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ABSTCT

A characterization of exponent}a], geometric and of dstHbut}ons

with almost-lack-of-memory property, based on the "revelation transform
of probabfl}ty dstribut}ons" and "re]evaton of random variables" is
d}scussed. Known character}zat}ons of the exponential distribution on
the base of relevat}on transforms g}ven by Grosswald et al. [4], and Lau
and Rao [7] are obtMned under weakened conditions and the proofs are
s}mplfied. A characterization the class of almost-lack-of-memory
d}stHbutions through the relevaton }s spec}fied.
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1. INTRODUCTION

The concept of relevation was originally introduced by Krakowski [6]. We
present here the distribution of relevation for completeness and a better

understanding of the properties discussed later on.

Definition 1: Let Y and Z be two independent non-negative random
variables. The relevtion of Y and Z is a new random variable X defined by the

survival function
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t-0

’x(t) = P{X >_ t} = P{Y >_ t} + f P{Z >_ t Z >_ X}dP{Y >_ X}, t > 0.
o

We will denote the revelation of Y and Z by the sign "#", and express it

by the equation

X = Y#Z. (2)

Interpretations of revelation were given by Krakowski [6], Grosswald et al.

[4], Baxter [1], Lau and Rao [7]. Moreover, Grosswald et al. [4] and Lau and Rao

[7] obtained characterizations of the exponential distribution under various

special conditions imposed to the distributions of Y and Z. Applications of the

multiple relevation transforms

X = Y#...#Y,,, n 2, 3,...,

where {Y,) is a sequence of i.i.d, random variables, were considered from

reliability point of view by Baxter [1]. Thus we omit the detailed descriptions of

those aspects.

We state the principal results, concerning the characterization of the

exponential distribution as follows:

Theorem (general): Under specific requirements for the distributions of
Y and Z the equation in distribution

Y#Z d= y + Z (3)

takes place if and only if Z has ezponential distribution.

Grosswald et al. [4] assumed in their characterization theorem that

Fz(t) = Fr(t) and also Fr(t) was required to be expressed in the form of power

series of T. Lau and Rao [7] required Fz(t) to have continuous derivative, and

the r.v. Y to have values arbitrarily close to zero.

We show first that when P{Y = c}- 1, c > 1, equation (3) holds true iff

Z has a distributioa of the form called by Chukova and Dimitrov [2] the almost-

lack-of-memory (ALM) disribugion. We also show ha: (3) is grue for two

coprime (incommensurable) constants Y = Cl and Y = c; c > 0 and c > 0 iff Z
has eit;her an exponential or geometric distribution. A characteriat;ion of a
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geometric distribution for discrete-valued Y and Z is obtained under he
condition P{Y = 1} > 0. Another characterization of he geometric distribution
is obtained in he case Y and Z have identical distributions.

2. CHAtLACTEIZATION OF ALM DISTRIBUTIONS

The ALM distributions were introduced by Chukova and Dimitrov [2].
They considered a single server queueing systems with non-reliable server. They
considered the equation in the distribution between the blocking time of the
server (with constant life times, instantaneous restarts and repeated different

services after an interruption), and the required service time, if it has the ALM
distribution. Chukova et al. [3] gave several other equivalent properties for the

distributions of this class. Here we recall its definition.

Definition 2: A random variable Z is said to possess the almost-lack-of-

memory property iff there exists some c > 0 such that for any n- 0,1,2,... and

all t > 0, the relation

P{Z >_ nc + t z >_ no} : P{Z >_ t}
holds true. We will write in that case Z ALM(c).

The next results is taken from Chukova e al. [3].

(4)

It gives a short

equivalent property of an ALM r.v. and reveals the explicit form of its

distribution. We will be using the abbreviations "c.d.f." for the "cumulative

distribution functions" Fz(x) -P{X < x} and the "p.d.f." for the corresponding
"probability density function".

Theorem 1" Z ALM(c) iff either

(i) equation (4) holds true for n = 1, some c > 0 and all t >_ O;
or

(ii) the c.d.f. Fz(t) has the form

Fz(t) 1 at’/]{1 -(1 a)G(t- [t/c]C)},

where a 6 (0,1) is a certain parameter and G(u) is a certain c.d.f.
with its support in the interval [0, c), for some c > O.

Now we formulate the following characterization property of the ALM
distributions through the relevation transform.
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Theorem 2: Assume P{Z = 0} < 1.

c > O, the equation in distribution

Then, for some positive constant

c#Z e=+z (6)
takes place iff Z ALM(c).

Proof: Substituting the c.d.f. Fy(t)= U(t- c) for t >_ 0 into (1) (where
U(t) is defined as U(t)= 0 for t < 0 and U(t)= 1 for t >_ 0), one gets

1-Fz(t) c).$’x(t) = 1 U(t c) + 1 -Fz()U( (7)

We notice here the from P{Z + c = c} = P{Z = O} < 1, (6) holds true only when

P{Z >_ c} = 1 Fz(c) > 0. Equation (6) also shows that for any t > 0 the right-

hand side of (7) coincides with

P{c + Z >_ t} = 1 Fz(t- c)U(t- c). (s)

This implies the identity
1-Fz(t)u(t )[(1 F(t- )) 1 Fz()]. 0

for all t >_ 0. For t < c (9) is trivial. Considering the case t >_ c, we see that (9)
and (6) take place whenP{Z=0}-1. If Fz(0)< 1, then the inequality

1- Fz(t) > 0 must hold for any t > 0. Since (9) is equivalent to the equation

by setting

Fz(t- )= l- Fz(c)’
here t = 2c, 3c,... we obtain

t > , (0)

1 Fz(kC) = [1 Fz(c)}, k = 1,2,

Substituting t- c = x, (x > 0 for t > c), one gets from (10) that

1 Fz(x + c) -[I Fz(x)][1 Fz(c)] for all x >_ 0,

holds true, and, therefore,

1 Fz(t) = [1 Fz(t -[t/c]c)][1 Fz(c)][t/], t>0. (11)

Let

a = P{Z > c} = l-Fz(c). (12)

Define G by the equation
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Fz(:() = PZ(I = P{Z < Z < }, [0, ). (Z)

G is obviously he conditional distribution of the r.v. Z under he condition that

Z occurs before the time c (as i is interpreted by Grosswald et al. [4]. Using
(12) and (13) we can rewrite (11) in form (5). Thus we proved that (6)implies
().

Conversely, if Z has a distribution given by (5) hen i satisfies identifies

(9) for t> 0 and (10) for any t> c. Either (9) or (10)is equivalen o (6). We
observe i by calculating

Pz(t) = 1 Fz(t) = a[t/][(t- [t/clc)(1 a) + (14)

z()- ;

z(t ) = t,/l-[(t -[t/])( ) + ]
ai(t- )/1- [(t C --[(t C)/C]C)(1 a) + a] for t > c,

and substituting it in (9) and (10).

Coronary 1- If (6) holds te for some r.v. Z with P{Z = O)< 1, and

for some constant c > O, then for any integer k > 0 one has

()# z - () + z. (5)

Proof: Using Theorem 1 (i) and Definition 1, one has Z e ALM(c)iff
Z ALM(kc) for arbitrary k = 1,2, Corollary 1 then follows directly from

Theorem 2.

From Corollary 1, we can see that equation (6) is valid for some c > 0 not

only for Z ALM(c), but also for Z ALM(kc) and for all integers k > 1.

Then an adjustment of Theorem 1 in view of Corollary 1 might be

expressed as follows"

Corollary 2: The equation c# Z d__ c + Z takes place for some c > 0 iff
Z ALM(c/m) with some integer rn > O.

According to Corollary 2, equation (6) does not determine uniquely the

class of ALM distributions for Z. However, we will use the notation ALM(c) for

this class as one which is likely to correspond to (6).
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Assume now that Z has a p.d.f, fz(t) so tha its failure rate function Az(t)
is defined by

z(t) = Yz(t)/’z(t).
Then he following heorem holds rue.

Theorem 3: If equation (6) is valid for some c > O,
periodic function with period c, i.e.

(16)

then Az is a

z(t + ) = z(t), t >_ o. (17)

Proof: From Theorem 2 we know that the distribution of Z is of form

(5). (If Z is continuous r.v. then the p.d.f, is fz(t)= F(t); if Z is discrete,

thenfz(t)= Fz(t)-Fz(-1), and all the arguments in (5)including c, are

integers). Therefore the p.d.f, fz has to be in the form

fz(t) a[tl](1- a)g(t [t/c]c), t >_ o,

where g is the p.d.f, corresponding to the c.d.f.G.

(16), we obtain

(1 -a)g(t-[t/c]c)Az(t) = (1" a)G(t "[t]c]c) + = Az (t -[t/c]c),

which includes (17) as a particular case.

Substituting (18)and (14)in

t>O,

Remark: We would like to mention that class (5) contains exponential

distributions (for the continuous case) and many other continuous distributions

defined by a p.d.f, of the form (18). The exponential case is obtained when

= p{- }, (t) = ;{ t}/( -p{- }) fo y gi > 0. Wis

gives a negative response to the conjecture of Grosswald et al. [4]. They propose

that under the condition of continuity of Fz (and perhaps its continuous

derivative), there is no such Fr for which the relevation (Y# Z) and the

convolution are identical, unless Fz is exponential.

3. CHACTERIZATION OF THE GEOMETRIC DISTIHBUTION
THROUGH RELEVATION

We introduce a reasonable concept of relevation for non-negative integer-

valued random variables as it is used in reliability models. If Y and Z are such
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random variables which, in addition, are mutually independent we say X = YtZ
is its relevagion iff

"- P{Z =n}e{x = = e{r = + = = 0,
k--.O

Expression (19) is a special case of (1) due to P{X = n} = P{X >_ n}- P{X >_
n + 1} and some algebra. Also it is important to define the survival function

P{X >_ t} for the discrete and continuous case in one equation.

The convolution of the distributions of Y and Z is the distribution of the
sum X = Y + Z, where Y and Z are independent, i.e.

P{Y + Z n} = E P{Y = k}P{Z = n- k}, n = O, 1,2,
k=0

Theorem 4: The equality in distribution (6) holds

independent non-negative integer-valued random variables Y
P{Y = 1} > 0 iff Z has a geometric distribution.

(20)

true for two

and Z when

Proof." Equation (6) means that for any integer n _> 0 the right-hand
sides of (19) and (20) coincide. We rewrite the corresponding equalities in the

form

" P{Z =n}P{Y = k}[P{Z = n- k}- P{Z > k} = 0,
k--O

n = 0,1,2, (21)

For n = 0 this reduces to the identity.

only if

For n = 1 equation (21) holds true if and

P{Z 1} = P{Z 0}[1 P{Z 0}].

Denote P{Z = O} = 1- a, and assume that

P{Z = k} a(1- a), for all k = 0,1,...,n. (22)

We use mathematical induction to prove that P{Y = 1} > 0 and (21) imply (22)
for any integer k >_ 0.

Equation (21), written for n + 1 and the observation that P{Z >_ k} = a,
for k = 0,1,..., n gives that the equation

n+l
P{Y k}(l/a)kl[a"+ (1 -a)- P{Z n + 1}1 = 0

k=l

holds true. The first factor does not equal 0 (since it contains at least one
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positive erm), herefore he second factor equals zero.

k=n+l.
Thus (22) holds for

Theorem 5: Let Z > 0 be

distribution

an integer-valued r.v. The equalities in

cx#Z =ca+Z; c2#Z c2+Z
take place for two coprime integers cx and cz iff Z has geometric distribution.

Proof." We prove this theorem as a corollary to Theorem 3. Each of

the equations in (25) implies that the failure rate Az(n) is a periodic function

with periods c and c. But from the numbers theory we know that any n > cc
can be decomposed as

n =- klC1 "[" k2C2
with some non-negative integers k and k2. By (18) then we have

+  z(o)

i.e. the failure rate Az(U) is a constant. Thus Z has a geometric distribution.

It might be true analogously to the formulated conjecture in Khalil et al.

[5] that equation (6) takes place for some integer r.v. Y>_0 with either

P{Y = 1} > 0, or support Fy(t) contains at least two coprime numbers iff Z has

a geometric distribution. We still have no proof of the necessity of this assertion

without additional assumptions, as it will be seen in the remark below.

Theorem 6: For non-negative i.i.d, integer valued random variables Z
and Z, the equation in distribution

Z1# Z2 d Z1 ._ Z2 (24)

holds true iff

P{Z nc} a"(1 -a), for n = 0,1,2,..., (25)

when 0 < P{Z = 0} < 1 and c > 0 is defined by the relation

c = inf{n;n > O,P{Z = n} > 0}. (26)
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Proof: We know from he proof of Theorem 4 ha (24) holds iff (21) is

an identity. It was assumed P{Y = k} = P{Z = k} for all k = 0,1, Then,- P{Z=}P{Z = }[P{Z =-}- Mz > }1 = o, = o, , z,
k=0

Let c be defined as ia (28). By letting n = c in (27) we obtain

P{Z = c}[P{Z = O} P{Z= c}
P{Z >_ }] = 0.

Since P{Z=c}>O we haveP{Z=O}=l-a>Owithana>O. Also (26) and

(27) give that P{Z >_ c} = a and P{Z = c} = a(1- a). Equation (26) and (27)
for k = c and n = c + 1, c + 2, ..., 2c- 1 imply that

P{Z = n} = 0 and for n = c+ 1, c+2,..., 2c- 1. (29)

But P{Z 2c} > 0.

and (29) imply that

If we suppose P{Z = 2c} = 0, then (27) for = 2c arid (28)

P{Z = }(P{Z } P{Z = } =
P{Z > c} + P{Z = 2c}(P{Z = 0} P{Z 2c}

-P{Z >_,= o, (301

and therefore P{Z- c}- O, which contradicts with (29). Thus P{Z = 2c} > 0,
and the only solution of (32) is P{Z = 2c} = a(1 -a).

Suppose that

P{Z kc} a(1 a), for k 0,1,..., rn and P{Z u} = 0, for u kc, u < inc.

(31)
holds. By induction we prove that

P{Z = u} = 0 for u = me + 1,. .(m + l)c 1, and P{Z = (m + l)c} = a’ + i(l -a(32
is true. Substituting n mc + 1,mc + 2,..., (m + 1)c- 1 into (27) we obtain

P{Z=n})P{Z = c}(P{Z n- c} P{Z >_ c} = O, n = mc + 1,..., (m + l)c- 1.

Since P{Z = c) > 0, the first prt of (32) holds. Also from (27) for n = (m + 1)c,
(31) and the validated part of (32) we have that

kc-1 k-1

P{Z >_ kc} I- P{Z u} I- a(1-a)- .
u=O u=O

Like in the proof of Theorem 4, we see that
m+l

(c" + i(1 c)- P{Z = (m + 1)c})E P{Z =
k=0

-k
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The conclusion of the proof is similar o that of Theorem 4.

4. CHAICTERIZATION OF THE EXPONENTIAL
DISTRIBUTION THROUGH PdgLEVATION

In analogy to Theorem 5 we formulate an assertion which gives weaker
conditions for characterizing the exponential distribution through the equation in

distribution of the relevation and the sum of two independent random variables.

We need the following concept.

Definition 3" Any two real numbers c, and c= are said to be

incommensurable iff the ratio c/c2 is an irrational real number.

Theorem 7: Let Z >_ 0 be a nondegenerate at zero arbitrary continuous

r.v. The equalities in distribution (23) take place for two incommensurable

numbers c and c= iff Z has exponential distribution.

Proof: Here we also use the result of Theorem 3. Due to (23), the

failure rate function Az(t) is periodic with periods c and c=. Denote by T the set

of all real numbers c which are periods of Az(t), i.e. for which Az(t + c)- Az(t)
for all t >_ 0. Obviously, c T and c= T.

Moreover we observe tha"

(i) if c, d T then the numbers 2c, 3c,... and 2d, 3d,... also

(i)
belong to T;

ifc, deTandc<d, thend-ceTaswellasc+dT. This is true
because if Az is periodic with periods d and c > 0, with c < d, then

z(O) = z(d)= z(d- + ): (d- )

and for any t >_ 0 it is true that

az(t + (d )) = az(t + (d ) + ) = az(t + d) = a(t).

Let 5 = inf(c, c > 0, c T). Then 5 = 0 implies that the failure rate Az(t)
is a constant, i.e. Z has exponential distribution.

Since c/c is irrational, the sets {q,2q,3c,...} and {c,2c,3c,...} are

arbitrarily "close" to each other (i.e. for any e > 0 there exist some integers

k>0, rn>0suchthat kc-rnc2! <e). Thus6=0.

The next corollary gives weaker conditions for the characterization of the
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exponential distribution, if additional information for the distribution of Z is

available, e.g. if Z has a distribution from the class NBU (new better than used)
or NWU (new worst than used), applicable in reliability theory.

Corollary 3: For a continuous r.v. Z >_ 0 having NBU (or NWU)
distribution and for a r.v. Y > 0 with support [F,(t)] containing at least two
incommensurable numbers c and d the equation in distribution (3) holds iff Z has
an exponential distribution.

Proof: We hve to prove only the sufficiency part, since the necessity
is a well known fact (Grosswald et al. [4]). The assumed equation in distribution

is equivalent to the equation

0

Since Z is an NBU (or NWU) r.v., the part of the integraad in the square
brackets has constantly either positive or negative sign for any t > 0. Due to the

above ssumptioa bout Y, the Lebesgue-Stieltjes measure dFy is positive for at

least the two incommensurable values x-c and x = d. Thus, (33) is true for all

t> maz(c,d), if and only if z(t-C)z(C) -z(t) and z(t-d)z(d) -’z(t),
and this is equivalent to (25). Consequently, Z satisfies the conditions of
Theorem 5 and therefore Z has an exponential distribution. 13

Remark: In the case when Y and Z have discrete distributions the

conditions of Corollary 3 can be reformulated to give a characterization of the

geometric distribution of Z" For a discrete r.v. Z wih an NBU (or NWU)
distribution and for a r.v. Y >_ 0 with P{Y = Cl} _> 0 and P{Y >_ c} > 0 for at

least two coprime integers c and c the coincidence in distribution (3) holds iff Z
has a geometric distribution. The proof of this statement duplicates that of
Theorem 7.

Analogously to Theorem 6 we formulate and prove he following theorem,
which differs from that in Grosswald et al. [4] by imposing weaker conditions.

The mehod of the proof is also different.

Theorem 8: For non-negative continuous i.i.d, random variables Z
and Z2 the equation in distribution (35) holds true iff Z has an exponential
distribution.
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Proof: Equation (24) is equivalent to (33) with Fv(z)= Fz(x) for all
x >_ 0. Throughout the remainder we drop the subscript and write simply F(x).
Then, from (24) we obtain the following equation

or, equivalently,

Let

i "F("Z)a[x) = [1 F(t- x)]dF(x),
0 0

[1 f(t)]ln[1 F(t)] = f [a- F(t- z)ldF(x).
0

h(t) = -/[i-F(t) = f()d,
0

(34)

where A(x)= f(x)/[1-F(x)] is the corresponding failure rate function to F,
assumed existing. Then, (34) can be rewritten in the form

e- A(t- )dFx(x) = A(t)e- A(t). (35)

Integrating the lef-hand side by parts we ge

-h(t-Z)dFx(X) =e

+ f A(x)e-
0

Since A(0)= 0 we have that the first summand above equals A(t)e
and coincides with the right-hand side of (35). Thus,

f a()-I(-.I + a/l[() (t )1 = 0.
0

This means that whenever A(z) 7 0

-A(t)

() = (- )

for t > x. Since there exists at least one positive xo for which A(xo)7 0 (and
then A(z)# 0 for any x > Xo) the last equation holds true for any x > xo and

t> x if and only if A(x)is a constant. Thus Fx(t) = 1-exp{-At}, and Z is

exponentially distribution.
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