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ABSTRACT

Sufficient conditions are found for oscillation of all solutions of impulsive
differential equation with deviating argument.
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1. Introduction

The impulsive differential equations with deviating argument are adequate mathematical
models of numerous processes and phenomena in physics, biology and electrical engineering. In
spite of wide possibilities for their application, the theory of these equations is developing rather
slowly because of considerable difficulties of technical and theoretical character related to their
study.

In the recent twenty years, the number of investigations devoted to the oscillatory and non-

oscillatory behavior of the solutions of functional differential equations has considerably increased.
The large part of the works on this subject published by 1977 is presented in [4]. In monographs
[2] and [3], published in 1987 and 1991, respectively, the oscillatory and asymptotic properties of
the solutions of various classes of functional differential equations were systematically studied. A
pioneering work devoted to the investigation of the oscillatory properties of the solutions of
impulsive differential equations with deviating argument was rendered by Gopalsamy and Zhang

In the present paper, sufficient conditions are found for oscillation of all solutions of the
equation

’(t)- p(t)(t + h) o, # ,
a(,) (, + o) .(, o) ( o) (,),

(1)
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where the function p- p(t) is nonnegative and continuous, and 7k(k E N) are fixed moments of
impulsive effect.

2. Preliminary Notes

Let Nn {1, 2, n}, p E C( +,O{ +), + [0, cx), let h be a positive constant, {’rk} k 1
be a monotone increasing, unbounded sequence of real numbers, and {bk}C= 1 be a sequence of
real numbers.

Consider the impulsive differential equation with a deviating argument (1) under the
condition

(t)- t e [0,h), (2)

where 9 e C1([0, h), [ + ).
Introduce the following conditions"

Ill: 0 < h < r1.
Il2: There exists a positive constant T > h such that rk + 1 rk >-- T, k N.
Il3: There exists a constant M > 0 such that for any k N the inequality 0 <_ M <_ bk is

valid.

We construct the sequence

so that tk < tk + 1, ]" ["

Definition 1: By a solution of equation (1) under condition (2) we mean any function
x: [0, ee)-oN for which the following holds true:

1. If 0 _< _< 1 7"1 --h, then the function x coincides with the solution of the problem

x’(t)-p(t)x(t+h)-O.

2. If k < t <_ k + 1, tk {rk, k N}\{rk- h,k N}, then the function x coincides with the
solution of the problem

x’(t)-p(t)x(t+h)-O

x(t + 0) (1 + bi)x(tk)
where k is determined from the equality 7"ki- k.

3. If tk < _< k + 1, tk G {rk- h,k G N}\{rk, k E N}, then the function x coincides with the
solution of the problem

’(t)- + h + o) o

+ 0)
4. If tk < _< k + 1, tk G {rk, k G N} C? {rk- h,k G N}, then the function x coincides with the

solution of the problem
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’(t) (t)(t + + o) o

x(tk + 0) (1 + bki)x(tk)
where k is determined from the equality 7ki tk.

Definition 2: A nonzero solution x of equation (1) is said to be nonoscillating if there exists
to >_ 0 such that x(t) is of constant sign for t >_ t0. Otherwise, the solution x is said to oscillate.

3. Main Results

Theorem 1" Let the following conditions hold:
1. Conditions H1 and H2 are met.

2. lim sup(1 + bi) f p(s)ds ) 1.
i---*oo r h

Then all solutions of equation (1) oscillate.

Proof: Let a nonoscillating solution x of equation (1) exist. Without loss of generality we

assume that x(t)>Ofor t_>t0>0. Thenx(t+h)>0alsofor t>_to
From (1), it follows that x is a nonincreasing function in (to, ’k)U[ U o= k(.i, -i + 1)], where

Tk tO Tk--l"
Integrate (1) from 7 h to ’i (i >_ k + 1) and obtain

Since

r

() (-) / ()( + )d,
ri-h

r

() (- h) > ( + o) / v()d.

ri-h

x(i+O -(1 +bi)x(Ti-O -(1 +bi)x(Ti)

then (3)and (4) yield the inequality

x(ri- h) + x(Ti) (l+bi) p(s)ds-1 <_0.

ri-h

(4)

Inequality (5) is valid only if
r

limsup(1 + hi)/ p(s)ds <_ 1,

ri-h
which contradicts condition 2 of Theorem 1.

Theorem 2: Let the following conditions hold:
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1. Conditions H1-H3 are met.

t+h
2. lim inf f p(s)ds > e(1 +M-------"

Then all solutions of equation (1) oscillate.

Proof: Let a nonoscillating solution x of equation (1) exist. Without loss of generality we

assume that x(t)>Ofor t_>t0>0. Thenx(t+h)>0alsofor tt0.

From (1)it follows that x is a nondecreasing function in (to, Vk) U[U=k(Ti,i+)],
rk-1 to

Define the function w(t) x(t + h) t > to, nd let r e (t, t + h) t > t0. Then
(t)

(t) < () (+ 0) < (t + ) (t + )
l+b l+b I+M"

From the last inequality it follows that w(t) > 1 + M for t > t0.

We shall prove that the function w is bounded from above for t >_ t0.

1. Let v e (t, t + 2h-), t _> t0. Integrate (1) from t to t + - and obtain that

t+h/2

(,)- (t)+ (t +)-(+ 0) / ()( + ).

Since

(6)

x(r + O) (1 + bi)x(’i)

then from (6) and (7)it follows that

(t +)-x(t)+
t+h/2

;()( + )d + ().

From (8) we obtain that
t+h/2

x(t +-)> inf x(s + h) J p(s)ds inf x(s) /s E [t,t + h/2] s It + h,t + 3h/2]

t+n/

p(s)ds. (9)

3hi there is no point of jump, thenIf in the interval It + h, t / - inf x(s)-x(t+h).
s [t-t- h,t-t- 3h/2]

3hi there is a point of jump, i + 1, then from the inequalitiesIf in the interval It + h, t
3hX(Ti + + O) X(t +--)x(t + h) <_ x(7 + 1) 1 + b <- 1 + M

it follows that
inf x(s) x(t + h).

e It + h,t + h/]

The last inequality and (9) lead to
t+h/2

p(s)ds. (10)
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Integrating (1) from t + - to t + h, we get
t+h

(t + )- (t + ) >_ (t + -) / ().
t+h/2

From (10) and (11)it follows that
3h(t +1 <

(t + ) t+h/2 t+h
f v() ()

+ hi2

(11)

< const.

Thus we proved that the function w is bounded from above.

2. Let -i E (t +-2h-, t + h). The boundedness from above of the function w can be proved ana-
logously.

We divide (1) by x(t) > O, t >_ to, integrate from t to t + h and obtain

ri t+h t+h
x’(s) x’(s) x(s + h)ds,

v

t+h

ln[1 +
From (12) it follows that

tq-h

1In[1 + Mw(t)l> litrnfw(t)/ p(s)ds.

(12)

(13)

Denote w0 lim inft_ow(t), 0 < w0 < c. Then from (13) we obtain

t+h
ln[(1 + M)- lw0] 1lim inf p(s)ds <

to w0 e(1 + M)"

The last inequality contradicts condition 2 of Theorem 2.

Corollary 1: Let the conditions of Theorem 2 hold. Then"
1. The inequality

x’(t)- p(t)x(t -t- h) >_ 0, t 5

has no positive solutions.
The inequality

’(t)- p(t)(t + h) <_ o, ,

(14)

(15)

has no negative solutions.
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Proof of 2: Let inequality (15) have a negative solution x(t) for >_ to for
From (15) it follows that

some to >_ O.

x’(t) <_ p(t)x(t + h) <_ O, (16)

i.e., x is a nonincreasing function in (to, rk) U[U=k(ri, ri+l)].
From (16) we obtain that

’(t) + h)

Analogously to the proof of Theorem 2 we are led to a contradiction with condition 2 of
Theorem 2. [:1

Theorem 3: Let the following conditions hold:
1. Conditions H1-H3 are met.

rk
12. lim inf f p(s)ds > 1 + M"k---c rk-h

Then all solutions of equation (1) oscillate.

Proof: From (3) analogously to the proof of Theorem 1 we obtain

rk

liminf[ p(s)ds < x(r) 1 < 1
I--,oo J x(rk + O) l + bk l + M"

rk-h
The last inequality contradicts condition 2 of Theorem 3.

Corollary 2: Let the conditions of Theorem 3 hold. Then:
1. Inequality (14) has no positive solutions.
2. Inequality (15) has no negative solutions.

The proof of Corollary 2 is carried out analogously to the proof of Corollary 1.

Theorem 4: Let the following conditions hold:
1. Conditions HI- H3 are satisfied.
2. In each interval of length h there are k points of jump (k N).

t+h
3. lim inf f ;(s)ds >

t--o e(1 q- M)k"

Then all solutions of equation 1 oscillate.

Proof: Let a nonoscillating solution x of equation (1) exist. Without loss of generality we

assume that x(t)>Ofor t>_t0>0. Thenx(t+h)>0alsofor t_>0.

For any fixed t (t >_ to) in the interval (t, + h), let

be k points of jump with respective constants b(1),b!2) b!k)8

Since x(-s)
x(,- s +0) (1)) Us E N and x is a nondecreasing function in (t, 7s+bs

[ uk-i l(rs 7.!i-t-1))]U(T!k ), t+h), then
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X/7.(1) X(7"1) + 0) x(t + h)x(t)<_ s )-- <’"
1 / b!1) I-I/k=l(1 / b!i))" (17)

From (17) it follows that

x(t + h) > (1 + M)k

(t)

Introduce the function w(t) x(t + h) t > to.(t)
We shall prove that the function w is bounded from above for t >_ to.

Let the interval It, t + 2h-] contain points of jumps, and let the interval It + -, t + hi contain r
points of jumps (1

Integrate (1) from t to t + - and obtain that

t+h/2

x(t +)- x(t) p(s)x(s + h)ds + b!i)x(7!i)). (18)
i=1

From (18) it follows that
tTh/2

(t + ) _> (t + ) / ().

Integrate (1) from t + - to t + h and obtain that

(19)

t+h k

bi)x(-i)).
t+h/2 i=l+l

(20)

From (20) it follows that
t+h

From (19)and (21) we obtain that
3h(t +-1 <

(t + )
1 < const.

t+h/2 t+h

t+h/2

From the last inequality it follows that the function w is bounded from above for t _> t0.

Denote wo lim inft_w(t), 0 < wo < c.

Integrate

’(t) (t + )

from to + h, >_ to, and obtain

(21)
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t+h

p(s)w(s)ds.
I-I/k=l (1 + b!i)) (22)

Assertion (22) leads to the inequality
t+h

In _> litrnfw((1 + M) J
From the last inequality we obtain that

p(s)ds.

/t+h ln[(1 + M)- Wo]
lim inf p(s)ds <
t--+oo W0 < 1

e(1 + M)k

which contradicts condition 3 of Theorem 4. rq

Corollary 3: Let the conditions of Theorem 4 hold. Then:
1. Inequality (14) has no positive solutions.
2. Inequality (15) has no negative solutions.

The proof of Corollary 3 can be rendered analogously to the proof of Corollary 1 and
Theorem 4.

Consider the nonhomogeneous impulsive differential equation with deviating argument:

x’(t)- p(t)x(t + h) q(t), t 5/: rt

Introduce the following condition:
[14: q e C([R +, + ).
Theorem 5: Let the following conditions hold:

1. Conditions H1-H4 are met.
rk

12. liminff p(s)ds > 1 + M"k---cx vk-h

(23)

Then equation (23) has no positive solutions.

Proof: Let x(t)>O be a solution of (23) for t>t0>O.
(vk > to + h) and obtain

Integrate (23) from 7k- h to 7k
rk

x(7-k)- x(7"k h) / p(s)x(s + h)ds
7"k-h

rk

+ E bS)x(v(ks)) + / q(s)ds.
rk hrk-h<_r <_rk

From (24) it follows that

(24)

rk

>_ + o)/
rk-h
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From the last inequality we obtain that

rk
x(’k) 1p(s)ds <_

x(rk + O) < 1 + M
rk-h

which contradicts condition 2 of Theorem 3.

Introduce the following conditions:
n" C([0, o), ).
tI6: There exists a function v E (C1( +, ) such that v’(t) q(t), t >_ 0.
117: There exist constants ql and q2 and two sequences {t} C + and {t’} C

limit- limiot’ cx and v(t) ql, v(t’) q2, ql < v(t) <_ q2"

Theorem 6: Let the following conditions hold:
1. Conditions H1, H2, H5-H7 are satisfied.
2. bk >_O, kGN.

’k+h
3. lim sup f p(s)ds > 1.

k---*oo rk

Then all solutions of equation (23) oscillate.

Proof: Let x(t) > 0 be a solution of equation (23) for t >_ to > 0.

Set

with+

z(t)--x(t)-v(t)+q1.

Then from (23) we obtain that

z’(t) > p(t)z(t + h),

Az(rk) bkz(7k) + Ak,
(25)

where Ak bkv(rk)- bkqI > O.

1. Let the inequality (25) have a positive solution z(t) for t > t1 > t0. Integrate (25) from
to v + h, ’k > tl and obtain that

Vk+h
z( + h)- z( + o) > z( + h) / v()d,

rk+h
(- + hl p()e- <_ o.

rk

The last inequality contradicts condition 3 of Theorem 6.

2. Let z(t) < 0 for t >_ I be a solution of the inequality (25). Then,

z(t) x(t) v(t) + ql X(t) >0, t > 1.

Theorem 7: Let the following conditions hold:
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1. Conditions H1-H3, H5-H7 are met.
rk

12. lim inf f p(s)ds > 1 + M"rk-h
Then all solutions of equation (23) oscillate.

Proof: Analogously to the proof of Theorem 6 we obtain (25).
Let z(t)>0 be a solution of (25) for t >_ tI _> to Integrate (25) from rk-h to rk

(vk > t1 + h) and obtain
rk

Z(rk) z(7k h) >_ z(rk + O) / p(s)ds,

rk-h

rk

z(rk) >_ [(1 + bk)z(rk) + Ak] / p(s)ds,

rk-h

rk

z(rk) >_ (1 + bk)z(vk) / p(s)ds.

rk-h

From the last inequality it follows that

p(s)dS

_
l + bk - l + M’

Vk-h
which contradicts condition 2 of Theorem 7.

The case when z(t) < 0 is considered analogously.
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