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ABSTRACT

In the present paper an operator-differential equation is
investigated. Sufficient conditions for the presence of Kneser’s properties
are found.
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1. INTRODUCTION

In the present paper sufficient conditions are obtained for the presence of

Kneser’s properties for the operator-differential equation considered. Conditions

are also found which guarantee the existence of nonoscillating solutions, and

some of their asymptotic properties are investigated. Sufficient conditions for

finding the number of the zeros of a given solution of this equation in a finite

closed interval are given.

Analogous results for ordinary differential equations are obtained in [1].
The consideration of an operator-differential equation allows us by means of a

single approach to investigate the properties of the solutions of a number of little

investigated classes of differential equations.
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2. PPLIMINARY NOTES

Consider the operator-differential equation

x(")(t) + p(t). (Ax)(t) = 0 (1)
where n _> 1 is an integer, A is an operator with certain properties, and p is

nonnegative, locally integrable function in

Introduce the following notation:

C([a, b]; )- the set of 11 continuous functions u: [a,b] N.

AC([a, b];R)- the set of all absolutely continuous functions u: [a, b] --+ R.

AC(N+, N)-the set of all functions u" N+ N which are locally

absolutely continuous, together with their derivatives up to order k inclusive.

L(I, N), I c -the set of all functions u: I N which are Lebesgue

integrable.

Ltoc([a ec); N)- the set of all Lebesgue inegrable functions u" [a, ec) --[ in each finite closed interval [a, b] C [a,

Definition 1. The function x:

equation (1) if x AC"-I(+, )
everywhere.

N+ N is said to be a solution of

and z satisfies equation (1) almost

Definition 2. A given function u: R+--+ N is said to eventually enjoy the

property P if there exists a point t, >_ 0 such that for t >_ tp, the property P is

valid.

Definition 3. The solution x of equation (1) is said to be regular if

sup[z(t)l > 0 eventually.

Definition 4. The regular solution z of equation (1) is said to oscillate if

it has infinitely many zeros, and to be nonoscitIating otherwise.

Introduce the following conditions"

p e >_ 0} > 0 _> 0.

H2" A: AC"-1(.t., ) --’ loc( /’ )"

H3" If the function x AC"-I(N+, N) is eventually nonzero and with a

constant sign, then the function Ax Lo(+, ) is also eventually nonzero and
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with a constant sign, and they have the same sign.

H4: If the functions xx, x= e AC"-(R+, R), z(t) <_ x=(t) for t e R+, then

(Ax)(t) <_ (Ax)(t) for t _> to > 0.

H5: If x(t) O, then (Ax)(t) --0 eventually.

H6: The operator A is linear.

Introduce the following notation:

then

If so is a zero of the function v: R+--, R with multiplicity no, and m ,
o for no _< m

A.,(V,So)
m for no>m

By #,(v,s0) (#’,(V,So)) denote the number of indices (i = 1, ..., m- 1) for which

v(i)(So) = O.

If the function v in the interval I C + has a finite number of distinct

zoS,(<i<) h( )= E (i=

or

Then um(v;a,b) = m(v; (a, hi) + #m(v,a)
um(v;a,b) = r,(V; In, b])+ #’m(V,a).

Let to +. Denote by Eto the set of all numbers t (t > to) for which

there exists a solution x of equation (1) such that x(to)= x(t)= 0 and x(t)>_ 0

for t [to, t].

Introduce the notation r,(to, p) = sup E o"

Lemma 1. Let the following conditions hold:

1. Conditions H1- H3 are met.

2. Th its ottio, otio () ch that (t) > 0 o t> to > O.

Then there exist numbers a e [to, oo) and e {0, ..., n} such that n + is an odd

number and

z(i)(t) > 0 for >_ t, 0 <_ i <_ l-1

(- 1)t+i x(i)(t) > 0 for >_ t, l <_ i <_ n- 1

(- i)" +’ z(")(t) > 0 for t>_ .
Lemma 1 follows from the Lemma of Kiguradze [1] and

conditions H2 and H3.
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3. MAIN RESULTS

Theorem 1. Let the following conditions hold:
1. Conditions H1- H3 are met.

a regular solution x of equation (1)2. There exists

t] C R + such that
in the interval [to,

() = () = o, (t) >_ o fo t [, ].
.(; [, t]) < .

Proof: Suppose that the solution x of equation (1) changes its sign m
times (m >_ 0 an integer) in the interval [to, t], i.e., there exist intervals Ij
(0 < j < m) such that Ii = [to, t] and z(")(t) does not change its sign in each

j--0
of them.

1. Let the function x(i)(t) (1 _<i_< n-1)in the interval [to, t] have

finite number of zeros.

If x(i- 1)(tO) # 0, then

n-i(x(i); It0, tO]) -- )n-i + 1(x(i- 1); (t0, t0]) 1

and

"n i(X(i);tO) n- + 1(x(i-
If z(i- )(to) = 0, then

a._,(z(’); (to. t]) a._,+l(g’-); (to. t])

Then

or

But

#n_,(X(’);tO) #._, + l(X(’- 1);t0) 1.

._ i(x(i);to,t) >_ u,,,_ + l(Z(i- 1);to,t) 1, 1 _< i _< n- 1

..(X;to,t) <_ .(x("- 1);to,t) / n- 1

[tO, tO])

_
l(X(n-1); [tO, tO]) "t- #i(X(n- 1);t0) + r- 1. (4)

l(X(n- 1); [tO, t0]) : 1 and #(z("- );to) = 0.

Then from (4)it follows that A,(x; [to, t])_< n.

2. Let an integer i exist (1 _< i _< n- 1) such tha x(0 in the interval [to, t]
has infinitely many zeros. From condition H1 it follows that for each closed

interval there exist a finite number of intervals Ti (which can be also
points- for instance Toj) such that x()(t)=_ 0 for t Tij and there exists an e-
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neighborhood T of the interval Tj such that for t . T’iy\Ty, z(O(t) O.

Moreover, if Tij and Tt are wo subintervals which do no degenerate
into points, hen either Tii = Tt or Tii T = O.

Introduce he following notation:

X. (x(’) T,)+ ._,(x(’).to)v (z(i);to,t) = -i

where {Tn, Ti2, ..., Ti} is he se of all intervals such thatT (t0, t]
lgjS.
Jus as in Case 1 we obtain

.(X;to,t) i(x("- i);to,t) + n- 1,

i.e,
(; [o, o])

Theorem 2: Let the following conditions hold:

1. Conditions H1- H4 are met.. T t,, d o (t e {, ..., }, e {0, ..., t- }, 0 e (0, ))
and

a function z C([ta, c); +) such that for t >_ ta > 0 the following inequality

holds:

(t) >_ o(t- tl) --(’l’-].’)!(--l-" 1)! tl(t-- 8)/-1 s (-- $)n-l-lp() (Az)()dds.

Then there exists a solution of the equation

X(n)(t) +(-- 1)n-t- lp(t). (Ax)(t) 0

which satisfies conditions (3) and

(t)- ’(t)= ...- (-)(t) o.

Proof: Let U be the set of all functions u C([t, c); +) such

Co(t--tl) k Zt(t) X(t) for t t1.
Defie the operator S: U U by the formul

1 (t )/-1 7( 8)n -’- lp(). (Au)()dds.(Su)(t)-co(t-tl)kT(l_l)](n l ’)! f’

Consider the sequence of functions {v/}= defined as follows:
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=
vi + = Svi, j = 1,2,...

From the definitions of the sequence {vi}/= and of the operator and from
condition H4 it follows that

vi + (t) > vi(t) for t >_ tl, j = 1,2,...
But

< >_
Hence the sequence {j}ioo__ 1 is uiformly convergeat ia eh finite closed iaterval

of [ti, oo). Let lira vi = v. Then v is a fixed point for the operator S and v is the
j-,oo

solution sought of equation (5) for which inequalities (3) are valid and

V(tl) V’(tl) --...-- V(k- 1)(tl) 0. ["]

Theorem 3: Let the following conditions hold:

1. Conditions H1- H3, H5 and H6 are met.

2. ’,(to, p)< / c.

Then there exists a solution x of equation (1) for which the following assertions

are valid:

1. The solution x in the interval [to, T,(to, p)) has n zeros.

2. x(to) = x(r,(to, p)) = O, x(t) >_ 0 for t E [to, ’,(to, p)].

Proof: From the definition of the set Eo and condition 2 of Theorem 1

it follows that there exists a solution z of equation (1) such that

x(o) = z() = O, z() >_ 0 for [o, o], where o = "(o, P) <
Among all ghese solugions of equation (1) we choose this solution z for which

,,(z; [o, o]) has the greatesg value. Prom Theorem 1 ig follows

t]) <

Suppose that A,(x; [to, t]) < n. Let to < t < < tk < to be zeros of the so

no respectively. Here n (i- 1chosen solutions x of multiplicity no, n, ,n,
..., k) are even numbers.

be regular solutions of equation (1) such

V(rnj- 1)(t,)-" O, j- 1, ..., n,, i= O, ..., k

V(mj-1)(t0 + 1_) 0, j 1, ..., n.
Since to= r,(t0, p)- supEto, then it follows that v, changes its sign in

the interval (to, to+ ).
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If the solution v,, changes its sign at the point t* t, then v,, has in the

interval [to, to +m1--] at least A,(x; [to, t])+ 1 zeros. If the solution v, changes its

siga at the point ti, then ti is a zero of multiplicity ni + 1 of the fuaction Vm.

{v}
Let lira

Consequently,
.(; [o, o + ]) >_ .(; [0, o1)+ .

Without loss o generality we can assume that :o [v 1)(0)[= 1 &Ild

1 is a uniformly convergent sequeace in each finite closed interval of

= vo. Then
,n(Vo; [to, t]) _> ,,(v,; [to, to + ]) _> ,(z; [to, t]) + . (6)

From (6) it follows that z and v are linearly independen solutions of

equation (1). From the fact that the solution x was chosen so that the number

A,(x; [to, t])is maximal, it follows tha vo changes its sign in the interval [to, t].

Let x=x-evo. Since the zeros of x are

sufficiently small e > 0 we obtain tha

,(t) >_ 0 fo t e [to, o].

also zeros of Co, then for

(7)

Denote by eo the greatest among all e for which inequality (7) is valid.

But

-(,o; [o, o])> .(; [0, o])
which contradicts the fact that A,(x, [to, t]) is the maximal number chosen.

Theorem 4. Let the following conditions hold:

1. Conditions H1- H5 are met.

2. r,(to, p) <
Then each solution z of equation (1) such that Zto)- 0 has a zero in the interval

(, .(, p)].

Proof: Suppose that there exists a solution z of equation (1) such that

x(to)- 0 and x(t) > 0 for t 6 (to, to], where to= r,,(to, p) < c.

From Theorem 3 it follows that there exists a solution v of equation (1)
which in the interval [to, t] has n zeros, v(to) v(t) 0 and v(t) > 0 for t [to,

Moreover, to is a zero of the function v(t) of odd multiplicity. Hence we

can choose t1 > r.(to, p) and eo > 0 such that
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(1) q-0V(l) = 0

() + oV() > 0, fo e (o, o)
i.e., t E0 which contradicts the fact that r,(t0, p) = supEo, rl

Theorem 5. Let the following conditions hold:
1. Conditions H1- H5 are met.
2. Each regular solution x of equation (1) for even n oscillates, and for odd n

either oscillates or lira x(’)(t) = 0 monotonically decreasing i = O, 1 n 1).t-..*O0

Then r,(to, p) < oo for to +.
Proof: Let each regular solution x of equation (1) for n an even

number oscillates, and for n an odd number either oscillates or lira [x(i)(t)[=O
monotonically decreasing, but r,(t0, p)= +c. This implies the existence of

sequence {}- 1 and of solutions of equagion (1) such

t0<t1 <t2<... <tk<..., /moo tk
xk(to) -- xk(tk) O, Xk(t) > 0 for t e (to, tk).

Without loss of generality assume that E n-1 [Xi)(tO)[: 1 and the sequence of
i=O

solutions {x}=o is uniformly convergent in each finite closed interval [a,
b] C N+. Let lim z = z. Then z is a nonoscillating solution of equation (1). If n

is an even number, we obgain a congradicgion with condition 2 of Theorem 5. Le
n be an odd number. rom the facg that tim z(il()i = 0 it follows thag

( )g/(t)(t) > 0 fo t e /; i = 0, ..., r
i.e., ( 1)iz(ilt > 0 for N +; i 0, ..., n 1

which contradicts the fact that z(to) = O.

Theorem 6. Let the following conditions hold:

1. Conditions H1- H5 are met.

2. Each solution x of equation (1)which vanishes at least once oscillates.
Th, qto, () h ,o otto, tf, odto, (3) fo - ,-.

Proof: Let equation (1) have a solution satisfying condition (3)for
I = n- 1. Then from equation (1) we obtain that

x(t) > x("- 2)(t (n 2) + (n 2) t p() (Ax)()dds. (8)

From (8) and from Theorem (2)it follows that there exists

aonoscillating solution x of equation (1) such that x(t)= 0, which contradicts

condition 2 of Theorem 6.
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Theorem 7. Let the following conditions hold:

1. Condition H1- H3 are met.

2. For each l G {1, ..., n-1} such that l+ n is an odd number, equation (1) has
no solution satisfying condition (3).
Then each regular solution z of equation (1) for n even oscillates, and for n odd
either oscillates or lim = 0, i_- 0, ...,

Proof: From Lamina 1 and condition 2 of Theorem 7 it follows that if

n is an even number, equatiott (1) has no nonoscillating solution, and if n is

odd number, each nonoscillating solution of equation (1) satisfies condition (3)
for l= 0 and (- 1)ix(i)(t)x(t) > 0, i= 0, ..., n- 1. i.e., lim

t--,oo
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