r-m- 2[m(x)dx if r > m + 2,m!(r_m_2)"0

(24)

(25)

I1 (m- 2)!(r- m + 2)!(r- m)
xr-m + 2dB(x)"

0

4.3 Lower bound for Q

We have

Q >_ N[r](1 e)(CoJo ClJ1)

where

1 f xr-m-lm(x)dxJo m!(r- m- 1)!
0

1 pm 2 / xr m + 3dB(x).J (m- 2)!(r- m)!(r- rn + 2)(r- rn + 3)
0

(26)

(27)

(28)

(29)

5. Proof of the Bounds

In this section, routine transformations are omitted; the discussion of the principal moments
should still be comprehensible.

1. For a given i, the measure of the set of points of an interval (0, t’) for which, say, i(t) E
dx coincides with a similar measure for an alternative renewal process, but for a shorter time inter-
val (0, t"). To derive (1)-(3) one must only average.

2. Define a busy period in the obvious way. Call it blocked if at least m + 1 repairs are com-

menced within it. A busy period will be called a failure if u(t)>_ r at least once within it. The
first repair of each machine overlapping the interval (0, T) will be said to be initial. Denote by Y
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the total length of initial repairs within the interval (0, T). A busy period will be called initial if
it includes an initial repair. Thus the number of initial busy periods can vary from 0 to N.

The s-dimensional factorial intensity h can be conceived as the sum of intensities, say,
gn[io,..., in] where n is any possible number of non-initial busy periods, if, + rn + 1 is the number
of repairs within the kth of them if k >_ 1, and 0 is the number of non-initial repairs within initial
busy periods in total.

Let Sk be the sum of k independent r.v. with the d.f. B(t). For a given ik, k > 1, the dura-
tion of the kth blocked busy period does not exceed Sik + m + 1" Having chosen k and associated

Sikl+ m + 1. we must choose n(m + 1) o +... + n random points of non-initial failures. For
each machine we thus obtain a chain from its initial failure to its last one within the interval

(0, T) or to a point in the set {T,T + Xl,...,T + xr_ 1}" There can be gaps in chains due to the
queueing. Only the following properties are used.

(i) the density of each jump from t to t’ for a given machine does not exceed ., and

(ii) for -- at least -1 customers must arrive within the interval S_ 1 (though the
should be changed to Y + NS tbr the totality of initial busy periods).

The bound (4) can be obtained by the summation over n; io,...,in (unless n- 0 -0), inte-
gration over an admissible region, and the application of moment generating functions (mg.f.).
The bound (5) for the m.g.f, on Y is based on the stochastic inequality

Y Cn + ]1(0)+... + ]N(O), (30)

making use of (1) to (3).
The case n 0 0 is discussed separately. The bound (6) for g0[0] is implied from the state-

ment that if i(0) < To -A and i(0) < A then all the first renewals occur up to time TO and

thus hg(T-To) will bound the renewal rate for each of the chosen s machines at points
T, T + xj. A rougher bound (8) is obtained as soon as the case n 0 0 is not separated.

3. The bound (9) becomes clear if it is noted that #0 is a bound for the intensity of failure
busy periods with monotone system failures; #1 bounds the intensity of busy periods with at least
r + 1 repairs, whereas #2 accounts for non-T-renewed failures, no such failure being included in #0
or #1" The bounds (9) to (11) are familiar from reliability theory of repairable systems though we
use renewal intensities instead of p.d.f. The bound (12) follows from ergodic reasoning: the inten-
sity of the point process of busy periods of the kind being considered does not exceed the intensity
of happenings {time to failure exceeds T}.

The bounds (13) to (17) are derived in a similar way. The bound (14) counts mean sojourn
time in failure states after a monotonic failure; (15) bounds the mean length of a busy period
with at least r + 1 failures; (16) counts the lengths of busy periods originated by the failure of a

non-T-repaired machine; finally, (17) is due to the oossibility of such failures afterwards. Some
combinatorics is used, in particular, the bound (HI+ 1)(2At)k/k! for the probability of at least
k failures (including repeated ones) in an interval (T, T + t).

Note that originally we have obtained upper bounds without referring to m.g.f, but basing
them on some infinite series for the moments of r.v. Sk; we omit the details.

The lower bound (20) is obtained from another idea. Let the event B consist of {no failure
machine at time 0} and {all times to failures are less than To -A} and {total time of first repairs
is less than A}. If the event B occurs then all the renewals occur at points t < To if no queueing
happens afterwards.

Let us make independent alternating renewal processes to start from the points t). Denote by
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u*(t) the number of down-phases of these processes at time t. If, moreover,

(i) some "independent" failures of different machines occur in time intervals (T,T + 5),...,
(T,x T + x +5);- 1

(ii) no repeated failure occurs in the interval (T, T -t- xr 1 -t-5);

(iii) the remaining N s machines are operating in the interval (T, T + xr 1 + 5),

(iv) u*(t) <_ m for t E (0, T) with possible exception of initial repairs; and

(v) no non-initial repair overlaps an initial busy period,
then the considered situation for the intervals (T,T+6),...,(T+xr_l,T+xr_ 1+6) and
intermediate intervals holds tbr the original (dependent) queueing process as well. The analysis of
the main event and of possible exceptions cautioned above, (ii) to (v), directly leads to the lower
bound (20). As to (21), e bounds the probability of the event complementary to B.

The bounds (24) to (29) are obtained via the integration of the inequality (20) with the
weight I-I B(...) over the region associated with monotone failures.

6. Asymptotical Insensitivity

Denote #- #[A,B], Q- Q[A,B] by W- W[A,B] any system parameter, and introduce the
parameters

Vu[’Ao’ %0] sup sup W[A,B]/W[E1 o,B], (31)
B E a’Jp A e.]l.p

for any classes of distributions containing E1 p: 1 e t/(1 p) and Eo: 1 e t/o respec-
tively. If for a system parameter W (particularly for # or Q) the relation Vu[Ao, %o] o01 holds
then we will say that the parameter W is insensitive to the input distribution from aoove w.r.t.
the family (Ao,%o; p > 0). The asymptotical insensitivity from below will be defined by the
relation

inf inf W[A, B]/W[E1 o’ B] o_._,---,o 1. (32)VL[Ap’ P]
B e aJ3p A e Ap

In a similar way, the asymptotical insensitivity from above (below) to the repair distribution can
be defined, but it will not be discussed in this paper.

A syrnptotical insensitivity can be defined as the conjunction of those from above and from
below. Note that in practical analysis, very often a one-sided bound is of interest.

Introduce the following conditions:

(al) There exists a function zo > 0 such that the ration ao:-(zo)/zo---O as p0 and

(Zp) <_ 0, a constant.

(A2) There exists a function T- To such that Tcn+0 and A(T)+O as p+0.

(A3) For the same function T- To, hg(T)+l as p+0.

(A4) For the same function T To, (T) o(pr 1).
(A5) For the same function T To, A (T) o(przo).
All the limits in (A1) to (A5) should be considered in the uniform sense w.r.t, a family

(Ap, Bp, p > 0).
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A(t)- Ap(t), B(t)- Bp(t) are any d.f. from the classes Ap, rasp. %p; A(0)- 1-p, B(0)-

p, a(z) ap(z) f eZtdBp(t).
0

Theorem 1" The conditions (A1)-(A4) in totality are sufficient for the asymptotical insensiti-

vity of # from above. The conditions (A1)-(A3) and (Ab) in totality are sufficient for. the asymp-
totical insensitivity of Q from above.

Proof: Reduces to the investigation of the behavior of upper bounds stated in section 3.
Only the point z-zp is considered while investigation a(z). For a0(z the bound (1+
a(2Nz)/z)aN(z), z > 0 can be obtained by contour integration, thus while investigating Hr), one
can set z0 zp/(2Np), p > 1. Making use of the convexity of a(z), z > 0, one obtains a(z) <
1 + (0- 1)/(2Np); we also have a(2Nzo)/Zo <_ 2Napp. Since p is arbitrary, the relation Hr-O
holds as p0.

For establishing the asymptoticM insensitivity from below, some new assumptions should be
introduced in which all the limits are uniform w.r.t, the family (.Ap, %p, p > 0).

(A6) There exists a function T’- Tp’ such that T’pm--*O, A(T’)O, and hL(T’)--,I as p--0.

(AT) f tr-m + 2dB(t) o(flr-m + 1), p--0.
0

(AS) f tr- m + 3dB(t) o(pr-m +2), p-*O.
0

Theorem 2: The totality of conditions (A6), (AT) imply the asymptotical insensitivity of #

from below. The totality of conditions (A6), (AS) imply the asyraptotical insensitivity of Q from
below.

Proof: A straightforward application of the bounds from section 4. One should set T0"
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