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ABSTItACT

In this paper we consider a finite capacity queuing system in which arrivals
are governed by a Markovian arrival process. The system is attended by two
exponential servers, who offer services in groups of varying sizes. The service
rates may depend on the number of customers in service. Using Markov theory,
we study this finite capacity queuing model in detail by obtaining numerically
stable expressions for (a) the steady-state queue length densities at arrivals and
at arbitrary time points; (b) the Laplace-Stieltjes transform of the stationary
waiting time distribution of an admitted customer at points of arrivals. The
stationary waiting time distribution is shown to be of phase type when the
interarrival times are of phase type. Efficient algorithmic .procedures for
computing the steady-state queue length densities and other system performance
measures are discussed. A conjecture on the nature of the mean waiting time is
proposed. Some illustrative numerical examples are presented.
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1. Model Description

We consider a finite capacity queuing system in which arrivals occur singly according to a

Markovian arrival process (MAP). Any arrival finding the buffer (or waiting room)of size g full
is lost. The system is attended by two servers who offer services to customers (or jobs) in groups
of varying sizes. The service times of both servers are assumed to be independent and
exponentially distributed with (possibly) different parameters that may depend on the number of

1This research was supported in part by Grant No. DDM-9313283 from the National
Science Foundation to S. Chakravarthy and Natural Sciences and Engineering Council of Canada
Grant No. OGP0006584 to A.S. Alfa.
Printed in the U.S.A. (1994 by North Atlantic Science Publishing Company 161



162 S. CHAKRAVARTHY AND ATTAHIRU SULE ALFA

customers served. The customers are served in groups of size at least L, where the preassigned
number L > 1, is called the threshold. The service discipline of the system is as follows. If upon
the completion of a service, L or more customers are present, the freed server initiates a new
service to all the customers present. However, if fewer than L customers are present the server
waits until the queue length reaches L. When both servers are free server 1 will initiate a new
service with probability p, and server 2 will initiate a new service with probability q=l-p,
0 < p < 1. The service times of server are exponentially distributed with parameter !i,) that
may depend on the number of customers (r) in the group, for 1, 2, and L < r < K.

These types of models in the context of GI/PH/1 and MAP/G/1 queuing models with finite
capacity were first studied by Chakravarthy [2, 3]. The potential applications were outlined in
those paper and for the sake of completeness we will mention a few applications here.

(1)

(3)

(4)

(5)

In manufacturing process, jobs that require processing such as flushing with the
same coolant, coating bricks with noble metals (done by dipping the bricks in liquid
concentrate), sand blasting and heat treatment, can all be done in groups.
In the treatment of hazardous petrochemical and petroleum wastes, certain wastes
may all need a specific treatment method such as thermal treatment method
requiring the use of high temperatures (900F-3000F) to break down the hazardous
chemicals into simpler, less toxic forms. These could be handled in groups.
In machine vision systems, the jobs that arrive for processing may all have the same
characteristics and hence all the jobs can be placed in a common tray or belt for the
camera to photograph the images and send the information to the central computer
for analysis.
In order to process the packages (received at a package delivery company) more
efficiently at the initial stages of routing, the company may classify the arrivals of
packages into two categories: one containing (usually small) packages that require
individual attention such as marking codes, posting special care, if any, and routing
information; the other may involve packages that are destined to go in only one
route or in one vehicle. These packages can be processed in groups of one or more.
In computer communications, suppose the incoming jobs are grouped into two
types" one type requiring access to a common data base and the other type needing
the use of common input/output device such as a laser printer or color plotter. The
central processor can process all the jobs of each type in groups. Another example
is in load balancing using probing in distributed processing. When jobs arrive into
the dispatcher, it probes the distributed system for the type of load (heavy,
moderate or light) and accordingly the jobs are distributed to balance the load
among various processors.

In all the above applications, we see that the jobs that require processing of general type can
be processed in groups of varying sizes, which motivates the need for the type of service
mechanism considered in this paper. For economic reasons, it is better to have a minimum
number of jobs to form a batch before they are processed. The maximum number of jobs that
can be processed at a time is the size of the buffer, which is given by K.

A MAP with single arrivals is defined as the point process generated by the transitions epochs
of an m-state Markov renewal process with transition probability matrix given by

}F(x)- eCtdt C1

o
forx>0, (1)

where CO and C1 are square matrices, each of order m whose sumQ- Co + C1 is an irreducible
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infinitesimal generator. The matrix Co, with negative diagonal elements and nonnegative off-
diagonal elements, governs transitions that correspond to no arrivals, and C1, a nonnegative
matrix, governs transitions that correspond to (single) arrivals. We also assume that Q Co and
hence Co, being a stable matrix, will be nonsingular.

Let be the stationary probability vector of the Markov process with generator Q.
is the unique probability vector satisfying

That is,

Q=0 and e=l, (2)

where e is a column vector of dimension m, consisting of l’s. Note that j gives the probability
that at an arbitrary time the MAP will be in phase j, 1 _< j_< m. The constant Cle
referred to as the fundamental rate, gives the expected number of arrivals per unit of time in the
stationary mode of the MAP.

The MAP (and the extension allowing for group arrivals) has been shown to be equivalent to
Neuts’ versatile point process [6]. This is a rich class of point processes containing many familiar
arrival processes such as Poisson, PH-renewal process, Markov-modulated Poisson process,
alternating PH-renewal processes, arrival process obtained as a sequence of PH-interarrival times
selected via a Markov chain, and superposition of PH-renewal processes, as very special cases.
There is an extensive literature on queuing and communications models in which such point
processes are used to model both arrival and service mechanisms. We refer to Lucantoni [4] and
Neuts [6, 8] for full details on these point processes and their usefulness in stochastic modeling.

In some manufacturing processes jobs may arrive from various sources such as vendors, shifts,
and assembly plants to a common processing area. In these cases the arrival processes can no
longer be assumed to form renewal processes. Hence, modeling the arrival processes with MAPs
seems to be a natural choice. It should be noted that by an appropriate choice of parameters of
the MAP the underlying arrival process can be made a renewal process.

A number of optimization problems, useful in the design of such queuing systems, can be
studied in terms of choosing a value for L, by fixing the parameters of the arrival and service
processes. One such example would be to choose a value of L for which the jobs do not have to
wait for a long time before entering service. Small values of L will result in frequent services with
smaller groups and large values of L will result in longer waits for the jobs. It is, therefore, of
interest to see how the system performance measures are influenced by the choice of L. Our
algorithmic procedures can clearly handle problems of this nature.

The objective of this paper is two-fold. First, we perform a steady-state analysis of the model
by deriving expressions for

(i) the densities of the number of customers in the queue;
(ii) the conditional density of the number of customers served during a service by

server i, given that server i, i- 1,2, is busy;
(iii) the Laplace-Stieltjes transforms of the steady-state waiting time distributions; and

(iv) various system performance measure useful in the qualitative interpretation of the
model studied.

Secondly, we develop implementable algorithms for computing several performance measures
such as the throughput, proportion of time both servers are idle, proportion of time server is

busy, the mean and the standard deviation of number of customers in the queue, and the mean

waiting time of an admitted customer into the system. A conjecture, based on our computational
experience, on the nature of the mean waiting time at an arrival epoch is proposed.
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2. The Steady-State Probability Vectors

The queuing model described in Section 1 can be studied as a continuous-time Markov
process on the state space fl t2 2 t2 3 t3 {i: 0 _< _< K}, where

((i,k)’O <_ <_ L- 1,1 _< k _< m},

((i, jl, k):O <_ <_ L- 1,L <_ j <_ K, 1 <_ <_ m},

3 {(i, j2, k)’O <- <_ L- 1,L <_ J2 <- K, 1 <_ ]c <_ m},

i- {(i, jl, j2, k):L <_ Jl,J2 <- K, 1 <_ k <_ m},O _< _< K.

The states and their description are given in Table 1 below. Although the number of states
in this Markov process is large, the generator of the Markov process is highly sparse. By
exploiting this special structure, we will develop efficient algorithms for computing the steady-
state probability vector.

Table 1: States and their description

State

(i,k)

(i, jl, k)

(i, j2, k)

(i, jl,J2, )

Description

customers in the queue, the arrival process is in state k and both
servers are idle.

customers are in the queue, server 1 is busy with Jl customers,
server 2 is idle and the arrival process is in state k.

customers are in the queue, server 2 is busy with J2 customers,
server 1 is idle and the arrival process is in state k.

customers are in the queue, servers 1 and 2 are busy, respectively,

with, Jl and J2 customers and the state of the MAP is k.

In the sequel the notation e denotes a unit column vector with 1 in the i-th position and 0
elsewhere, e a column vector of l’s, and I an identity matrix of appropriate dimensions. The
symbol will be used to denote the transpose and the symbol (R) will denote the Kronecker
product of two matrices. Specifically, A (R) B stands for the matrix made up of blocks AijB. For
more details on the Kronecker products, we refer the reader to Bellman [1] or Marcus and Minc

L
Denote by p(k) a column vector whose r-th component is given by p!k), k 1,2, and]<_’" r _< K and A(p(k)) is a diagonal matrix with diagonal elements given by the components of

p(k), for k- 1,2.

The generator Q* of the Markov process is given by
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B0 pB1 qB1 0 0 0 0 0 0 0

(R)/(1) (R) I B2 0 B3 0 0 0 0 0 0

(R)/(2)(R)i 0 B4 B5 0 0 0 0 0 0

0 E1 F1 A0 I (R) C’1 0 0 0 0 0

0 E2 F2 0 A0 I @ C’1 0 0 0 0

0 EL FL 0 0 0 A0 I (R) C1 0 0

0 0 0 D1 0 0 0 A0 I (R) C1 0

0 0 0 D2 0 0 0 0 A0 0

0 0 0 DK- L 0 0 0 0 0 A0

0 0 0 DK_L+ 1 0 0 0 0 0

I@C1

A1

where the matrices appearing in Q* are defined as follows.

CO C1 0 0 0

0 CO C1 0 0

0 0 0 CO C
0 0 0 0 Co

B1 eL (R)e (R)eI

I(R)Co I(R)C 0

0 I @Co I (R)C

0 0 0

0 0 0

0 0

0 0

I @Co I (R)C
0 I(R)Co

[I (R) A((1)) (R) I],

B3-eL(R)I(R)el(R)C1, B5-eL(R)dI(R)I(R)C1,

I @CO I (R)C1 0

0 I @CO I (R)C1

0 0 0

0 0 0

0 0

0 0

I(R)Co I(R)C1

0 I(R)Co

[I (R) A(/.(2)) (R) I], (4)
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Ei-e(R)I(R)p(2)(R)I, Fi-e(R)p(1)(R)I, for l_<i_<L,

D [e (R) ](1) (R) I] + [I (R) e (R) (2) (R) i], for 1 g L + 1.

A0 [I @ C0]- [((1)) @ I @ I]- [I @ A(g(2)) @ I], A1 A0 + I @ C1.

2.1 Steady-State Probability Vector at an Arbitrary Time

The steady-state probability vector z of Q* is the (unique) solution to

zQ* 0, :w- 1. (5)

We first partition a: into vectors of smaller dimensions as : (u, v, w, #(0), y(1),..., y(K)).
Note that the vector u is of order mL; the vectors v and m are of order (K- L + 1)Lm; and the
vectors y(i), for 0 < _< K, are of order (K- L + 1)2m. We further partition the vectors u, v, w,
and y(i) into vectors of smaller dimension as follows: u-(u(0),...,u(L- 1));v- (v(0),...,
v(L-1)) with v(i) (vL(i),...,vK(i)) O < <_ L-1, w- (w(O),...,w(L-1)) with w(i)
(wL(i),...,wK(i)), 0 <_ <_ L- 1, y(i) = (YL, L(i),...,YL, K(i), ...,YK, L(i),...,YK, K(i)), 0

_
<_ K.

By exploiting the sparsity of Q*, the steady-state equations in (5) can be efficiently solved in
terms of smaller matrices of order m. The required equations are given in the Appendix.

The following two lemmas, which are intuitively obvious, can be used as accuracy checks in
numerical computation of x.

Lemma 1: We have
K L-1 K K

[vk(L- 1)+ wk(L- 1)]Cle- Z Z Z [!l)yr, k(i)-I" #i2)yk, r(i)]e, (6)
k=L i=0 r=L k=L

L-I K
p6(k L)tt(i 1)Cle -I- Z P!2)yk, r(i)e

=0 r=L

L-1
1Vk(L- 1)Cle + Z/z )vk(i)e L < k < K,

--0

L-1 K
q(k- L)u(L-1)Cle-b Z Z p!l)yr, k(i)e

/=0 r=L

L-1

wk(L- 1)Cle + Z #2)wk(i)e’ L <_ k <_ K,
i=0

(8)

L-1 K
(L- 1)Cle- Z ["l)vJ(i) + #’2)tOJ(i)]e’

i=O j=L
(9)

K

Yj, k(O)C1e [#1) _{_ ].t2)]]j,k(i)e,
i=1

L<_j, k<_K. (10)
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Proof: The stated equations follow immediately from.equations (A1-A11). For example,
postmultiplying each one of the equations (A1-A8) by e and adding we get the state equation in
(6).

Remark: The results of Lemma 1 can be obtained intuitively. For example, Equation (6)
states that in equilibrium, the rate at which the system enters the state in which both servers are
busy should be equal to the rate at which the system will leave that state, as it should be.

Lemma 2: We have
L-1 L-1

i=0 =0

where r is as given in (2).

K K K

k= L i=0 r= L

K

Z Yr, k(i) "’ (11)
k=L

Proof: By adding the equations (A1-All) over appropriate index values, and using the
uniqueness of , we get the stated equation.

Let Pi denote the stationary probability that server is busy, for i- 1,2.
see that

Then it is easy to

P1 (re + ye and P2 (we + ye (12)

Let N(i) denote the number of customers served during service by server i, i- 1,2. The
following lemma, whose proof follows immediately from the definition of N(i), gives expressions
for the conditional probability densities of N(i).

Lemma 3: The conditional probability densities f)i of the random variables g(i) given
B {server busy), i- 1,2, are given by

1 vn(i)e + yn, k(i L <_ n <_ It’,

Zwn(i)e + yk, a(i L<_n<_K,
,=0

(13)

where P1 and P2 are as given in (12).
The throughput, defined as the rate at which customers leave the system, can be expressed as

follows.
K K

7- P1 iP!l)f(i) T P2Z ip!2)f(i)" (14)
,=L i=L

2.2 The Stationary Queue Length at Arrivals

The joint stationary density of the number of customers in the queue, the number of
customers in service and the phase of the arrival process at arrival epochs is obtained in this
section. Suppose we denote by zo(i), O<_i<_L-1, zl(i,j), for 0_<i_<L-1, L_<j_<K,
z2(i,j,k), for 0 <_i_< K, L _< j, k < K, vectors of order m with components given by zo(i,r),
zl(i,j,r), and z2(i, j, k, r), respectively. The component zo(i,r gives the steady-state probability
that an arrival finds both servers idle with customers in the queue and that the arrival process is
in phase r; zl(i j,r) is the steady-state probability that an arrival finds exactly one server busy
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with j customers, and customers are in the queue and at that instant the arrival process is in
phase r. z2(i j,k, r) is the steady-state probability that an arrival finds both servers busy with j
and k customers, and customers are in the queue and at that instant the arrival process in in
phase r.

Lemma 4: The vectors zo(i), zl(i,j), O < i <_ L-1, L <_ j <_ K and z2(i,j,k), O <_ <_ K,
L <_ j, k <_ K are given by

zo(i) u(i)C1, 0 <_ < L- 1,

z(i, j) (t,j(i) + wj(i))C, 0 <_ <_ L- 1, L <_ j <_ K,

z2(i,j,k -yj, k(i)C, L- 1 < i < K, L < j, k < K,

(15)

where is the fundamental rate of the arrival process.

Proof: follows from the definition of z.

3. Stationary Waiting Time Distribution

Suppose that W(. ) denotes the stationary waiting time distribution of an admitted customer
at an arrival. Before we derive an expression for the Laplace-Stieltjes transform W*(s) of W(. ),
we need some additional notation.

Let Oi, j(t), for 0 _< _< L- 2, _< j <_ m, be the probability that, given that an arriving
customer finds i customers m the queue with at least one server being idle and the arrival process
being in phase j, (L-1- i) arrivals occur at or before time t. Let #(s) denote the (column)
vector of order m, whose j-th element gives the LST of Oi, j(. ). Let 6"(i, j,k,s), for 0 _< i <_ L- 2,
denote (column) vector LST whose r-th component ives transform of the maximum of an
exponential random variable with parameter pl)+ p2) and the time taken to see L-1-i
arrivals in the arrival process which started in phase r.

Theorem 1: The LST W*(s) is given by

w*(,) +
i=o i=o j=L t=L (16)

where
+i:L-1E j:L k:LSE +#1)+p2)z2(i’j’k)e for Re(s)>_O,

K
l(i)- zo(i) + E za(i’J)’

j=L
0<i<L-2

K K
c* [1 E E z2(K’ j, k)e] -1

j=L k=L

(17)

Proof: Immediate from the law of total probability. The probability that the waiting time
is zero is given by

K
c*[z0(L 1)e / E Zl(L 1, j)e].

j=L
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4. The Case of Phase Type Arrivals

When CO -T and C1 -Wa the arrival process is described by a PH-renewal whose
interarrival times follow a PH-distribution with representation given by (a,T) of order m. The
mean interarrival times can be verified to be - -aT- e.

Theorem 2: When interarrival times follow a PH-distribution with irreducible
representation given by (a,T) of order m, the stationary waiting time distribution W(.) of an
admitted customer at an arrival also follows a PH-distribution whose LST is given by

W*(.) d* Z $(i)[o(I T)- T]L- -i

i=0

L-2 K K
-F Z Z Z Yj, k(i)TO((sI M)- 1M) (18)
i=0 j=L k=L

K-1

i=L-1

K K (1)

j L k LS + + p2)#j’k(i)T for le(s) > O,

where (a, 0,..., O, 0,..., O, 0),

T-pI Ta 0 0 pI 0 0 0 0

0 T-pI Ta 0 0 pI 0 0 0

0 0 0 T- pI 0 0 0 I To

0 0 0 0 T T 0 0

0 0 0 0 0 T T 0 0

0 0 0 0 0 0 0 T 0

0 0 0 0 0 0 0 0

and
(1) i2),-pj +

$(i) u(i) + [vj(i)+ wj(i)]
j=L

O<_igL-2,

K K
d* [- Z Z Yj, k(K)T] -1.

j=L k=L

The column vector M is such that Me + M -O.

Proof: Immediately follows from the following observations (see Newts [7])"
(a) the convolution of L- 1- interarrival time distributions is a PH-distribution;

(19)
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the maximum of two independent phase type random variables is also of phase
type; and
a finite mixture of PH-distributions is also a PH-distribution.

Corollary: The mean (#w) wailing time in lhe PH/M/2/K model is given by

#; d* [/f(i)To + yj, k(i)TO]L 1 -i

i=0 j-L k-L

L 2 K K k(i)TO(a[(#.l + #2))i T]- 1T)L -i

j=L k=i Pj +i--0
(20)

L-1 j L # -F

where if(i) and d* are as given in (19).

5. Numerical Examples

Here we discuss three representative numerical examples of the model discussed in this paper.
We also propose a conjecture on the nature of the mean waiting time.

Example 1: Our interest in the first example is to study the effect which the parameter p
has on various performance measures. The data for this example is as follows: K 15, L- 5,
the service rates for servers 1 and 2 are geometrically decreasing with (a) 3 (1) 2 (2) 2,5 15
and ,(1)_ 1 The MAP governing the arrivals has the representation given by15

CO and C1
3.5 -5.5 0.5 1.5

It can be verified that A- 4.
shown in Table 2 below.

The parameter p was varied from 0.0 to 1.0 and the results are

An examination of Table 2 reveals the following information. The impact of this parameter
on the mean queue length, the standard deviation of the queue length and the throughput is very
negligible. However, as p increases the probability of both servers being busy decreased. This is
intuitive since increasing p implies that the server 1 has a higher chance of initiating service when
both servers are idle; and since the first server serves at a faster rate, this outcome is not
surprising. It is interesting to note that the probability of both servers being idle increases as p
increases. Again, a similar intuitive reasoning can be given. An as one expects, as p increases,
the probability of server 1 being busy increases and server 2 being busy decreases.
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Table 2

P ’ P12 P1 P2 112 EQL SDQL*

0.0 4.00 0.0219 0.0347 0.3479 0.6393 2.0014 1.0974
0.1 4.00 0.0209 0.0548 0.3177 0.6484 2.0014 1.0973
0.2 4.00 0.0198 0.0753 0.2870 0.6576 2.0013 1.0973
0.3 4.00 0.0188 0.0961 0.2558 0.6667 2.0012 1.0971
0.4 4.00 0.0177 0.1171 0.2242 0.6763 2.0011 1.0970
0.5 4.00 0.0166 0.1385 0.1921 0.6860 2.0011 1.0969
0.6 4.00 0.0155 0.1603 0.1595 0.6957 2.0010 1.0968
0.7 4.00 0.0144 0.1824 0.1264 0.7056 2.0009 1.0967
0.8 4.00 0.0132 0.2048 0.0927 0.7157 2.0009 1.0966
0.9 4.00 0.0121 0.2276 0.0586 0.7259 2.0008 1.0965
1.0 4.00 0.0109 0.2507 0.0238 0.7363 2.0007 1.0964

p- P (server 1 will initiate service); 7- Throughput, P12- P (both servers are busy); P1
P (server 1 is busy); P2- P (server 2 is busy); 112- P (both servers are idle); EQL- mean
queue length; SDQL- Standard deviation of queue length.

Example 2: Our interest here is to study the effect of different arrival processes on the
performance measures as the threshold level, L, is varied. We consider four arrival processes, viz:
Erlang, Exponential, general MAP, and Hyperexponential; all with the same arrival rate of 10.0.
The matrices CO and C1 for these four arrival processes are given by

I. Erlang: CO and C-
0 20 20 0

-7 1 5 1
III. MAP: Co and C1

1 -17 2 14

IV. Hyperexponential:
25 0 24.75 0.25

Co and C1
0 100 99 1

604 604 604

The other parameters of the model are taken to be K 15, p 0.5 and the service rates of server

1 vary geometrically from 2.5 to 0.25 and those of server 2 vary geometrically from 1.25 to 0.215.

The performance measures considered are throughput, mean queue length, standard deviation
of the queue length, and the mean number of customers served by server 1 and server 2. These
five measures, as functions of L, are plotted in Figures 1-5.
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Fig ure 1
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Fig ure 3
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Fig ure 5

15

5 [ ,. -.-=...: ,.:,v
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Threshold(L)

An examination of Figures 1-5 yield the following observations. The throughput, as expected,
increases in all cases as L increases and then levels off at the value of 10.0 (the arrival rate).
however, for the hyperexponential distribution the throughput started at a much lower value
compared to the rest. The standard deviation of the queue length for the hyperexponential is also
much higher than that of the other three arrival processes. However, the mean queue length was
lower for low values of L and higher for higher values of L for the hyperexponential than for the
other three. The coefficient of variation of the queue length was also considered as the
performance measure of interest. Its value was higher for the hyperexponential than for the the
other three. This behavior is understandable due to hyperexponential’s high variance compared
to the other three distributions. The mean numbers served by servers 1 and 2 are consistently
higher for the hyperexponential than for the other three distributions.

Suppose that /(L) denotes the mean waiting time of an admitted customer ta points of
arrival as a function of L. The purpose of the following example is to see the effect of the
threshold on the mean waiting time distribution, by fixing all other parameters.

Example 3: We consider the following three distributions for the interarrival times:
A: Erlang of order 5 with parameter 50.
B" Exponential with parameter 10.
C: Hyperexponential with the mixing probabilities 0.85, 0.14 and 0.01. The respective

exponentials have parameters 100, 10 and 4/31.
It can be verified that all these have the same mean 0.1. The service rates of both servers are

assume to be 0.5 and do not depend on the number of customers served. The mean stationary
waiting times of an admitted customer at points of arrivals for these three systems are plotted in
Figure 6. Suppose L* denotes the optimum value of L for which p(L) is minimum. An
examination of this figure reveals the following observations.

(i) The L* values are 11, 10 and 5 respectively.
(ii) The value of L* appears to decrease with increasing variance of the arrival times,

which we have also seen in many other types of examples we have run so far.
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Fig ure 6
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Our computational experience suggests the following conjecture, which is similar to the one
proposed in Chakravarthy [3].

Conjecture: p’w(L) is nonincreasing on 1, L" and is nondecreasing on [L’, K ].
If the above conjecture is valid, then finding L* for a given system is very simple. We start

computing the mean waiting time with L- 1 and continue until the mean waiting time starts to
increase.
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Appendix

K
(O)Co + [,,(o)u’) + .(o))] = o, (A)

j=L

K
u(i)Co + u(i- 1)C, + E [,j(i)pl) + uj(i)p2)] = o, 1 _< i _< L- 1,

j=L

K
pa(L I)C1 -I- "L(0)[’0- p)l] + E P(r2)YL, r(0) 0,

K
,,,(o)[Co- ,l)z] + ,h,,,,(o) = o,

r--L
L+I <_k <_K,

K
k(i)[Co_ 1)i] + (i- 1)C] + E P2)Yk, r(i) = O, L _<k _< K, 1 _< i _< L- 1,

r---L

K
qu(L 1)C1 + mL(0)[Co p)l] + E P!1),, L(0) = O,

r=L

K
*(0)[C0- #:)I] + 2 #!)lr,(0) = O,L + 1 < < K,

r=L

K
u(i)[Co-Pt2)I]+tok(i 1)C] + E P!l)lt,’,t(i) =O,L <_ t _< K,1 _< _< L- 1,

r=L

(A2)

(A3)

(A4)

(AS)

(A6)

(AT)

(AS)

[6( L)ej(L 1) + 6(j- L)uk(L 1)]C1 Ij, t(0)[p1) + pt2)]
K

+ Yj, (0)Co + E [P!])llr, t(J)+ P!:)/j,r(k)] = 0, L <_ j,k _< K,
r=L

(A9)

where (. ) is the Kronecker delta defined as 6(x) 1 for = = 0; 6(=) = 0, for x 0, and for L < j,
k _< K, we have

(1)i p2)l ..1. yj, k( 1)C1 O, 1 < i < K 1Yj, k(i)[Co -/j (alO)



A Finite Capacity Queue with Markovian Arrivals 177

yj, k(K)[Co- p.)I pi2)I] / [yj, k(K 1) / yj, k(K)]C1 O. (All)

Equations (A1-All) can be rewritten in a form that is well-suited for computation by (block)
Gauss-Seidlel iterative procedure. Defining

max [p xi Co]-1 r-1 2

(1) +.(2) M3 [Pmaxi Co]-1]max ?max ?max

we can rewrite (A1-All) as follows.

t(0) [)j(0)ft -]- Wj(0) )] CO)- 1

u(i) u(i 1)C1 + [vj(i)p1) + wj(i)p2)] Co) 1, 1 _< g L 1,
j=L

VL(O pu(i- 1)C1 -I- (?max-)VL(O) - Z P2)yL, r(0) MI’
r’-L

Vk(O) (p(lm)ax pl))vk(O "t- Z P!2)yk, r(0) MI’ L -t- 1 _< k _< K,
r:L

vk(i (p(lm)ax- pl))vk(i) + vk(i- 1)C1 + p! r(i) M1, L _< k _< K, 1 _< _< L- 1,
r--"

(2) t))WL(0) Z fir )#r,L(0) M2’WL(O qu(L- 1)C1 -I-(?max- -]-
r-L

Wk(O) (?max(2) _pi2))Wk(0)+ Z Pr )Yr, k(O) M2, L + l _< k _< It’,
r=L

wk(i (p(2m)ax-- p2))wk(i q- Wk(i-- 1)C1 -t- pl)yr, k(i M2, L <_ k <_ K, 1 <_ <_ L- 1,

K

yj, k(O) [(k L)vj(L 1)+ (j- L)wk(L- 1)]C1 + Z P!l)yr, k(J)
rL

2t- (Pmax ltj(1) p2))Yj, k(O) +rZ= LPr )Yj, r(k) M3’ L _< j, k <_ K,

and for L < j, k _< K,
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and

[ (1) 2))j,k(i "- Yj, k(i- 1)C1] M3, 1 < < K 1Yj, k(i) (#max-- #j

(1)_ 2))yj, k(K) + [Yj, k(K 1)+ Yj, k(K)]Cll M3.,(K)- [(,-


