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ABSTILACT

The author studies the queueing process in a single-server, bulk
arrival and batch service queueng system with a compound Posson
input, bilevel service delay discipline, start-up tme, and a fbced
accumulation level with control operating policy. It s assumed that when
the queue length falls below a predefined level r

_
I), the system, with

server capacity R, immediately stops service until the queue length
reaches or exceeds the second predefined accumulation level (

_
r).

Two cases, with N

_
R and N

_
], are studied.

The author finds explicitly the probability generating function of
the stationary distribution of the queueing process and gves numerical
examples.
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1. INTRODUCTION AND GENEtLAL DESCRIPTION OF MODELS

In modern computer communication networks, queueing theory is a useful
tool to analyze node-to-node communication parameters. This is especially true

in Packet Switched Computer Communication Systems. Nodes of many networks
can be analyzed in terms of a standard M/G/1 queueing system. However, some

situations require researchers to investigate complex M/G/1 queueing systems.
Daigle [12] illustrates how the M/G/1 paradigm can be used to obtain

fundamental insight into the behavior of a slotted-time queueing system that

represents a statistical multiplexing system.
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In computer communication networks, it is common that the system stops
servicing when the t:ogal number of messages in :he input buffer fails below a

preassigned level r, which is less than or equal to the server capacity R. The

service is resumed if the sysgem accumulages to ag least; r messages. This is

known as bilevel (ghe level r and ghe server capacigy R) service delay discipline

or (r,R)-quorum. In some insgances, ghe sysgem waigs until the gotal number of

arriving messages becomes equal to or greater t;hax aother preassigned level N

(>_ r), so ghat upon reaching N, ghe sys:em resumes servicing messages. This

operating policy is known as N-(control operating) policy, and such system is

noted as Mv/G’a/ 1.

In this paper, the author examines a single-server queueing system with

compound Poisson input stream and generally distributed service times, N-

control operating policy, bilevel controlled service discipline, and start-up time.

When togal messages in the waiting queue equal or exceed the level r, t;he server

may not be immediately available until some pre-service work warms up the

system for service. As soon as the st;art-up time is over, ghe server sart;s

service of t:hose messages in the waiting line.

We assume that the server capacity (R) is fixed, while r, the control level,

and N, the control operating policy, can be adjusted o optimize system

performance. Depending on he situation, N can be either selected from between

levels r and R, or made greaer han R. In he case of a very inense input,

arriving units can be grouped within small intervals of ime, hereby forming a

bulk input.

Three differen queueing models under N-policy are analyzed:

Model 1; with r _< N _< R and its modification (Model 3 introduced at .the

end of this section).

Model 2; with r _< R _< N.

These models generalize two types of classical queueing systems: Model 1

establishes an additional control operaging policy level N (>_ r) such that; when

the queue length is either equal to or greater tha N, the system changes from

an idle to a busy state. This model generalizes the classical system with bilevel

service delay discipline or (r,R)-quorum, M/G/1 bulk queueing and sgarg-up
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time. Model 2, however, generalizes a system with single service delay discipline
or/t-quorum, M/G/1 bulk queueing and start-up time. Numerical examples for
Model 1 nnd Model 2 axe presented to demonstrate the pplication of obtdning
an optimal solution for minimizing the system idle time. Results from both cases

show that when server capacity is fixed, the optimal solution can be obtained if

level r is at minimum nd level N is at maximum.

The author also treats a modification of Model 1 which, for convenience,

Will be called "Model 3." In this model, the server also accepts customers that

arrive during the start-up time period in excess of the queue length (and under

the bound R totaling the size of group taken for service). In many practical

instances, this may be a more realistic scenario of Model 1.

2. ICENT tLATED WOl

In recen years, several papers have been published on he subjec of

M/G/1 models wih N-policy. Heyman [14] sudied an M/G/1 queue under

"Congrol Operaging Policy" in which the server stays idle when the queue length

is empty and resumes igs work when the queue lenggh accumulages to a

predefined level N(>_ 1). [Specifically, Heyman [14] showed that for the M/G/1
queue, ghere is a sgagionary opgimal policy of ghe form: Turn the server on when

N customers are present, and gum it off when the system is empty.] Bohm [6, 7]
studied the gransien mode of M/G/1 queue with N-policy. Baker [] considered

an M/M/1 queue under N-policy with exponentially disgribuged sgaxg-up time

which the sysgem requires before it changes the server sgage from idle go busy.

Baker obgained the sgeady stage distribugion of :he queue lenggh. Borghakur,

Medhi, and Gohain [81 sgudied M/M/1 queue under N-policy with general starg-

up time. Medhi and Templeton [16] studied an M/G/1 queue under N-policy

with general start-up time.

An up-to-date extension of the M/G/1 standard system to the class of N-

policy models would include ghe general sgarg-up gime and the N-policy itself.

Perhaps the model sgudied in [16] was the most general in the available literagure

on M/G/1 systems uder N-policy.

A few more systems [10, 15, 19] do not fall into this class of N-policy

M/G/1 models bug they are related either to N-policy or to the results obtained
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in he presen paper. Chitkara and Kumax [10] studied N-policy for an Erlangian
input system wih reorientation period. These authors obtained he Laplace
transforms of generating functions of the probabilities and he expressions for the
seady state probabilities and he mean queue length in the system. Abolnikov

and Dshalalow [2] studied an M/G’a/1 queueing system with a compound
Poisson input modulated by a semi-Markov process, multilevel control service

time and a queue length dependent service delay discipline. They found he

stationary distribution of the queue process by using the results on excess level

processes.

The presen paper generalizes he existing class of all N-policy M/G/1
models o dae (including [16] mentioned above). The author confirms

Abolnikov/Dukhovny’s [3] necessary and sufficient criterion of ergodicity of the

embedded queueing processes and finds explici formulas for is sationary

distribution. A few numerical examples demonstrate the obtained results and

discuss the best policies.

3. FORMALISM OF THE MODELS

Let {Q(t);t >_ 0} = {0,1,...} be the total number of customers at time

t >_ 0 in a single server queueing system with an infinite waiting room, and let

To- 0, T, T, .., be the sequence of successive service completions of groups

of customers. Defining Q(t) as a right continuous process, we introduce the

embedded process Q, = Q(T +)= Q(T,), n- 1, 2, Let the random variable

r be the service time of the nth group of customers.

Input Pocess.

Customers arrive at instants of time r,, n- 1, 2, ..., which form a Poisson

point process with arrival intensity A, in batches of sizes X,, n = 1,2,..., as

independent and identically distributed random variables with the common

mean a, and the common probability generating function a(z)-E
n- 1, 2, Service times and sizes of groups to be served are independent of the

queue length. Let S. = Xo + X1 + + Xk (Zo = Qn)" Denote v, = inf{k >_ O"

S > N}. This is known [1] as the random index with which S first reaches or

exceeds level N after the moment of time T at which the total number of

customers in the system is Q. Note that r is the first passage time of the
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queue o reach or exceed N after T., and S. gives the toal number of
customers in the system at instant r

/dt

Service Time and Service Discipline.

Let r_< R be two integers, such that R is the server capacity and r is the
minimal batch size the server is allowed to take. Let N be an integer such that,
when queue length equals or exceeds N, the server changes from idle to busy
sgate. N can eigher be placed in betwee r axed R, or exceed R. At time T, + 0

ghe server starts its (n+ 1)sg service and carries a group of units of sie

min{Q,, R} if at leasg r customers axe available. Ogherwise, ghe server idles until

glae queue lenggla reaches or exceeds level N for tlae first time. Obviously, if

Q, >_ r, T,+- T, coincides wigh ghe lenggh of service gime of ghe (n + 1)st
bagch. In his case, we assume that the service lasts a random time r, + wigh an

arbitrary disgribugion function B and fini:e mean b. If Q, < r, ghe server waigs as

long as necessary for the queue to accumulate to at least N units. The server

activity resumes by the instant of time when the queue for the first time reaches

or exceeds N. In this case, ghe sysgem enters the sgar:-up mode which, lasts , + 1

(wigh an arbigrary distribution function D and finite mean d) followed by

(n + 1)st service. Given ghe queue lenggh , < r and the server capaci:y R, a

group of sie min{S,,, R} will "formally" be processed during the pure time

o’, + of service alger start;-up time , + 1. In this case, T, + 1- Tn is the sum of

server waiting time r, -T,, the actual service time o’,+ , and tlae start-up
gime ’, + . In Model 1, all newcomers during ghe sgart-up time are hog accepted

into the start-up servicing group. This is a somewhat artificial start-up service

policy; however, it agrees witla all known special models. In Model 2, newcomers

entering the system during start-up time have no effect on ghe sgart-up servicing

group, since S,, is greater ghan or equal to R.

In Models 1 and 2, when the server begins processing the (n + 1)st bagch

of units, its load can be defined as

min{S,., R}
(3.1) L" + I(Q) =

min{Qr,,R},

Qn < r

A more realistic service policy can be employed as a modification of

Model 1 by accepting new arrivals during the start-up time to the start-up
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servicing group, excluding those in excess of R. When the server begins
processing the (n + 1)st batch of uits, its load can be defined as

(3.2) L. + l(Qn) =
?gl’igl’{"Vn dr- Wn + 1, R} Qn "( r,

min{Q., R} Q,, >_ r.

Denote V. = V(r.) the number of customers that arrive during service

time cr and W. = W(.) the number of customers that arrive during the start-

up time .. Then the values Q, n = 1, 2, can be shown to satisfy the

following recursive relations:

Model l’r <_N < R (service does not include customers who arrived

during a start-up time)

(3.3)
(Syn .R) + dl-" Vn + 1 -Jl- Wn + l

O +l-
+

Qn < r,

(3.4)

Model 2" r<R<N

S,,,,-R+ V,,+, + Wn+l,
Qn+x =

(Qn_R) + + vn+,
Qn < r,

Model 3: r < N _< R (server may take some customers for service who

arrived during a start-up time)

(S.+ W.+I-R) + + V.+I, Q. <r,
(3.5) Q.+I =

(Qn-R) + + V.+, O. _> r,

where f + = sup {f, 0}.

Note that all three models fall into the category of state dependent

queueing systems. All of them have (r,R)-quorum and N-policy regarded as

service discipline state dependency. The availability of the staxt-up time is a

vague form of the general state dependent service time policy which, in its full

power, was developed in [2]. Namely, it was assumed in [2] that random service

times differ in their distributions, depending on the umber of customers in the

system. Inger-arrival gimes and sizes of arriving bagches were governed by the
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queueing process at specified random times, so that it was a modification of the

Poisson process, bu with variable random intensities "modulated" by another

process. "Inpu modulation" is he condition where inter-arrival times and sizes

of arriving batches are also dependent on he queue length. Thus, he model
sudied in [2] had more flexible inpu and service time dependence han the

models under our sudy. However, our models significantly generalize [2] in erms
of more versatile service discipline dependencies, namely the three forms of N-
policy.

4. PRELIMINARIES

In the following sections, we will be using some basic results from the first

passage problem stated and developed by Abolnikov and Dshalalow [1].

As mentioned previously, we assume that inter-renewal times

t,., = z’,.,-"r,_i, are characterized by their common Laplace-Stieltjes transform

A n=l 2, Re(()>O We also assume that thePoisson()=[ ’-1-+ ..,

point process r = {-, = to + tx + + t,; n >_ 0} on + and the renewal process

S = {S, = Xo + Xx + + X,;n >_ 0} on {1,2, } are independent.

For a fixed integer N > 1 we will be interested in the behavior of the

process S and some related processes about level N.

The following terminology was introduced in Abolnikov and Dshalalow [1]
and we will use it throughout the remainder of this paper.

4.1 Definitions.

(i) For each n, the random variable v, = inf{k >_ 0: Sk >_ N} (defined in

the previous section) is called the index of the the first excess (above level

N-l).

(ii) The random variable S% is called the level of the first excess (above
N

(iii) The random variable % is the first passage time of S of level N.

Figure 1 is a graphic presentation of Model 1, where the levels are related

as r _< N _< R. Xi + is the batch arriving at instant ri. Let S be the sum of Xi,

i = 0,1,... u, where u (= u, for brevity) is the smallest value at which S is
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greter than level N. At instant %, the queue length S exceeds the server

capacity R; therefore, the server initiates the start-up process with start-up time

+ followed by the service to be lasted er + . At the begin of that service time,
% + +1, the sysgem akes a batch of min{S, R}, in our case, S units for
service. Ag ghe end of service, he sysgem engers an idle sgae, since queue length
Q1, a insan T, becomes less han r.

Q(t)

Q1

Figure 1 Model 1

Figure 2 is the graphic presentation of Model 2, where he levels are

relaed as r _< R _< N. Xi + 1 is he batch size a insan ri. Le S be he sum of

Xi, i- 0,1,... u, where u (- u,, for brevity) is he smalles value a which S
is greater han N. A insan %, queue length S exceeds he server capacity R;
herefore, he server initiates he sar-up process wih star{-up time {+
followed by he service o be lased r + t. At he beginning of ha service ime

r + +, the system takes a batch of min{S,, R}, in our case, R units for

service. At the end of service, the system keeps on being busy, since queue

length Q1, at instant T, is still greater than r.
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Qo

N

R.

Q(t)

"To :l <> :<>+ g,,>+ T

Figure 2 Model 2

Let the generating function of the first excess level be

Gy ,(z) E’[zS%] = E[zS% Q,, = i]

The following heorems were established in Abolnikov and Dshalalow [1]

4.2 Theorem. The generating function 7N-i(z) of the index of the first
excess level satisfies the following formula:

(4.2a)TN_ i(z) = (1 "x)(1 za(x))J’
1,

where = tim - (9
-o .-z ’>-’

with the mean value of the index of the first excess:

i<N,

i>_N,

N-i-l{ 1
(i- x)[l-(4.2b)

0,

a()]}’ i < N,

i>N.

4.3 Theorem. The generating function GN_ i(z) of the first excess level can
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be determined from the following formula:

Gv_ ,(z) = (z- z)(1 a(z))J’

5. EMBEDDED PROCESS

The main objective of this section is the derivation of the stationary

distribution of the discrete time parameter queueing process {Q,}.

Model 1 ( r < N< R )

Let

A,(z) = ’[z] E[z Qo ],

5.1 Proposition. The generating function A(z) of the ith row of transition

probability matrix A can be determined from the following formulas"

(5.1a) Ai(z) Ki(z)z- nHn(ay ,)(z), i e if!.

where the operator Hn is defined as

(.b) H()(z) () +-where h is a function analytic at zero, and

g(z)W(z),
:,(z) =

g(z),

(.c)
(5.1d)

i<r,

i>_r,

K(z) (- a(z)),
W(z) (- (z)),

tim 1 0 k>0,
= -o . Oz’

0, k<0.

and fl(O), (0), (Re(O)>O), are the Laplace-Stiettjes transforms of the

corresponding general service time distribution function B and general start-up
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time distribution function D.

Proof: Let V,+ denote the number of arrivals during the nth service.

Since the input is an orderly stationry Poisson process, then:

E[zV+ ] = (A Aa(z))
Similarly,

E[z / =
Therefore, due to relation (3.3)"

for i >_ r, Ai(z) = E[z(i- a) + + v. + Q. = i] = z(i a) +

for i < r, Ai(z) = E[z(s"
) + +" + + w, + 1Q, = i]

E[z(S.- a) +
O. = ilE[zv" +]E[zW" + ]

= E[z(S,- a) +

K(z)

Q. = i]K(z)W(z).

From Abolnikov and Dshalalow [2], we have

Therefore,

Ai(z) Ki(z)z-aHa(C_i)(z), i e

From relatioa (3.2) and our assumptioa about the input stream, we

coaclude that { Q ;n = 0,1, ...} = {0,1,...}., is homogeaeous, irreducible

ad aperiodic Mrkov chai.

We re iterested i the transitioa probability matrix A- (aij;i,j ),
where a,i = P’{Q = j}=P{Q- J lQo- i}. This is of the form
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0 1 2

0

1

aoo Ol o
alo GII a12

at-- 1,0 at- 1,1 r- 1,2

fo fl f2
/o fx f2

fo fl f2
fo f f
0 fo f

where A = (ai, j" i, j E@" ai, j=fj_i+R, i >_ r, j >_ i R; ai, j fj, i >_ r, i <_ R;
ai, = 0,i > r, j < i- R),

P{V,+=j-i+R}- f_+a, if i>_R,
aiJ =

P{Vn +1 = J} fj if r <_ i < R.

The matrix A consists of two block matrices" the upper rectangular block,
from row 0 to row R- 1, with all positive elements, and the lower block, below

row R-l, which is an upper triangular matrix. Matrix A is an (R-1)-
homogeneous An, n-matrix identified in Abolnikov/Dukhovny [3], where the

general case of A,,,-matrices was introduced and studied.

According to Abolnikov and Dukhovny [3], the process {O,,} is recurrent-

positive if and only if p c)b < R. Therefore, for p < R, the Maxkov chain

is ergodic. Let P = (p ;x E @) be the invariant probability measure of {Q,} and

let P(z) be the generating function of the components of vector P.

5.2 Theorem. The embedded queueing process { Q} is ergodic if and only

if p < R. Under this condition, the probability generating function, P(z), is

determined by the following formula:

P(z) :
K(z)[ }2- p,{Ha(GN -,)(z)W(z) zi} At- iR_ r

1 pi{ZR zi}]
z K(z)
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where Hn is given by (5.1b), K(z) is given by (5.1c), W(z) is given by (5.1d).
Probabilities Po,...,Pn- form the unique solution of the following system
of linear equations:

L(5.2b) zk {[- x
0 pi{Hn(Gv i)(z)W(z) z } + a’=-) pi{zn zi}]} = 0,

=o,...,-, s= ,...,s,_
% [ ( ) p = R-,

where z, are R-1 roots of -K() i (0,1)x{1}, the closed it disc (i the
complez pIee) centered t zero ith deleted point 1, with their mItipticities
sch tht s k R -1

=1

Prf: According go Abolnikov and Dukhovny [a], an irreducible,
aperiodic Markov chain wigh ghe gransigion probabigy magrix A (in ghe form
of a ,-magrix), is recurreng-posigive if and oNy if A()I= < ,
i = 0,1, ..., R
and

Since P() = i 0Ai()pi, d Ai() = Ki()-H(a_ i)(), i ,
we have

E a zpi + E oo azp = E ia---Ki(z)z- aHa(Gy i)(z)Pi + E i= aK(z)z apii=0 i=

which yields
,-o[g,() H(a_,)(z)E nz np E =

za g()
The left-hand side of this function is analytic in the open disc, B(0,1), and

continuous on its boundary, 0B(0,1).

By Abolnikov-Dukhovny’s criterion, for p < R, za- K(z) has exactly
zeros in (0,1) (counting with their multiplicities); all zeros located on the

boundary OB(O,1)(including 1), are simple.

Now
P(z)=z-a(A-Aa(z)){ - IW(z)[zN6xN l[(z’’a(z)--a(X)x)(1’L. a()) ]
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where ’*’" = lim 1 0m +"
.00,, m,n > 0.--z, y z-*O, y--*O

By rearranging terms, we finally have

where Ha is defined in (5.1b).

si e -K() hs xty R os i (0,), (.eb) d (.)s
a first order of simultaneous linear system of R equations and R unknowns which

are the unknown probabilities Po, P,..., Pa-. Therefore, we have a unique

solution of the unknown probabilities Po, Pt,..., Pa-.

By Proposition 5.1, we have E’[zC;]-Ki(z)z-aHa(GN_i)(z), then

formula

(5.2a) can be rewritten in the form

P(z) = Z f-_-o[zE’[z] z’K(z)],
z- K(z)

As in Abolnikov/Dshalalow [2], from P(1)- I, we have that

{ 1[ GN-i(y)’’(’i, ]].z,:o +v _, +- ),]), = .
This completes the proof of theorem 5.2.

Model 2 ( r<_R<_N)"

If Q, < r, at the begin of (n + 1)st service, the server capacity is R.

Therefore, the system can now be described by (3.3).

With the sasne argument as that presented in Model 1, we have that

Ei[zS,-a]K(z)W(z)
Ai(z) =

-aK(z)

i<N,

i>N.
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For i < v, this yields

A,(z) = z-a E[z %]K(z)W(z)
= z- Gv_,(z)K(z)W(z),

(,)( ,a()),a_ i(z) =
Z

For i _> r, this yields

Ai(z) z(i-a)
+
K(z).

Now, we can restate the main theorem"

i<N,

i>N.

5.3 Theorem. The embedded queueing process {Q,} is ergodic if and only

if p < R. Under this condition, P(z) is determined by the following formula:

(5.3a) P(z) = zn-K(z)

Probabilities Po, ..., PR-1 form the unique solution of the following system

of linear equations:

d , {z{’ o;,a ,()W(z) z’ + ,._-: ,_z z,}}
k = 0,..., k,- 1, s 1,...,S,

=0,

where z, are R-1 roots of zR- K(z) in/(0,1))\{1} with their multiplicities
s k, =R-1.such that ,

Note that the case of N = R, the probability geaerating functioa P(z) for

Model 1 coiacides with that of Model 2.

Model 3 ( r _< N _< R )

With the same argument as that presented in Model 1 and (3.4), we have

that
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for i >_ r, Ai(z) = E[z(i- a)
+ + v. + X Q. = i] = z(i a) +

and ibr i <r, A(z) = E[(s-+ w. +- a) + + v. + 1 Q. = i]

= E[z(S,+ w, + a) +
Q. = i]E[zv" + ]

= E[z(S% + w, + a) +
Q, = ilK(z).

From Abolnikov and Dshallow [2], we have that

(Su
n
+ Wn + 1 R) +

IQ,- i] = z-aHa(GN_iW)(z),

where Ha was defined in (5.1b).

Therefore, we have

Ai(z) =
K(z)z-aHa(GN_,W)(z), i< r,

K(z)z(i- ) +, i _> r,

Now, we can restate the main theorem"

5.4 Theorem. The embedded queueing process {Q,} is ergodic if and only

if p < R. Under this condition, P(z) is determined by the following formula:

g(z)[ ,W)(z) z’} + ,’::
(5.4a) P(z) =

z- K(z)

where K(z) satisfies (5.1c), W(z) satisfies (5.1d).

Probabilities Po,..., Pa- form the unique solution of the following system

of linear equations:

k- 0,..., k, 1, s 1,...,S,

EC{d + -+-[G-(Y)W(Y)]}(i y): p = R p,

where z, are R-1 roots of zR- K(z) in (0,1)){1} with their multiplicities k
such that s k R- 1

=1
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Note that in the case of where the start-up time requirement is dropped,
and r = N, the probability generating function P(z) for Model 3 coincides wih
gha of the model developed by Abolnikov mad Dshalalow [2].

6. SPECIAL CASES AND NUMEICAL EXAMPLES

In he following, we discuss some special cases of Model 1.

6.1 Spedal Case" Le us drop the N-policy; i.e., N = r. The probability

generating function can be written as

Furthermore, if we drop the start-up time condition ((-Aa(z)) = 1 ),
we get

(-())P(z) = -3( a(z))

[E[-lo{[Gr i(z)-ZRRu-I{Gr-i(l) z- RGr-i(YZ)}] }Pi
R-1+ E,=( ),]

This result represents a speciM case of M/G,n/1 sudied in

Abolnikov/Dshalalow [2], where in our case the modNagion and sate

dependency is dropped. (For details see the notion of modulation in [2] or our

notice on modulation briefly mentioned ag the end of section 3).

6.2 SpedM Ce" In Model 1, we drop the bilevel service discipline by

letting r = R = 1, but regain the sar-up time pameter. The probability

generating function then can be reduced

i-" ,( :44) [(- )( @)] (-a))- ;o,

1 1bwhere P0 =(+ ld)
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Furthermore, if he bulk arrival condition is dropped, i.e., a(z)= z, he
probability generating funcgion ca be simplified go"

1 Abwith P0 = N-----
This resul agrees wih the M/G/1 queueing system studied by Medhi and

Templeton [16].

In he following numerical examples, for simplicity of calculations he

start-up time parameter is dropped in Model 1. (Note that: the start-up time

parameger affects only ghe mulgiplier, W(z), in the firsg erm of ghe formula

shown in (5.2a), (g.3a), and (5.4a).)

6.3 Example:

In Model 1 (r <_ N <_ R), it is understood that as long as queue length is

less tha r, the system under study will become idle. In order to keep system idle

ime minimal, the "system turned-off probability", which is sum of the

probability of queue length from 0 through r-1, needs to be calculated and

compared under various values of r axed N. Select parameters r and N in such. a

combinagion ghat; the smallesg possible "sysgem gurned-off probability" under

steady state can be achieved. Assume thag the bulk arrival groups have a

geometric distribution with parameger p = 0.a and assume tha service time is

exponent:ially distributed with rate b = 0.2. or a numerical demonstra;ion, we

take R = 6, and have r and N run from 0 to 5 individually.

pzt’ ’a,z = 1 qz

The Laplace-Stieltjes transform of service time distribution function with

rate # is

t’ = +
1 where p is the system intensity.Then, fl(A Aa(z)) 1+ p -pa(z),
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Thus, after some algebra, we have

Ei oZ[(qS-N-i--q)z-i+P

+ ( )[ E, ’e(E=o-’- ’),]}
With this formula, we can start the numerical evaluation. First, we set up

the linear system:

(.e) (.e)iel

(6.3.1a)

and

E, o[q ’ / + ( i)p];, + ,E ( i)p, = p

dk[Ei 10Z/[(q6-N-1 q)z6-i+p6k=li 12/:+ ]]Pi

+ (1 qz)[ -zi[-’-lzlpi]l O,
r k=O z=zs

fork=O, 1,2,...,k-l, ands=l,...,S,

where z, are the 5 roots of -(p+q)z6+pz5+. +pz+l in the region

(0,1) \{ 1 }, and with their multiplicities k such that =s olk = 5.

With the above assumptions, accordiag Dukhovny [13], the equation

-(; + ) + pz +... + pz + = o
has no multiple roots in the region of (0,1)\{1}. Therefore, (5.2b) can further

be reduced to

r-lz, -N q)z6-i 6-i-1+ ]]Pi(.3.b) E, o [(q -1 +; E=
+ (- qz)[ -1,/[-o" -,-1];, = 0

where zj, j- 1, 2, 5 are the 5 roots of the equatioa

(p + q)z6 + pzs + + pz + l =0

Noge here, thag by eliminating the common factor from bogh the

numeragor and denominagor of he probabiligy generating function P(z), a single

roo: (1,0)1{1} as a byproducg of multiplication was added o ghe equation.

In mosg cases, I1 > 1.

Combining (6.a.la) and (a.a.b), we can find p, i= O, , 2,..., . For

example, leg R = 6, N = 4, r = 2, and zi, J = 1, 2, a, 4, 5, be the single roots of
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Z2
Z3

Z4

Z5

Z6

(I9 + q)z6 + pz5 + z4 + pz3 + pz2 + pz + 1 = 0
The equation (6.3.1a) can be written explicitly as follows

(6.3.2a) ( + 6p)po +( + 5p)p + 4pp2 + 3pp3 + 2PP4 + PP5 = 6p- p,
d the equation (6.3.1b) can be written explicitly as follows

(6.3.2b) [( q)z + pz + pz + pz] + pz] + pzi + 1]po
+ [(- q)z9 +
+ +
+ [(1 qzi)(z]
+ qz )(z +
+ [(1- qzi)z]ps = 0, j- 1, 2, 3, 4, 5.

Thus, the probabilities P0, P, P, P3, P4, Ph, ca= be found by solving
i=te (6.3.2.) =d (6..2.b).

Table 1 summarizes the numerical evaluation of probabilities for various

control parameters. These parameters are"

Input arrival Poisso distribution parameter - 5.0,
Service time exponential distribution patterer - 5.0

System intensity p = 1.0,
Bulk arrival (geometric distribution) parameter p- 0.3,
Server capacity R = 6.

The polynomial in the denominator is

zn-K(z) = -1.70z+0.30zs+0.30z4+0.30z+0.30z+0.30z+1.
Roots of the above polynomial are:

z = 0.4245- 0.7776i,
= 0.4245 + 0.7776i,

-0.4468+0.7583i,
= 0.4468 0.7583i,

= -0.8793.

= 1.1003, an artificially acquired root due to multiplication.

(as previously noted.)

Table i provides information to show that when server capacity stays the

same, say R = 6, if level r is fixed and level N increases, the total system idle

probability becomes smaller. But when level N fixed and level r decreases, the

total system idle probability also decreases. Thus, in order to achieve the optimal



A Bulk Queueing System under N-Policy with Bilevel Service Delay Discipline 379

solution of he smalles possible system urned-off probability, level N should be
se as high as possible and level r should be se as low as possible.

6.4 Example:

The following example preserves he same conditions of example 6.3,
except for the service time distribution, which now is 2-Erlang with parameter

2/z(2#z)
1! c z >0,

Bl(Z) =
0 z<0,

where # = -b’wigh its Laplace-Stielgjes transform (s) =

Now, fl,(A- Aa(z)) = ..+ P_ pa(z) where

With similar calculation, we obtain the following formula:

(5.2c) and (5.2.b) yield

(6.4.1a)

r-1(1 q) E o[qR- N +1 + (R i)p]p + (I q)2 I(R i)pi = p(pR 2p),

(6.4.1b)

P(z) = 1
-(p + q)2z + -(q + p)(1 + p + p)z + p2z -1 + "+"p2z2 + (9

{( "- _,- +l_qz) XoZi[(q N-_q) i+pk=- -i-l}+(1 qz)2

Combining (6.4.1a) and (6.4.1b), we can find he probabilities of queue length
equals i, Pi, where i = 0, 1, 2, .., R- 1.

Le R = 6, N = 4, r = 2, d according Dukhovny [13], he equation

( + ); ( + )( + + .)z + +... +z + ( )+ 1 0.

has no multiple roos in he region of (0,1){1}.

(6.4.1a) can be written explicitly as follows

(..2)
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(1 q)(q3 -i- 6p)po "4- (q3 + 5p)p -t-(1 q)214P2 + 3p3 -4- 2P4 + ps] = p[6p- 2Pl.
And let zi, j = 1, 2, 3, 4, 15 be the single roos of

(p + q)2z;’ (q + p)(1 + p + p)zs + p2z +... + p:z + (p q)z + 1 = O,
ghus, (6.4.1b) can be wrigen explicitly as follows

(6.4.2b) (I qzj)[(q3 q)z + pz} + pz + pz + pz + pzi + llP0
+ (1 qzl) [( q)z} + pz + pz} + pz + pzi + llzip

+ + +
+ +

zp 0 =

Thus, the probabilities P0, P, P2, P3, P4, Ps, can be found by solving
linear systems (6.4.2.a) and (6.4.2.b).

Table 2 summarizes the numerical evaluation of probabilities from various

control policies. The parameters are

Input arrival Poisson distribution parameter A = 5.0

Service time 2-Erlang distribution parameter # = 10.0

System intensity p = 0.5

Bulk arrival (geometric distribution) parameter p = 0.3,
Server capacity R- 6.

The polynomial in the denominator is

zs K(z) = 1.44 z 2.16 zs + 0.09 zs + 0.090 z4 + 0.09 z3 + 0.090 z2

-0.040 z+ 1

Roots of the above polynomial are

z = 0.4101 + 0.7650i,

z2 = 0.4101 0.7650i,
z3 = 0.4387 + 0.7394i

z4 = 0.4387 0.7394i

z = 0.8585.

zs = 1.2883 an artificially acquired root due to multiplication

(as previously noted.)
z7 = 1.1274, an artificially acquired root due to multiphcation

(as previously noted.)

Table 2 also indicates that when server capacity stays the same, R = 6, if
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level N increases, the total system idle probability becomes smaller. However,
under the same assumption, when level r decreases, so does the total system idle

probability. Therefore, similar o Example 6.3, in order o achieve he smaalest
possible system turned-off probability under steady state, one should set level r

as low and level N as high as conditions permit.
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Control Probabilities
Policy

r N

5 5 0.1585 0.0767 0.0697 0.0634 0.0576 0.0523 0.4259

4 5 0.1742 0.0753 0.0484 0.0622 0.0565 0.0514 0.3800

4 4 0.2072 0.0723 0.0657 0.0597 0.0543 0.0493 0.4048

3 5 0.1907 0.0738 0.0670 0.0609 0.0554 0.0503 0.3315

3 4 0.2191 0.0712 0.0647 0.0588 0.0534 0.0486 0.3549

3 3 0.2414 0.0691 0.0628 0.0571 0.0519 0.0472 0.3734

2 5 0.2082 0.0722 0.0656 0.0596 0.0542 0.0492 0.2804

2 4 0.2318 0.0700 0.0636 0.0578 0.0526 0.0478 0.3018

2 3 0.2505 0.0683 0.0621 0.0564 0.0513 0.0466 0.3188

2 2 0.2650 0.0670 0.0609 0.0553 0.0503 0.0457 0.3320

5 0.2265 0.0705 0.0641 0.0582 0.0529 0.0481 0.2265

4 0.2453 0.0688 0.0625 0.0568 0.0516 0.0469 0.2453

3 0.2603 0.0674 0.0613 0.0557 0.0506 0.0460 0.2603

2 0.2720 0.0664 0.0603 0.0548 0.0498 0.0453 0.2720

0.2808 0.0656 0.0596 0.0541 0.0492 0.0447 0.2808

Turned-off* represents the sum of the probability of queue length from 0 to r-1

Table 1.
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Control Probability
Policy

r N Po Pt P2 P3 P4 P5 Turned
off*

5 5 0.0551 0.0296 0.0277 0.0257 0.0237 0.0217 0.1619

4 5 0.0618 0.0298 0.0278 0.0257 0.0237 0.0216 0.1451

4 4 0.0694 0.0279 0.0258 0.0238 0.0218 0.0199 0.1469

3 5 0.0706 0.0307 0.0286 0.0264 0.0242 0.0221 0.1299

3 4 0.0769 0.0289 0.0267 0.0246 0.0225 0.0204 0.1325

3 3 0.0815 0.0276 0.0254 0.0233 0.0212 0.0192 0.1344

2 5 0.0829 0.0326 0.0302 0.0278 0.0254 0.0232 0.1154

2 4 0.0878 0.0308 0.0285 0.0261 0.0238 0.0216 0.1186

2 3 0.0914 0.0296 0.0272 0.0249 0.0226 0.0205 0.1210

2 2 0.0940 0.0287 0.0263 0.0240 0.0218 0.0197 0.1227

5 0.1009 0.0359 0.0332 0.0304 0.0278 0.0253 0.1009

4 0.1044 0.0343 0.0315 0.0288 0.0263 0.0238 0.1044

3 0.1069 0.0330 0.0303 0.0276 0.0251 0.0227 0.1069

2 0.1088 0.0321 0.0294 0.0268 0.0243 0.0220 0.1088

0.1102 0.0315 0.0287 0.0261 0.0237 0.0214 0.1101

Turned-off* represents the sum of the probablity of queue length from 0 to r-1

Table 2.


