
loumal ofApplied Mathematics and Stochastic Analysis
6, Number 4, Winter 1993, 385-406

ON INVARIANT MEASURES
OF NONLINEAR MARKOV PROCESSESa

N.U. AHMED and XINHONG DING

University of Ottawa
Department of Electrical Engineering

and Department of Mathematics
Ottawa, Ontario KIN 6N5, CANADA

ABSTKAC

We consider a nonlinear (in the sense of McKean) Markov
process described by a stochastic differential equations in Rd. We prove
the existence and uniqueness of invariant measures of such process.

Key words: Stochastic differential equations, McKean-Vlasov
equation, invariant measures.

AMS (MOS) subject classifications: 60305, 60J25, 60J60,
60H10, 28C10.

1. INTRODUCTION

In this paper we study the asymptotic property of a nonlinear Markov

process described by the following stochastic differential equation in d-

dimensional Euclidean space Ra"

dX(t) = [- AX(t) + f(X(t), #(t))]dt + dW(t), t > 0

#(t) = probability law of X(t)
(1)

where W is a standard d-dimensional Wiener process; A is a d x d-dimensional

matrix; f is an appropriate Rd-valued function defined on Rdx M2(Rd). Here
M(R) denotes the space of all probability measures on Rd which have finite

second moments. Under mild conditions, lae above equation has a unique

solution X = {X(t),t > 0}. We are interested in he stationary behavior of its

probability distribution #(t), as a measure-valued function. In particular, we

want to find the conditions that ensure the existence and uniqueness of invarian

measures for the stochastic differential equation (1).
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By far, there are many papers in the literature which were devoted to he
sudies of invariant measures of Markov processes, both in finite and infinite

dimension spaces. Some of hem are listed in he references ([3], [10], [15], [17],
[19], [20], [21], [24], [26]).  ese  h

monograph which were devoted o he study of long time behavior of nonlinear
sochaseic differential equations of McKean eype ([7], [22], [23]). Bue the drif
erms in hese models are usually assumed to be of gradien ype, so he
associated invariant measures can be written down explicitly. To the knowledge
of he authors, for nongradien type drif such as he one in (1), he problems
relaed o he invarian measures have no been sudied in he literature.

Ie is imporan o poin ou a he ouse ha may of he sandard

echniques and results on invarian measures for Markov processes canno be

applied o model (1) directly wihou appropriate modifications because (1) is

hog a Markov process in he usual sense. We also wan o poin ou gha ghis

model provides a firsg sep gowards a begger undersganding of he behavior of

similar sgochasgic evolugion equagion in a Hilberg space where -A is ghe

infinigesimal generagor of C0-semigroup. This infinige dimensional model is

currently under invesgigaion.

Our main resulgs (see gheorem 3 in secgion 4) give sufficien condition for

existence and uniqueness of invariang measures of ghe sysgem (1).

The proof of ghe exisgence heorem is based on a general crigerion (see
gheorem 2 of section 3) on ghe existence of invarian measures for McKean ype
of nonlinear Markov processes, which is of independen ingeres. An example is

given in secgion 4 go indicate ghag ghe condigions obtained in his paper are only
sufficieng condigions.

The resg of ghis paper is organized as follows. In secgion 2 we prove ghe

exisgence and uniqueness of solutions of the stochastic differential equation (1).
In secgion 3 we prove a general theorem which ensures ghe exisgence and

uniqueness of invarian measures for McKean-Vlasov nonlinear stochastic

differential equations. In section 4 we apply his gheorem to he nonlinear

Markov process deermined by equagion (1) and give a simple example.
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2. STOCHASTIC DIFFEINTIAL EQUATION

We first introduce some notations. Throughout this paper Rd always
denotes d-dimensional rel Euclidean space with scalar product .,-/and norm

I" I. (Rd) denotes the Borel sigma-algebra of subsets of Rd. Rd(R)d denotes
the space of d d real matrices. We denote by C(Rd), Cb(Rd), Cy(Ra) the

space of real valued functions on Rd which are smooth, bounded continuous, and

smooth functions with compact supports, respectively.

Let (f, 5,P) be a complete probability space equipped with the filtration

{5t:t >_ 0} of nondecreasing sub-sigma algebras of 5. The expectation with

respect to P will be denoted by E. Let W = {W(t):t >_ 0} be a standard d-

dimensional Wiener process defined on this probability space such that W is

adapted o {t:t >_ 0}.

Le M(/ia) denote he space of all probability measures on Ra furnished

wih he usual opology of weak convergence. Le M(R) be he collection of all

# e M(Rd) satisfying
1

II !1= = { =(dm)} < + . (2)

The space M2(Ra) is equipped wih a topology determined by a special metric

p2(P, Q) defined by
1

p(P, Q) = inf{ f ( x- y A 1)F(dx x dy)}, (3)
Rd x R,d

where P, Q E M2(Rd) and the infimum is taken over the space M(Rdx Rd) of all

probability measures F on Rex Re such tha F has marginal measures P and Q.
I is known [9] ghag (M(Re),p)is a complete megric space and a sequence of

probability measures converges in (M(Ra),) go a probabiligy measure # if and

only if (a) # converges to # weakly in M(R) and (b) ghe secona momengs

II ,,, converges to II ,u !1 :
2"

We denote by C([O, oo),M(Rd)) the metric space of continuous functions

from [0, oo)to M(Rd) with the metric:

D(#( ),(. )) = E >( sup pa(#(t),(t)) A 1)
N=I O<_.t<_N
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= Dy((#(t),v(t)) A 1), (4)
N=I

where #(-) and u(. ) belong to C([0, c), M(Rd)).
We consider the Itg stochastic differential equation (1) and assume that

(A1): The operator A is a d x d-dimensional matrix such that the associated

semigroup S(t)= exp(-At), t >_ O, of bounded linear operators on Rd

satisfies

for some strictly positive constant w, where !1 s(t)II denotes the operator
norm.

(A2)- The function f: Re M(R,d)--+R,d satisfies

If(x, ) f(y,u) <_ k( x- y + p(, u))

where k and are positive constants.

Theorem 1: Suppose that conditions (A1) and (A2) are satisfied.
Then for any x L:(,o,P;Rd), stochastic differential equation (1) has a unique

omio x = {x(t).t > 0} oth X(O)= .
Proof: We use the classical Picard iteration scheme. Define

Xo(O : s()z

xo(t) = s() + /s( )s(x_ (), ._()) + f s(, )w()
0 0

(5)

n= 1,2,...

where #.() denotes the distribution of X.(t). Then

Xn + 1() Xn(t) f S(t 8)[f(Xn(8), n(8)) f(Xn 1(8),/An 1(8))1d8
o

and it follows from the assumptions (A1) and (A2) that for any T > O,

E( p X.+()- x.()l )
T

<_ TE( / II s(e )II I/(x,(),,,()) f(X,_ (s), #, x(s))12ds)
o

(6)
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T

<_ Tkf (El X.(s) X. ()1 = + p(#.(s), #._ x(s)))ds.
0

Since by the definition (3) of metric p we have that

(8)

it is easy to verify that
T

E( sup IX. + (t) Z(t) ) _< 2Tkf E(
0<t<T

0

sup

Writing (t)= E( sup
0<s<t

0<0<s
X. + x(0) X.(a) Z)da,

x.()- x._ x()l ) na = 2TkM, we have

T

. + (T) <_ a f @.(t)dt.
o

(9)

(0)

Hence by repeated substitution of (10) into its definition, we obtain

+. + (T) <_ -. =(T).
Since

(ll)

x(T) = E( p X(t)- Xo(t) )
o<t<T

T T

< 2TEf II S(t-- )I1=1 f(Xo(s), o()) =d / 2 / II S(t- )il =d
o o

T

< 2T1 f (I + E Xo() 12 + II o()II )d + 2T
0

T

<_ 2Tl f (1 + 2E Ix )ds + 2T
0

<_ 2T1T(1 + 2E z ) + 2T

< CT = (aT + bT), a,b > O, (12)

we il&ve

nTn

E( sup IX. + (t) X.(t) ) = . + (T) _< TC -hi’" (13)
0<t<T

Thus

1__a r, 4anT"P{ p Ix. + (t) x.(t) > } < ’-’Tt -. (14)
0<t<T

By Borel-Cantelli’s lemma, the processes X.(t) converge uniformly on [0,T] for

arbitrary T > O. The limit process X(t) is then continuous and solves equation
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(1). This proves the existence of a solution of equation (1).

To prove uniqueness, we let X(t) and X2(t) be two solutions of equation

(1) such that X(0)= X2(0). The corresponding distribution of Xx(t) and X2(t)
will be denoted by #(t) and #(t), respectively. Let crN = inf{t: IZx(t) > N}
and cr = inf{t: Z2(t) > N}. We show that for each N = 1,2,..., aN = aN
ad Z(t)= Z() for all t _< cry. We hve

x,( ^f ^)-x( ^f ^)

= f S(t s)[f(X(s), t(s)) f(X2(s), #2(s))]da;
0

(5)

so, for any t [0, T],

E IX,(t A A r)- X=(t/X /X c)l

<_ TkEf ( X,(s) X(a) + p(#,(s)), #:(s)))ds
0

_< 4)-

+ p(z( ^ ^ )),z( ^ ^ u)))a
< 2TkfEIXl(a Y aN2)_ x2(a u/X a2Y) =))d.

0

(16)

Hence the Gronwall’s inequality yields

(17)

Letting T--+c we obtain

X(t A ch
N A crN) = X(t A ch

N A crN) .s. for all t >_ O. (18)

Since X and X= are continuous processes, we can conclude that Xl(]) --X2(t
for all t [0, cr A err). This implies r r a.s. and the uniqueness is proved.
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3. A GENEILAL CRITERION FOR INVARIANT MEASUIS

In this section we provide a general result on the existence of invariant
measures for the nonlinear Markov processes described by the following itS"

equation in Ra:

dX(t) = b(X(t), #(t))dt + a(X(t), #(t))dW(t), t >_ 0

#(t) = probability law of X(t), (19)
#o = the initial law of X(0), /0 e M2(Ra),

where W is a d-dimensional Wiener process, b and a are continuous functions

from/d M2(Rd) to Rd and Rd (R)d, respectively, satisfying the conditions

(A):

where z,y E Rd, #,v E M=(Rd) and k, are two positive constants. Using Picard

iterative technique similar to that used in the previous section, one can show

that equation (19) has a unique continuous solution.

Let X denote the unique solution of equation (19) and let #(t) denote the

probability law of X(t). Then by Itg’s formula the measure valued function #(. )
satisfies the McKean-Vlasov equation

dt(#(t), ) = (#(t), L(#(t)),

(o) = o
whoh e M(R), L(Z)isi by

t > o, v E C(R)
(20)

invariant measure

E c().

(21)

A probability measure p E M(Rd) is said to be an

associated with system (19)if {p,L(p)cp)=O for all

For each given p E M2(Rd), consider the following stochastic differential

equations

dX(t) = b(X(t), p)dt + r(X(t), p)dW(t), t >_ O.

X(O) has the initial law to, #o e M(Rd). (22)
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Under the assurnption (A), equation (22) has a unique continuous solution. Let
X, denote the unique solutioa of (22). Thea the process Xo is a time

homogeneous Markov-Peller process. The associated transigion semigroup

{To(t):t >_ O} has the form

T(t)(x) = f(y)P(t, x, dy),
Rd

e G(a), (e3)

where Pa(t,x, B) = P(Xa(t) e B Xa(0) = x), t >_ O, x e Rd, B (Rd), is the

usual transition functioa of a Markov process. Let #o(t) denote the probability

law of Xa(t). Then the associated McKean-Vlasov equation becomes

<,;(), v>- (;(), L(;), v), > 0, Vv e C(")
(e0)

,(0) = o.
Clearly if p is an invariant measure of system (19), then it is also invariant

measure of the diffusion process X. This observation suggests that in order to

find invarian measures for the nonlinear Markov process defined by equation

(19) (which is hard in general) one should search among the invariant measures

of the time homogeneous Markov process defined by equation (22) (which is

relatively easy in general). With this strategy in mind, we now define for each

p e M(Rd) a subset of M(Rd) as following"

= {Q e M:(Rd) <Q,L(p)) = 0 for all V e C(Rd)}. (25)

Proposition 1" The following two conditions are equivalent

(i) Q :f;
(ii) f (T;(t))(x)Q(dx) = f (x)Q(dx) for all V e C(R).

Rd Rd

Proof: (i)(ii). For any C, we have To(t)- -L(p)(To(s)
0

Since To(s) C, condition (i)implies

/ (T(t))(x)Q(dx) -/(x)Q(dx)
Rd Rd

= (T(t), Q) <, Q)

= f(L(p)(T(s)),Q>ds
0

(26)
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(ii)-.(i).
implies

follows

For any qa C, we also have T(t)-qa = f T,(s)(L(p)qa)ds, so (ii)
0

f (T.()((p)v), Q)d = o.
0

(L(p)qa, Q)= limt_.o f (To(s)(L(P))’ Q)ds = O.
0

For each positive integer N > 1, le Qv be defined by

(27)

(2s)

u

Proposition 2:

N

Qv -f f
0

Suppose Q is a limit point of {Qv}. Then Q, E . (29)

Proof: Let Q 6 M=(Rd) such that { N} converges weakly to Q as k

Q subsequence of {Qv}. As in (22) we let #o(dx)goes to infinity, where { yk} is a

be the initial distribution of the process X(O). Since X; is a Feller process,

T(t) C(a) foh e C(). Wh.s we

t+Nk

Rd

= lira
t + Nk. 1 f- N--- t+N

0

t+Nk

f (T(s))(x)#o(dx)ds
Rd

lira 1

0 Rd
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Nk

0 Rd

Nk

o

= lim._oo
Rd

= (30)
Rd

This shows ha Q is an invarian measure corresponding to X. Thus, by

proposition 1, Q satisfies (Q, L(p))= 0 for all C(R), and so Q ’. I-1

The following theorem gives a general result on the existence and

uniqueness of invarian measures of the nonlinear Markov processes described by

equation (19).

Theorem 2: Suppose that there exists a nonempty closed subset E of
M(R) such that the following three conditions are satisfied:

(a) for each p E, 5,, C =,
for each p 7., supt > o} f E Xo(s) eds < ,

0

there exists a constant c (0,1) such that for any p,q,P and Q in E,
we have

P), 0)) <

where #;(t; #o)(P P, q; o = P, Q) denotes the probability law of X(t)
of (22) with initial condition ,(0; #o)- o.

Then the nonlinear Markov process X datelined by (19) has an invaant

measure.

Before proving this theorem we first state a generalized Banach fixed-

poin theorem for multivalued maps on metric spaces (see, for example, [27]).

Deflation 2: Let (X,d) be a metric space. If A,B are two subsets of

X, then the Hausdorff matrix H(A, B) between them is defined as
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H(A, B) = max{sup d(a, B), sup d(b, A)},
aA bB

where d(a, B) = infb e d(a, b) is the distaIce of the point a from the set B.

Theorem (Generalized Barmch fixed-point theorem for multivalued maps)"

Let (X, d) be a metric space and K be a subset of X. Let F:K2g (2K

denotes the collection of all subsets of K) be a multivalued map. Suppose that

(i) K is nonempty and closed;

(iii) there exists a constant c (0,1) such that the condition

r(u)) _<

is satisfied for all z, y K.
Then F has a fixed point z’, that is, x" F(x’).

Proof of theorem 2: Let F:E---,2= be the multivalued map defined by

(31)

=

Then by assumption (a) the map F is well defined. Suppose that the map F has

a fixed point p*, that is, p* F(p’). Then, by the definition of f, this fixed

point p" must satisfy the equation <p*,L(p*)>- 0 for all C(Rd). Thus p* is

an invariant measure of system (19) and so the proof of theorem 2 Will be

finished. Since F is defined on the nonempty and closed subset of the metric

space (M=(Rd),p=), we apply the generalized Banach fixed-point theorem to this

multivalued map. Thus we need to check if the conditions (ii) and (iii) of

generalized Banach fixed-point theorem are satisfied.

On condition (ii): We first show th&t, for each p E-, the set F(p)is
nonempty. Let Qv be defined as in (29). Then according to proposition 2 it

suffices to show that {Qv) is relatively compact. By the assumption (b)of
theorem 2 we have

N

Rd 0

For each > O, Chebyshev’s inequality then implies that there is an R > 0 such

that

> R,}) <
y- R _<,, VN>_ 1. (34)
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Thus, for each > 0, there is a compac set K, = {z: zl _< such

inf Qfv(K,) > 1 .
Thus {fv} is relatively compact according go Prohorov’s theorem.

(35)

Next we show that the se f is closed in E for each p E. Le {Q} be a

sequence of measures in Ifo such hat Q, converges to some O M2(Ra) in the
meric space (M2(Ra), p). Then Q, converges o Q weakly in M2(R). Since for

any o C, the function L(p)o is continuous and bounded, we have

(Q, L(p)o) = Ii,,oo(Q,,, L(p)) = 0. (36)

Thus Q :f and so zf is closed in M:(Ra). Moreover, Q- because, by

assumption (a), each Q, belongs to , and is closed. Thus :f is a closed subse

of E.

On condition (iii)"
condition

We now show that the generalized contraction

H(r(p),r(q)) <_ q) (37)

is satisfies for all p, q 6 .-. and a fixed c 6 (0,1).

Le P I’(p) and Q r(q) be arbilrary two elements. Let X(.; P) and

X(. ;Q) be the unique solution of equation (22) with p replaced by p and q, and

#0 replaced by P and Q, respectively. The probability law of X(;P) and

X(t;Q) will be denoted by #(t;P)and #q(;Q), respectively. Since P ’p and

Q Ifq, they are invarian measures of the corresponding processes X(; P) and

Xq(t; Q), that is, P = #v(t; P) and Q = #v(t; Q) for all t >_ O. Thus assumption (c)
implies

p(P, Q) =/t/mop:(#v(t; P), q(t; Q)) _< cp:(p, q).

It follows from (38) that

H(r(p), r(q)) max{sup inf p(P, Q), sup
PEqVEq QEv

inf p:(Q, P)} _< cp:(p, q).

This completes the proof of theorem 2.

(38)

(39)
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4. EXISTENCE AND UNIQUENESS OF II’rVARIANT MEASUIS

We are now going to apply the general result in section 3 to our original
equation (1). To this end we consider the following stochastic differential
equation

dX(t) = [- AX(t) + y(x(t), p)]dt + dW(t),
X(0) has the initial law #o e M(Rd),

t>0.
(40)

where p Mz(Rd).
Proposition 3:

(a)

(b)

Assume the conditions of theorem 1 hold. Then,

for each p E, equation (40) has a unique solution X which can be

written as

Xo(t) = S(t)Xo(O) + f S(t- s)f(Xo(s), p)ds + f S(t- s)dW(s),
0 0

where S(t) = exp(- At is the semigroup generated by A;
if the two constants w and l in assumptions (A1) and (A2) satisfy

w > 3l, then we have that supt >_oE[ Xo(t) 2 2 at
< + c holds

true for any p M(Rd), where a is a finite positive constant

depending on p.

Proof: (a) For a given p , equation (40)is an ordinary stochastic

differential equation. Thus the Lipschitz and linear growth conditions, as

specified by (A1) and (A2), ensure that the same Picard iteration scheme used in

the proof of theorem 1 will result a unique solution Xo of the form in (a).

()
inequality, we have

For t > 0, using (a q- b-t- c) _< 3(la z + bl / c =) and H61der’s

d. (4)

E x(t) < 3 II S(t)!1 E 1X(0) + 3El f S(t- s)dW()
0

+ 3El /S(t- s)f(X(s), p)ds
0

< 3E No(0) / 3 / il S()II 2ds
0

/ f I! s()II dsEf II S(t-- )I! f(Xo(), P)
0 0
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t
Since f II s(,)II a < [ ,=p(- t)] d

0

II p II g), (41) can be reduced to

f(Xa(a), p) _</(1 + xo(a) 12 +

E X.(t) <_ + f exp{ w(t
0

(42)

where x,(o) + +( + II II ). Denote ff(t) = exp(wt)ElX,,(t)l

and f(t)= exp(wt)a. Then (42) has the form of

0
and so the Gronwall’s inequality gives

(t) <_ f(t) + f exp{(t s)}f(s)ds.
o

Thus for w > 3/, we have

sup E Xo(t) + sup exp{ -(-)(t- s)}ds
t>O t>O

0

3t sup [1 ezp{ (w-)t}]31< a + aw,,,,, 31 > o

(43)

(44)

w < c. (45)-< w2- 3t

Let #o(t) denote the probability law of the unique solution Xo of (40) and

define Ofv =-Uo(t)dt for each N >_ 1. Let :fo be the subset of M2(Rd) defined
0

by (25) with L(p)(z)=ZX,()-(A-f(,p), V,()()), where A and V
denote the Laplacian and gradient operator, respectively. Then the sequence of

probability measures {Qfv} is relatively compact in M(Rd) due to the result (b)
of proposition 3 and Yo is the set of all limit points of {Qfv}. For a given s > 0,
let Z, be the subset of M(Ra) defined by

Then

Z, = {# e M(nd): [ Ix (dx) < s}. (46)
Rd

is a nonempty closed subset of M2(Ru).
Proposition 4: Suppose that the two constants w and in a.sumptions

(A1) and (n2) satisfy the inequality w> 61. Then there ezists a real s > 0 such

that for any p E,, we have f C E,.
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Proof: Let Q f for some p M2(/d). Then there exists a

subsequence {Qv) of {Q} such that Q"g converges to Q, as kc. Thus for
each positive integer M >_ 1, by proposition 3 (b), we have

/(I A M)Q,(dz) = lim ,/(I x : A M)Qv(dz)
Rd Rd

Nk

0 Rd

Nk

0

’’ (7)-< w 31’.. =E x.(o) I’ + +( + II II ).
that

Letting M go to infinity we have

f I I:Q(dz) < w---_ 31"
Rd

(4s)

32EI Xa(0) 12 + + 31
Let s 2 6

then it is easy to check that the right-hand side of

(48) satisfies

w2 3l
Thus Qa E, for any p " and so the proof is completed.

(49)

Let Xp(. ;P) and Xq(. ;Q) be the unique solution of the equation (40)
with p replaced by p and q, and #0 replaced by P and Q, respectively. The

probability law of Z(t;P) and Xq(t;Q) will be denoted by #(t;P)and #q(t;Q),
respectively.

Proposition 5: If the two constants w and k in assumptions (A1) and

(A2) satisfy the inequality w: > 4k, then there exists a constant c (0,1) such that

for any p, q, P, Q in E.
According to the definition of the metric p, it suffices to show
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tim EI Xo(t; P) Xq(t; Q) = < =p(p, q)

for any p, q,P and Q in E,. By definition,

X,(t; P) = S(t)X(O; P) + fS(t s)f(X(s; P), p)da + f S(t s)dW(s)
0 0

and

Xq(t; Q) = S(t)Xq(O; Q) + fS(t s)f(Xq(s; O), q)ds + fS(t s)dW(s).
0 0

(50)

(51)

Using H61der’s inequality and assumption (A2) we have

E Xp(t; P)- Xq(t; Q) 2 _< 2 !1 S(e)II 2E Xp(0; P)- Xq(0; Q)[

(52)

Using assumption (A1) he expression (52) can be reduced to

E IX(t; P)- Xq(t; Q)! : _< exp( wt)f(t)

+ f exp{ w(t s)}ElX(s; P) Xq(s; Q) l:ds,
0

(53)

where f(t) = 2El X(0; P) Xq(0; Q) : + exp(wt)p(p, q).

Denote if(t) = exp(wt)ElX(t; P)- Xq(t; Q) , then (53) can be rewritten

S

(t) <_ f(t) + i
o

and so Gronwall’s equality gives

@(t) <_ f(t) + f exp{2-k(t
o

Thus

(54)

(55)

E IX,(t; P)- Xq(t; Q) < ezp( wt)f(t)
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0

(56)

in the limit of tc, the first term on the right-hand side of (56) becomes

lti_mooezp( wt)f(t)
2k ,

= lim,.<>:2 =p( ,t)E X,,(O; P) X(O; Q) = + p=p, q)
2= -p(p, q),

and the second term on the right-hand side of (56) becomes

(57)

h,--exp( wt) / exp{2-k(t s)}f(s)ds
0

_< /oo2E X.(0; P) Xq(0; Q) l:iezp{ (w )t} ezp( o)1

(e)

Thus we have. z,(; p)- z.(; )1 < [+ ()( ;

(58)

Let c = k
o2- 2k"

is completed.

2k 2,= ,, 2pcp, ). (5)

Then the assumption w> 4k implies c fi (0,1) and so the proof

We are now ready to state the main theorem of this paper:

Theorem 3: Let the conditions (A1) and (A2) be satisfied. If the three

constants w,l and k in assumptions (A1) and (A2) satisfy the condition

w > max(6l, 4k)

then the nonlinear Markov process X determined by IUd equation (1) has a unique

invariant measure for any X(O) e L:(ft, o, P; Rd)
Proof (Existence)" We use theorem 2 of section 3. For each r > 0, let. be the subset of M(Rd) defined in (46). Then, by proposition 4, there exists

positive aumber s such that the corresponding set 7-, satisfies condition (a) of



402 N.U. AHMED and XINHONG DING

theorem 2. Moreover, by proposition 3 (b), condition (b) of heorem 2 holds.

Finally, by proposition 5, condition (c) of heorem 2 is also satisfied. Hence
existence par of he heorem is rue.

(Uniqueness)- I is important to noe tha for mulivalued maps on

metric spaces the Banach fixed point theorem does no, in general, imply
uniqueness. Thus to seek uniqueness we have o use other mehods.

Suppose hat # and v be wo arbitrary invariant measures of X. We show

p2(#,v) = O. Let X denote the unique solution of the equation (1) and le #(t) be

he probability law of X(t). For t

_
0, let U(t) denote he nonlinear semigroup

on M(Rd) defined by U(t)#o=#(t) for any /0 M(Rd) Recall that a

probability measure p M(Rd) is an invariant measure for the nonlinear

Markov process X if U(t)p = p for all t

_
0. Let X(t;x) and X(t;y) denote the

unique solution of (1) with initial data Z(0;x)-x and X(0;y)- y, respectively.

The corresponding distribution will be denoted by #(t) and #(t), respectively.

Since

;(;,.) = ;(u();, u(),)

< f (I x(;)- x(; )l )( x )(d, d)
Rd x Rd

it suffices to show that

for any x, y Rd.

By assumptions (A1)and (A2)

(60)

(61)

E X(t; x)- x(e;y) = _< 2 II S(e)I1=1 y =

+ 2El / S(t s)(f(x(s; x), #(s)) f(X(s; y), i(s)))ds
0

< 2 II s(t)I1=1 - y = + 2 ]" II s()II dE/II S(t- )II
0 0

f(x(; ), .()) f(x(; y), (s))) :ds
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( x(,;)- x(,; u) + ,(,.(,),,.(,)))a,

0

(62)

Denote O(t)= exp(wt)EIX(t;x) -X(t;y)l , then (62) can be written as

() _<

Groawall’s inequality then yields

(t) <_ 2Ix-

(63)

(64)

that is,

E IX(t; x)- X(t; y)! = _< 2Ix- y = (65)

By assumption, w- is strictly positive, and so the right-hand side of (65)
tends to zero as tc. It follows from the definition (3) that

p:(U(t)5, U(t)Su) <_ E lX(t; x)- X(t; y) -o, (66)

This completes the proof of uniqueness.

Example: Consider the following equation in R"
dX(t) = [-aX(t)+ E(X(t))]dt + dW(t), t >_ 0 (67)

where W is a standard one-dimensional Wiener process; a is a positive constant;

E(X(t)) is the mean of X(t). In other words, the function f(x,#)in (1) now

assumes the simple form f(x,#)= f z#(dz). It is easy to verify that this model
R1

satisfies conditions (A1) and (A2) with k- l= 1 and w = a. According to

theorem 3, system (67) will have a unique invariant measure if a satisfies a=> 6

which is true as we will show below. But the following exposition also indicates

that this condition is not a necessary condition for the existence of a unique

invariant measure.

Since (67) is a gradient system, the corresponding invarian measures

have the form
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P,,(dx) = {exp{ -(ax 2mx)}dx, (68)

where Z is the normalizing constant which ensures that P,(dx) is a probability

measure, and the constant m must satisfy the self-consistence equation

m=/xPm(dx). (69)
tt1

By a simple algebraic manipulation, it is easy to see that P,,(dx) is a Gaussian

’ Thus the self-consistent equation"* and variance .measure oa R with mean -reduces to the algebraic equation

(70)

follows from (70) that system (67) wili h ve unique invari nt measure

(which is a zero-men-Gaussian measure) if a 1 nd will hve infinitely many

invariant measures if a = 1. This shows that the condition given by theorem 3 is

only a sufficient condition.

It is interesting to point out that even for this simple model of a nonlinear

Markov process, its long time behavior is not trivial. For example, for a # 1,

although system (67) hs a unique invariant measure, the distribution of the

process at time t will not always converge to it as t becomes large. This cn

easily be seen from the following calculation.

Equation (67) carl be rewritten as

X(t) Z(O)- f [aZ(s)- E(X(s))]ds + W(t).
0

(71)

and therefore m(t) satisfies he equation

m(0) = too,

with the solution m(t)= moexp(1-a)t. Thus for 0 < a < 1,

(73)

re(t) does no

Let m(t) denote the mean of X(t) with initial data m(0)= m0. Then by taking
the expectatioa on both sides of (71) we have

re(t) = mo + f (1 a)m(s)ds, (72)
0
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converge to mo, which meazs that if we start system (67) from any initial

measure other than the invariaat measure then the corresponding distribution
will never converge to the invariant measure. On the other hand, if a satisfies
the condition of theorem 3, that is a > V, then the mean m(t) will always
converge to 0, which is the mean of the unique invariant measure.
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