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ABSTRACT

This paper is concerned with tracking control of a dynamic model consisting
of a flexible beam rotated by a motor in a horizontal plane at the one end and a
tip body rigidly attached at the free end. The well-posedness of the closed loop
systems considering the dissipative nonlinear boundary feedback is discussed and
the asymptotic stability about difference energy of the hybrid system is also inves-
tigated.
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1. Introduction and System Formulation

Mechanical flexibility in motion control systems attracted more attention in recent years.
Motivated by [4], in which a hybrid system describing the overhead crane model was studied, we

will consider in this paper a flexible beam rotated by a motor in a horizontal plane at one end
and a top body rigidly attached at the free end. This model fits a large class of real applications
such as links of robot system and space-shuttle arms in which high speed manipulation and long
and slender geometrical dimensions are the major factors causing mechanical vibration. To
achieve high speed and precision end point positioning of the flexible beam (which must be gua-
ranteed in any condition variations such as payload) the boundary control is one of the major stra-
tegies in production and space applications.

Let t be the length of the beam, p the uniform mass density per unit length, E1 the uniform
flexural rigidity and rn be the mass of the tip body attached at the free end of the link, Ira the
moment of inertia of the motor and J the moment of inertia associated with the tip body. Tak-
ing the motor’s torque as the control input and neglecting rotary inertia and shear deformation
effects and actuator dynamics, the total transversal displacement y(x, t) at position x and time
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can be described by the following coupled differential equation:

v,(x, t)+ E,(, t) O, 0 < : < e,
,(0, t) O,

E(O, t)- .t(O, t)+ u(t) O,

Elyx,(, t) Mytt(e, t) O,

EIy(e, t) + gytt(e, t) O.

(1)

Let the terminal state trajectory be XOd(t), where O’S(t)- O, i.e., the tracked state would be
uniform motion or fixed in some direction for the flexible beam. Thus the difference displacement
e(x,t) y(x,t)--XOd(t will satisfy the same equation (1). By this fact, we will, here and
throughout this paper, use y(x,t) to represent the error displacement as well as total
displacement. It is obvious that the feedback control should make the energy of the dynamic
system (1) be decreasing with time.

Let us briefly outline the content of this paper. In section 2, we design a dissipative nonlinear
feedback control with angular velocity of motor and show the well-posedness of the closed loop
system. It is also shown that the energy in this case will tend to zero as time goes to infinity.
Section 3 is devoted to the uniform decay estimate of the closed loop system with the angular
acceleration feedback.

2. Well-posedness of the Problem and the Asymptotic Stabihty

We design a nonlinear dissipative feedback control by

u(t) cyx(O t) f(Yxt(O, t))

(where c > 0 is a positive constant) and study the following closed-loop system

flYtt(x, t) A- ElYxxxz(x, t) O, 0 < x < , t > O,

(0, t)=0,

EIYxx(O t) ImYxtt(O t) Yx(O, t) f(Yxt(O, t)) O,

EIyzzz( t) MYtt( t) O,

E(, t) + x(, t) O,

where the feedback function f such that f C C(R) is increasing with

f(0) 0 and sf(s) > 0 for s -fi 0.

Let - H(0,) L2(0, g) 3 be the underlying state space with the inner product

((U(X), v(x), al, a2, a3) ( (x), (x), 1’ 2’ 3))

] )"() + pv() ()]d +2 [EIu"(x 1 ’(0)’(0) + 1/2[Imal-dI + Ma2-2 + Ja33],
o

(2)

(3)
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where H(0, ) {u(x)]u e H2(0, ), u(0) 0}.
by

((z), v(), v’(0), (), v’())

(0) + u’(0)+ (0)),

D(A) {(u(x), v(x), v’(O), v(), v’(e)), u H4(0, ),

Define a nonlinear operator .A:D(.A)( C)

(4)

v H2(O, t), u(O) v(O) 0}.

Then equation (2) can be written as a nonlinear evolution equation on

0,

Y(O) Yo,

where Y(t) (y(x, t), yt(x, t), yxt(O, t), yt(, t), yzt(, t))T.
the energy of the system:

Notice that the norm of state is just

E(t) II Y(t) II 2

/ 1 2 1 2 1 2 t) + -Jyxt(, t)-21 [py2 + EIY2xx]dx + -y(O, t) + -ImYt(O t) + -My (, 1 2

0
and formally

dE(t)
dt Yxt(O’t)f(Yxt(O’t)) < O.

Lemma 1: Under the assumption (3), the operator A defined by (4) is maximal monotone on

with the domain D(J) that is dense in .
Proof: Let U, V E D(A), where

u ((), v(), (0), (e), v’()),

v ( (), (), v’(0), v (), ’()).

Then a simple calculation yields

(AU- AV, U- V) 1/2[f(v’(0))- f(V(0))][v’(0)- V(0)] _> 0.

This means that A is monotone.
prove the range condition (see [1])

To prove the maximal monotonicity of A it is sufficient to

(+)= ,
i.e., for any given Uo(X), Vo(X), al, a2, a3) E , there exists (u(x), v(x), v’(O), v(), v’(g)) e D(.4) such
that v(x) u(x)- Uo(X and u satisfies
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(7)

If u(x)E H4(0, t) is a solution of (7), then multiplying by pC(x)E H(0, ) both sides of the first
equation of (7) and integrating from 0 to with respect to x, we have

a(u, ) F() + f(u’(O) u(0))’(0) 0, (x) G H(0, ),

where the bilinear functional a(.,.)is defined and coercive on H(0, g) and a linear bounded
functional F(. )is defined on H(0, ) as follows:

a(, ) / [EIO"(x)"(x) -t- pO(x)(x)]dx
0

+ M()() + J’()’() + (a + Im)’(0)’(0), V, H(0, ),

F(g2) M[a2 + Uo(g)](g + J[a3 + u(g)]O’(t)

+ Im[a + u(0)]’(0) -t- p / [Uo(X + Vo(X)]O(x)dx, V H(0, ).
0

On the other hand, let
’(o) u)(o)

f(s)ds, V e H2E(O,J()- 1/2a(,)- F()+ /
0

’(o1 ;(0)
Since f f(s)ds >_ O, g(. )is convex, coercive and strongly continuous on H(0, ), there

0
exists a unique function u e H(0, )such that

This means that for all e H(0, g),

J(u) inf J().
H(0, )

a(u, )- F()+ f(u’(O)- u(0))’(0) 0,

or u(x) H2E(O, g)satisfies equation (7) in the sense of distribution.

Next, since equation (7) is a regular elliptic boundary value problem, from classical elliptic
theory [3],

u e H4(0, g).

Because Uo(X H2(0, t), we see that v(x) u(x) Uo(X e H2(0, ), and

(I -[- .A)(u(x), v(x), v’(O), v(.), v’(.)) (Uo(X), Vo(X), al, a2, a3).
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So, %(1 + .4) %. Finally, if there is U E % such that

(U, V) 0, VV e D(A).

Assume that U (I + .A)Uo for some U0 G . Then, (U0, U0) _< (U, U0) 0, which implies that
Uo=U=0. ThusD(A) isdensein

Since the operator t is maximal monotone with the dense domain D(t) in the energy space, by applying a method developed in [2] to the evolution equation (2), we obtain the following
existence result.

Theorem 1: Assume that validity of (3). Then we have

(i) For Yo- (Yo(x),Yl(X),yI(O),Yl()), YI()T D(A), equation (2) (and (5)) has a unique
strong solution Y(t) with Y(O)--Yo, such that

Y(t) (y(x, t), Yt(X, t), yxt(O, t), yt(e, t), yxt(, t))T D(A), Vt >_ O,

y(x, t) e W1’ cx)( + H2(0, g)) f’l L([ + H4(0, )),

(yt(O,t),yt(g,t),yt(,t)) (wl’cx)([ + ,))3,

(ii)

II Y(t)II II Yo I1"

For any inilial data Yo-(Yo(x),yl(x),al,a2, a3)TG, equation (2) (and (5)) has a

unique weak solution, with

Y(t) (y(x, t), Yt(X, t), yt(O, t), yt(, t), yxt(, t))T S(t)Yo, Vt >_ O,

such that

y(x,t) G C(R+,H2(O,))CI(R+,L2(O,)),

(Yxt(O, t), yt(, t), Yxt(, t)) C: (CI( +, ))3,
where {S(t)} > o denotes the strongly continuous semigroup of contractions on gener-
ated by maximal monotone operator A.

Lemma 2: The following holds true:

0 ’J(J), (I + J)- is compact.

Proof: 0 E %(A) immediately follows from the definition. Thus, we only consider the second
condition. Let {Vn} C_ , II Vn II <- C, be a bounded series and let {Un} satisfy (I + A)Un Vn.
Then, by the monotonicity of A, IIAUnll <- IIVnll <-C and IIUnll <- IIVnll <-C" These
imply that

II . II H4 -- C1, II vn II H C1, v;(0) _< C1, v,() C1, v() c1

for some uniform constant C1, provided that

Un (Un(X), Vn(X), vn(O), vn(), vn())T.

By the Sobolev embedding theorem, there is a subsequence of Un, still indexed by n for notational
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simplicity, and U0 E H2(0, ) x L2(0, ) x [2, such that

UnUo in the topology of %.

Uo(0 0 is hence an obvious fact. The proof is complete.

Lemma 3: Let co(t) be the semigroup defined by Theorem 1. If for some Yo- (yo(x),yl(x),
yi(O),Yl(),y’())T 6 D(A),

dE(t) d
dt d--- ll S(t)Y -0, t > O,

then Yo O.

Proof: Let Y(t) (y(x, t), Yt(X, t), yxt(O, t), yt(, t), yxt(g, t))T be a solution of equation (2)
with the initial condition Y(0)- Y0" By (6) and assumption (3), I] S(t)Yo II -0 means that

0<x<, t>0,

(8)

Multiplying by x on both sides of the first equation of (8) and integrating it from 0 to t with res-

pect to x, we have

p / zYtt(z t)dz + MeYtt(e., t) + gyxtt(e, t) + ElYxx(O t) O. (9)
0

Then, integrating (9) from 0 to T > 0 with respect to one gets

T

EI/ yxx(O, t)dt
0

p f z[v,(z, T) v,(z, 0)]dz Me[v,(e, T) V,(e, 0)] g[v**(e, T) V**(, 0)],
0

which, along with the fact that E(t)- E(O), imply that

T

/ yx(O,t)dtl

_
Const.

0
Furthermore, noticing that yz(O, t) is constant, from the boundary condition at x 0, we obtain

T

ayx(O t)T / Elyxz(O t)dt, VT > O,
0

which implies that

,v(o, t) v(o, t) v,,(o, t) o, Vt>0.

Next, multiplying by y(x,t) and 2(x--c)yx(x,t) both sides of the first equation of (8) and
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then integrating with respect to x and t, respectively, where > 0 is constant (to be determined),
we obtain

T

/ j [pytt(x, t)y(t, x) + EIyxxxx(X t)y(x, t)]dxdt
o o

(10)

and T

o o

T

o o

T T

+ 3EIy2xx]dxdt + pe / y2t(,, t)dt + 2Mj yxt(,, t)yt(g, t)dt
o o

T

2J / Yxt2 (, t)dt + 2p / (x " )YtYx To dx 2Myx(’, t)Yt(’, t) oT
0 0

T

+ 2Jy(, t)Yt(, t) loT + EI Yz( t)dt O.
o

(11)

Computing (2 + 5) x (10) + (11) for 5 2M/J, we have

T [ T

[p(3 + 5)y2t + EI(1 5)yxxldxdt + [(2 + 5)M + pe] Yt
o o o

where

T T

+ jS / y2xt(,, t)dt + 2M / yxt(,, t)yt(, t)dt + Ei / y2xx(, t)dt + C(t) 0,

o o

C(t) (2 + 5)[- Myt( t)y(g, t) o + Jyt(, t)y(, t) To + p / YYt Todx]
o

( e /. ore (e,/(e, /Ior + (e,/(, /Io.
o

Obviously, IC(t)

_
Const. E(t). So,

T

j j [p(3 + 5)y2 + EI(1 -5)yxx]dxdt
o o
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T T

Yt(,t)dt-[JS-Me] Yxt
0 0

(12)

T T

y:,(g, )dt C(t).yt(,,t)dt-M t

0 0

Taking 0 <e < min{1,J/(2M)}, (12) implies that

T

E(t)dt <_ Const.
0

Thus E(t) 0 by the arbitrariness of T and E(t) E(O). The proof is complete.

By Theorem 1, Lemmas 2 and 3, and using LaSalle’s invariance principle [1], we have
immediately"

Theorem 2: Let E(t) be the energy of the hybrid system (2). Then,

tli_,mE t O.

3. The Uniform Decay

To get the uniform decay, we design, in this section, a boundary feedback control as

u(t) ImYxtt(O t) ayx(O t) f(yxt(O, t)).

Then the closed loop system would be

(13)

t>0,

(14)

In this case, the energy takes the form

1 2 1 2 1 2t(, t)"E(t) 1/2 [py2 + Ely2xxldx + -ayx(O, t) + -My (, t) + JYx
0

(15)

Consequently, the underlying state space becomes - H(0, )x L2(0, )x N2 with the inner prod-
uct

((u(x), v(x), al, a2) ( (x), (x), 1,
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-2-1_/ [EIu"(x)"(x) + pv(x) (x)]dx + 1/2u’(0)’(0)+ 1/2[Mal1 + Ja2-d2],
o

where H(0, t)is defined in section 2. Equation (14) can also be written as a nonlinear evolution
equation in :It;:

dY(t)
d+ tY(t) O,

Y(O)-Yo,

(16)

but instead of (4), here A: D(.A)( C )-Y is defined by

(17)

v E H2(0, ), u(0) v(0) EIu"(O) au’(O) f(v’(O)) 0}

and state variable Y(t) (y(x, t), Yt(X, t), yt(g, t), yxt(, t))T.
Following the same line as that of section 2, we also have

Theorem 3: The operator A defined by (17) is maximal monotone with the dense domain in
the space and hence generates an asymptotically stable nonlinear semigroup of contractions on

In the sequel, we always assume that the initial data belongs to the domain of operator A
and hence the solution of equation (14) has the regularity properties expressed by (ii) of Theorem
1. Let 6 > 0 and (x) ax- at- 1, where a is a constant to be determined. Define

Z(t) f t)d.
0

] c / El’ t’’ EIp xt2(O)yx(O’t)[ ytdx +-E--[ xytdx +--(1 +aey re t)+ cJ
Y (t,t)]

o o

+ ’yx(, t)[M()yt( t) + J’()yct(, t)]

+ (2 + 6)’[ / ytydx + -y(., t)yt( t) + yx(, t)Yxt(g t)]
o

Lemma 4: Let fl(t) be defined by (lS).
C, C2, and C3 such that

(18)

Then there exist a 6 > 0 and positive constants Co,

fl(t) <_ CoE(t), (19)

B’(t) <_ CIE(t + C2y2xt(O, t) + C3f2(Yxt(O, t)). (20)

Proof: By the defined form of fl(t) and Sobolev’s embedding theorem, we can always find a

constant CO such that I/() _< CoE() once the constants a and 6 are determined. To prove the
second condition, we find the derivative/3’(t) directly.
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Let

/3(t) yx(g, t)[M()yt(g t) + J’(g)yxt(g, t)]

z(t) (2 + )’[ ] v, + pM_v(, t)u,(e, t) + v(, t)v,(, t)].
0

After a tedious but very straightforward calculation we find that

0 0

2-EIrcy yp o- ’()(,t)( 1 + 1/2()L(
.(o)2c(O)yx(Op t)y(O, t)+( EI 2’(o)v(o, t)

2’(0)yx(0 t)f(Yxt(O t)) p(OE)if2(yxt(O t))+ p

i S ct cJ , t)]/32(t 2(O)Yxt(O,t)[ Ytdx+ xYtdx +(1 +)yt(g,t) +Yxt(
o o

Ely (0 t) a 0( ,t)]

’3(t) yxt(, t)[M()yt( t) + J’()yxt(, t)]

+ yx(, t)[M()Ytt( t) + J’()Yxtt(, t)]

0 0

Jy+ p xt(g, t) (0 t) 1 2(o, t)f(v,(o, t))].
Therefore,

Z’(t) Z(t)+ Z(t)+ Z(t)+ Z(t)

a i [(3 + 6)y2 ]EIy2 ( 2t+(1 6 ]dx-C,-p-- xx [(//- 6)a + --]Yx(0, t)
0
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Ma 2 JSa 2[ + ( + ")--] (, ) --x, )

EI_ 2x( t) ---yxt(,t)Yt( t) o(t)

EI 2 _ct c ]y2([(3 + 5)y2t + (1 5)--fi-yxx]dx [(// 5)a + --j x,0, t)

_(1+_]/_[(2+5)a ]) 2 2yt(t) (SJa MO) t)t(, -o(t),

where 0 > 0 is an arbitrary constant and

(21)

Take

ri(t) 2(O)Yxt(O’ t)[ Ytdx +--7 xYtdx / ----(1 +--)Yt( t) / EIp xt(’ t)]
o o

Ep) ’(0)5 (0, t)f(yt(0,t)).+ f2(Yxt(O t)) EIp Yx

ffi} M2 + P o M5-min{1/2, a--
pJ5 P"

With these defined constants,

a a 5Ja MO -11 -5 >_ 1/2,
"tl

-5)a /-E7 >- -E--[’

(22)

1 p0 + (2 + 5)]a (2 + 5)M(p + M2)
p2j5

p > O,

and hence

E1 2 2 2,. 2 1 2-fiyxt(,t)- (23/3’(t) < a [3Yt2 / -yxx]dt Tyx,U t) #y, (, t) o(t).
0

Since E(t)<_ E(O), it is easily seen from (21) and the definition of/0(t) that there exist positive
constants (71, C2, and (73 such that

t’(t) <_ CIE(t + C2Yxt t) + C3f (yxt(O, t)).

The proof is complete.

Along the same line as that of [4], we have the following uniform decay estimate as that of [4]
made for the hybrid string equation.

Theorem 4: Let (3) hold true. Let y be the solution of equation (14) with initial data being
in D(A).

(i) If there exist positive constants L and L2 such that

(24)

then, given any K > 1, there exists a constant w > 0 such that

(t) <_ KE(0)p(- t), vt > 0. (5)
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(it)

(iii)

If there exist positive constants L1, L2 and p > 1 such that

Llmin{ls], sl p}< If(s)] <L21sI,VseN, (26)

then, given any K > 1, there exists a constant co > 0 depending continuously on E(O)
such that

E(t) <_ KE(0)(1 + cot)-2/(p-1), Vt

_
0. (27)

If there exist positive constants L and L2 and 0 < p < 1 such that

LliSl < If(s)  <L=max{Isl, IslP), wc , (28)

then, given any K > 1, there exists a constant co > 0 depending continuously on E(O)
such that

E(t) <_ KE(0)(1 + cot)-2p/(p-1), ’t

_
0. (29)
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