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ABSTRACT

We consider a single server infinite capacity queueing system, where
the arrival process is a batch Markovian arrival process (BMAP).
Particular BMAPs are the batch Poisson arrival process, the Markovian
arrival process (MAP), many batch arrival processes with correlated
interarrival times and batch sizes, and superpositions of these processes.
We note that the MAP includes phase-type (PH) renewal processes and
non-renewal processes such as the Markov modulated Poisson process
(MMPP).

The server applies Kella’s vacation scheme, i.e., a vacation policy
where the decision of whether to take a new vacation or not, when the
system is empty, depends on the number of vacations already taken in
the current inactive phase. This exhaustive service discipline includes the
single vacation T-policy, T(SV), and the multiple vacation T-policy,
T(MV). The service times are i.i.d, random variables, independent of
the interarriwl times and the vacation durations. Some important
performance measures such as the distribution functions and means of
the virtuM nd the actual witing times are given. FinMly, a numericM
example is presented.

Key ords: Vacation Models, Batch Markovian Arrival Process,
BMAP/G/1 Queue, Waiting Time Distributions, Matrix-AnMytic
Methodology.

AMS (MOS) subject classifications: Primary 60K25, Secondary
68M20, 90B22.

1. Introduction

In Matendo [11], we considered a BMAP/G/1 queueing system in which the server applies a

general exhaustive service vacation policy. In that model, the server alternates between active
and inactive states. During the active phase, the server continuously provides service to
customers and during the inactive phase, which begins whenever the system becomes empty
(exhaustive service), the server is unavailable to the customers. We refer to Loris-Teghem [5] and
[6] for details. We note that this rather large class of exhaustive service vacation policies
includes:

the N-policy, according to which an inactive phase terminates as soon as at least N
(N > 1) customers accumulate;
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the T-policy
with single vacation, T(SV), according to which, when the system gets empty, the

server leaves for a time period called a vacation. Back in the system, the server resumes serving
customers as soon as at least one customer is present;

with multiple vacations, T(MV), according to which, when the system gets empty,
the server takes repeated vacations until, back from such a vacation, he finds at least one
customer in the system;

combinations of these policies such as the (T(SY);N)-policy, the (T(MY);N)-policy,
Kella’s vacation scheme (Kella [4]), etc.

Using the matrix-analytic methodology, we obtained computational results for the queue
length at a post departure or inactive phase termination epoch, at a post-departure epoch and at
an arbitrary epoch. We noted that the embedded Markov renewal process at service completion
or inactive phase termination epochs is of M/G/l-type.

In this paper, we consider a special case of the above model in which the server applies Kella’s
vacation scheme, i.e., a vacation policy where the decision of whether to take a new vacation or
not, when the system is empty, depends on the number of vacations already taken in the current
inactive phase. The aim of this paper is to obtain computational results for the virtual and the
actual waiting time distributions.

Tractable expressions for the stationary queue length and waiting time distributions for the in-
finite capacity MAP/G/1 queue with multiple vacations are given in Lucantoni, Meier-Hellstern
and Neuts [7]. Independent of our work, these results have been recently generalized to the
BMAP/G/1 queue with server vacations (Ferrandiz [3], Schellhaas [13]). The particular case of a
batch SPP/G/1 queue with multiple vacations is considered in Takine and Hasegawa [15]. We
note that the SPP (switched Poisson process) is a particular case of the two-state MMPP. We
also note that the finite capacity MAP/G/1 queue with server vacations is considered in Blondia
[].

Section 2 contains the description of the model. In Section 3, we obtain the virtual waiting
time distribution using the stationary queue length at service completion or inactive phase
termination epochs. These results agree with those in Kella [4] for the M/G/1 queue. The actual
waiting time distributions are given in Section 4. Special cases are considered in Section 5. In
particular, we show that factorization results and the relationship between the virtual and actual
waiting time distributions (observed in Lucantoni, Meier-Hellstern and Neuts [7] and in Takine
and Hasegawa [15]), also hold for the BMAP/G/1 queue with multiple vacations. In Section 6,
we present a numerical example.

2. Model Description

We consider a single server infinite capacity queueing system in which arrivals occur
according to a BMAP with m phases and with coefficient matrices {Dk, k >_ 0}. The nonsingular
rn x rn matrix Do, with negative diagonal elements, nonnegative off-diagonal elements and row
sums less than or equal to zero, governs transitions in the phase process that do not generate
arrivals, and for k _> 1, the nonnegative rn rn matrices Dk govern transitions that correspond to
arrivals of batches of size k. We refer to Lucantoni [8] and [9] for more details. We recall that
the phase process is assumed to be an irreducible, positive recurrent Markov process on the state
space (1,...,m} with stationary probability vector _. Note that the matrix

D- Dk (D C Do)
k>0
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is the generator of this Markov process. So,

De_ -0, _rD-0 and_Tr e_ -1,

where e is a column vector of l’s. The stationary arrival rate of the process is.* 7 y kDk e_
k>l

The server applies Kella’s vacation scheme (Kella [4]) where the decision of whether to take a
new vacation or not, when the system is empty, depends on the number of vacations already
taken in the current inactive phase, as follows.

Upon returning from the (i- 1)st consecutive vacation (i > 1) in a given inactive phase, the
server becomes active immediately if he finds at least one customer waiting. Otherwise, he
decides to take another vacation with probability ai or remains in the system instead with
probability qi = 1- ai, (note that the = 1 case corresponds to the possible first vacation once
the system becomes empty). In the latter case, the server remains inactive, inspecting the queue,
until at least one customer is present. Vacation lengths are assumed to be i.i.d, random
variables with distribution function U(-), Laplace-Stieltjes transform (L.S.T.) U(-), finite
expectation E[U] and second order ,moment E[U2]. Special cases are the T(SV)-policy (where
crI 1 and ai 0, > 2), the T(MV)-policy (where tr = 1, > 1) and the ordinary (i.e., without
vacations) model (where q = 1).

Customers are served in the order of their arrivals, (customers within a batch are preordered
for service or served in random order). The service times are i.i.d, random variables, independent
of the interarrival times and the vacation durations, with distribution function S(.), L.S.T. S (.),
finite expectation E[S] and second order moment E[S2].

As in Matendo [11], the traffic intensity, p $*E[S] < 1 and the sequences of m m matrices

{Uk}k > 0 and {Ck}k > 1 are the matrix probability densities of the number of arrivals during a
vacatio and an inactive phase, respectively.

The matrix generating functions

are given by

and

(z, o) U*(z) C(z)- z <
k>0 k>l

U*(z)- exp[D(z)t] dU(t),
o

C(z) b[U*(z) U0] + aiD(z) D0],

(1)

where

and

a
r>0

r

(Hal) qr + lU( Do)- l’ b-
/=1 r>0

D(z)- Z DIzk"
k>0

r+l

H trl)Uro’
/=1
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3. Virtual Waiting Time Distribution

In this section, we relate the stationary virtual waiting time (i.e., the length of time a
customer arriving at an arbitrary time instant would have to wait before entering service) to the
steady-state probability vectors {_ i, >_ 0} of the queue length process at service completion or
inactive phase termination epochs (see Matendo [11]), using the Markov renewal theory. We omit
the details and refer to Neuts [12] and Lucantoni, Meier-Hellstern and Neuts [7] for similar
calculations.

Let W(x)- {Wl(X),... Win(x)} where Wj(x) is the steady-state joint probability that at an
arbitrary time the arrival process is in phase j and that a virtual customer who arrived at that
time would have been waiting at most a length of time z before entering service. Let W(s)
denote the L.S.T. of W(.).

Let
M(s) D(S (s)), Ml(S U*(S (s)), and M2(s C(S (s)).

For , = 1,2, define

d’’ ]r!t’)(0) ..M1(s)/()(0) --s M s
s= o s= o

)(0) --sM2(s)
s---0

D()(1) -zD(z)
z= 1

(U*)()(1) -z(U )(z)
z 1

and C()(1) -zC(z)
z

Then,

/r(1)(0) E[S]D(1)(1),

/ri)(o E[S](U*)()(1),

/(21)(0) E[S]C(1)(1),
]r(2)(0 (E[S])2D(2)(1) + E[S2]D(1)(1),

/2)(0)- (E[S])2(U*)(2)(1) + E[S2](U*)(1)(1),
and

/r2)(0) (E[S])2C(2)(1) + E[S2]C()(1).

We also define

m1 /r(1)(0)e__ and m2 --/(2)(0)e_.
After some laborious calculations, the joint transform of the virtual waiting time and the

phase of the BMAP, W(s), appears to be related to the vectors _x i, _> 0 by:

[(s)-(E’)-lx_oa] IsiS-
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and

where E* is the fundamental mean of the embedded Markov renewal process at service
completion or inactive phase termination epochs (Matendo [11]).

lemark 1: The virtual waiting time distribution is given by W(x)e_, with the L.S.T. W(s)e_.
Mean virtual waiting time: By differentiating in (3), setting s- 0, noting that /(0)- D

and Iz(0) _, adding lz(1)(0)e r to both sides, and recalling that _r (_e _r + D)- _, the first

moment vector lr(1)(0) results in

r(1)(0)- (1)(0)e 7r --71" --{71"/r(1)(0)- (S’)-lx_.o{a(I /r(l’(0))

-{-b(E[U]I --/rli)(0))-/rl)(0)} } (_e 7r - D) -1. (4)

Further, by differentiating twice in (3), setting s- 0,postmultiplying by e_, using (4), and
noting that _r m1 -p, the mean virtual waiting time -W(1)(0)_e results in

+ b(E[U]I +/ril)(0))- fl)(0)]} (_e 71" - D)- l}ml
+ [E -(E*)- l_.x 0a]m2

--(W’)- l__x 0{b[2)(0)- E[U2]I] --/r2)(0)}_e.

4. Actual Waiting Time Distributions

4.1 Actual waiting time distribution of (the first customer in) an arriving batch

Let Wb, j(x denote the steady-state joint probability that an arriving batch has to wait at
most a time x before entering service, and that immediately after that arrival epoch, the arrival
process is in phase j (j 1,..., m).

Let A-E( D0_e. denote the stationary arrival rate of groups. Then, the L.S.T. ffzb(S of
the row vector Wb(X (with components Wb, j(z), .j- 1,...,m)is given by

b(S (,0)- lr(8 Dk
k>l

: (A0) lI/r(s)[D Do] (6)

where W(s) is given by (3).
Therefore, the actual waiting time distribution Wb(X)e of an arriving batch is given by
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Wb(X)e- (A)- 1W(x)E Dke-
k>l

= (A)- lW(x)( no_ ),

with the L.S.T. Wb(S)e_ given by

i,zb(S)e_ (o)- lr(8)(_ Doe. ).

From (8), the mean actual waiting time -vtl)(0)_e of an arriving batch is given by

(8)

irtl)(0)_e (A0)- lir(1)(0)(D0. ), (9)

where r(1)(0)is given by (4).

4.2 Actual waiting time distribution of an arbitrary customer

Consider an arbitrary tagged customer in an arrivin group (i.e., a randomly selected
customer of an arriving group). Let Wc, j(x (with L.S.T. Wc, j(s)) denote the steady-state joint
probability that the tagged customer has to wait at most a time x before entering service, and
that immediately after the arrival epoch, the. arrival process is in phase j (j = 1,..., m).

It can be shown, after some calculations, that the row-vector Wc(s (with components
We, j(s), j 1,..., m) is given by

c(8) (’*)-i(8)EDk’--kls--slk>l
= 1 l(s)[D- D( (s))]. (10)

A*(1 S (s))

Therefore, the L.S.T. Wc(s)e_ of the waiting time distribution of an arbitrary customer is given
by

1 l(s)(- D( (s))).Vc(sle-
*(1 (sl)

It follows that the corresponding mean waiting time -rl)(0)e__ is given by

(11)

Ir!l)(0)_e (*)- l(1)(0)n(1)(1)_e + E[S]r_D(2)(1)e_
(12)

Remark 2: When the input process is a MAP with parameter matrices DO and D1 and i.i.d.
batch sizes, with prpbability.distribution (dk}k > 1, generating function d(z), first and second
factorial moment d(1) and d(2) respectively, then

and

A*-d(1)A and D(z)-Do+Dld(z).
Thus (11) and (12) reduce to

Vc(S)e_ Vb(S)e_ 1 d(S (s))
d(1)(1 (s))

ffl)(0)_e ,z(1 -d(2)
+ ).

(13a)

(13b)
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We note that the second factor in (13a) is the L.S.T. of the waiting time distribution of the
tagged customer within the batch. Therefore, we obtain the factorization of the waiting time
distribution of the tagged customer into the convolution product of the waiting time distribution
of the (first customer in the) batch and the waiting time distribution of the tagged customer
within the batch.

Observe that for a batch Poisson arrival process with rate , we have that Do =-A,
Ok Adk, k >_ 1, Ao A, ](1)(0) p and D(z) + d(z).

In the case of single arrivals, A* = $ and D(z) = A + $z.

[11]) in the light of
Note that (see Matendo [10] and

and

C(z) = b[U*(z) U0] + [1 (1 Uo)b]z

so that C(1)(1) 1 (1 Uo)b --/bE[U] and C(2)(1) 2bE[U2])
(1 p)(E*)- lx0 = C(1)(1),

(13a) and (13b) become

=w(,)

(1-p)s
[,- a + as

Ab[1 U (s)] + s[1 (1 Uo)b
sO(l)(1)

and

,z!l)(o
_-- r(1)(O

AE[S2] AbE[U]
2(1 ,o) + 2C(1)(1)’

which agree with the results obtained by Kella [4].

5. Some Special Cases

In this section, we particularize the results to the BMAP/G/1 queue with a single vacation
and the BMAP/G/1 queue with multiple vacations, respectively. In the notations relative to the
waiting times, the subscripts sv, my and nv will refer to the queue with single vacation, multiple
vacations and without vacations, respectively.

5.1 BMAP/G/1 queue with a single vacation

Let rI 1 and ai- 0, > 2. Then a- Uo (- Do)- 1

Using (2), we have

and b= I.
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so that

/2(8) /r1(8) 4- Uo( DO)- 1/r(8),

/)(0) )(0) / U0(- Do)- 1](Y)(0), b, 1,2.

(14a)

(14b)

and

Substituting (14a)into (3), .we obtain

rsv(8)[SI 4- D( (8))]- (g*)- l_x_o[/- (8)1 4-$Uo(- Do) 1].
Moreover, substituting (14b)into (4) and (5) respectively, we get

iv)(0 lv)(0)e _Tr

-{K](1)(0)-(E*)-1_.x0[U0(-n0)-14-S[U]I]} ( + n) -I

2Izlv)(0)e_ (1 p)

/r(1)(0)- (E*)-i_x o[Y0(- n0) -1 4- S[Y]I]}(__ 7f 4- n)- 1/1}
4-

_
m2 + (S*) I_X 0-- E[U2]

(15)

(16)

(17)

Further, using (15), expressions (6) and (10) are reduced to

$,rsv, b(8 (Ao)- I(E, -l_.x 0IX y (8)1 4- sVo(- Do)- 1]
[sI + D( (s))]-liD D0] (18)

and

w=, 1
A*(1 S (s))

1, { sv(8)[8I 4- n] (S*) ix o[I ] (8)1 4- 8Uo( Do) 1]}.A*(1- S (s))

(19)

It follows that

$,rsv, b(S)e_. (A) I(E*) ix_ 0I ] (S)I 4" sUo( DO) 1]
[SI 4" D( (s))]-1(_ mo-- ), (20)

and

Vsv, c(s)e- 1
A*(S (s)- 1)

Wsv(S D(S (s))

1 {s,zsv(s)e (E*)- lx [1- (s)I 4" sUo(- D0)- 1] }*(1- (sl) -o (21a)

From the second expression in (21a), we obtain the mean waiting time of an arbitrary
customer as
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p -(E*)-lx (21b)-0-e 2p 2E[S]"

Remark 3: (a) For the BMAP/G/1 queue without vacations (i.e., Uo I, U (s)- 1), it can
be easily shown (see Uatendo [11]) that

(E*)- l_x0( Do)- 1 (1 p)g,

where g is the invariant probability measure of a transition probability matrix- usually denoted
by G- which plays a key role in the analysis of Markov chains of M/G/1 type.

It follows immediately from (15), (16), (17), (18) and (19) that

Vnv(s) s(1 p)g_[sI + D( (S))] -1

(nl:(0)- (nl:(0)e r -_r +[(1- p)g -_r/r(1)(0)](_e _r + D) - (22)

(23)

-2I(n12(0)e_ (1- p)- 2{p +[(1- p)g -_r/r(1)(0)](_e
_
+ D)-lml} + _win2, (24)

Wnv, b(S) (A) ls(1 p)g sI + D(S (s)) (D-Do) (25)

and .,, (s) 1

*(1-S (sl)

1~ s)[sI + O] s(1 p)g ),A*(1- S (s))
(26)

which agree with the results obtained by Lucantoni [8], [91.1

From (25)and (26), we readily obtain that

Wnv, b(s)e_ (o)- ls( 1 p)g sI + D(S (s)) (- Do ), (27)

and
1~ ,.v(s)(- D( (s))_e)

A*(1- S (sl)

A*(1- S (s))
(28a)

Moreover, from (21b), or from the second expression in (28a), we get

I/(n12 (0)-e E[S2] (28b)~(1) c(O)_e p 2E[S]"

1Except that in the xpreprint of Lucantoni [9] in,our possession, the denominator of the second

expression in (26) is A*(S (s)- 1) instead of A*(1- S (s)).
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(6)
Matendo [10])

A(1- p)(E*)- xx0 AE[U] + UO"
Substituting (29)into (15), (20) and (21a)yield

U (s) + sUo,
 [Vo + AE[U]]

In the particular case of a batch Poisson arrival process with rate $, we have (see

(29)

(30a)

where

and

)U (s) + sUo
s[Uo + (30b)

(31)

(32)

It follows that

and

where

and

(1) (1) AE[U2]Wsv (0) (0) + E[U}]Why 2[Uo +

(1) E[U2]Wsv’c(0) I2’ c(0)+ 2[Uo / E[U]]’

(33)

(34)

I:)(0) PE[S]d(2) + AE[S2](d(:))2 (35a)
2d(1)( 1 p)

(1) E[S]d(2) + AE[S2](d(X))2 2(0) E[S2]-Wnv, c(O) 2d(:)(1 p)
= -------2E[S’---" (35b)

Observe that relations (30b) and (34) agree with the results obtained by Takagi ([14], pp. 143-
144, relations (3.22a) and (3.22b)).

5.2 BMAP/G/1 queue with multiple vacations

Letai-l,i>_l. Thena-0, b-(I-Uo)- and from (2) wehave

/2(s) (I Uo)- 1[/1(8 Vo] (36a)

so that

/ru)(O) (I Uo)- 1/rU)(O), 1,’ 1,2. (36b)

Substituting (a6a) and (36b)into (3) and (4), and noting that (Matendo [11])
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we have

and

(E*) l_x o
(1 p)_g (I Uo)

E[U]

Wm.() 1-U(s)~
-E i W.(),

(36c)

(37)

I/r(ml)v(0 I(ml)v(0)e_ _Lr E +[(1- p)_g _’Lr/r<l)(0)] (e_. 71" -4- D) -1. (38)

It follows from (37), (6) and (10) that

Vm,;,b(S) 1 U (s)_
-/[]] W.,,b(S), (39)

and

imv c(s)
1 U (s)
ETt7] w.., (.). (40)

From (37), (39)and (40), we obtain

Vmv(S)e 1 U (s)
E-] Wnv(s)e-’ (41)

and

mv, b(S)e_
1 U (s)_

(42)sE[U] Wnv, b(S)e-’

lm c(s)e_
1 U (s)
sE[U] Wnv, c(s)e-" (43)

Therefore, the various mean waiting times are given by

~(1) ~(1)w.(o)_ w.(o)_+E[U
2

2E[U]’ (44)

and

r(ml)v,c(0)e Why,~<1) c(0)_e +

E[U2

2E[U]’ (45)

E[U2

2E[U]" (46)

lmark 4: (a) Observe that Lucantoni, Meier-Hellstern and Neuts [7] and Takine and
Hasegawa [15] obtained some factorization or decomposition results for the MAP/G/1 queue with
multiple vacations and for the batch SPP/G/1 queue with multiple vacations, respectively. They
showed that the actual (virtual) waiting time distribution is the convolution of the residual
vacation time and the actual (virtual) waiting time distributions in the corresponding model
without vacations. Therefore, (37) and (39)-(43) extend these factorization results to the case of
BMAP input. We also mention that the relationship

1- S (s)Wmv(S)e- P -8-F’-] Wmv, c(S)e- + (1 p)l U (s)
sE[U] (47)
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between the virtual and the actual waiting time distributions, established in those papers, also
holds for the BMAP. This follows from (11), (22) and (37).

(b) In the particular case of a batch Poisson arrival process with rate A, (43) and (46) reduce
to the results obtained by Baba [1].

6. A Numerical Example

We assume that the input stream is a two-state MMPP (Markov modulated Poisson process)
with i.i.d, batch arrivals. The infinitesimal generator and the arrival rate matrix of the MMPP
are given by

D- and A-di 4.0, 1.0
2.0 2.0

The batch size distribution is geometric with parameter 0.4. Thus A*= 7.5 and o = 3.0. The

service time distribution is phase-type with representation -diag( 6.0, 10.0 )and (0.25, 0.75 )
(it., a hyperexponential distribution). This yields the traffic intensity p of 0.875. The vacation
length is exponential with parameter p. For this problem, the various mean waiting times, for
the ordinary model, the T(SY)-model and the T(MY)-model, are given in the appendix.
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APPENDIX: Mean waiting times

virtual

2.91343

Ordinary model

first customer in a batch

2.97249

arbitrary customer

3.20582

2

10

50

100
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