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ABSTKACT

In this paper we examine a class of nonlinear integral inclusions
defined in a separable Banach space. For this class of inclusions of
Volterra type we establish two existence results, one for inclusions with a
convex-valued orientor field and the other for inclusions with nonconvex-
valued orientor field. We present conditions guaranteeing that the
multivMued map that represents the right-hand .side of the inclusion is a-
condensing using for the proof of our results a known fixed point theorem
for a-condensing maps.
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1. INTRODUCTION-PRELIMINARIES

In this paper we examine a class of nonlinear integral inclusions defined in

a separable Banach space and we establish two existence results. One for

inclusions with a convex-valued orientor field and the other for inclusions with a

nonconvex valued orientor field. Our work extends existence results of

Ragimkhanov [11] and Lyapin [7] and the infinite dimensional results of Chuong
[3] and Papageorgiou [10], where the hypotheses on the orientor field F(t,x) are

too restrictive (see theorem 3.1 of Chuong and theorems 3.1-3.3 of

Papageorgiou).

Let (fl,) be a measurable space and X a separable Banach space.

Throughout this work we will be using the following notations:

PI()- {A C_ X" nonempty, closed (convex)}
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and

P(,,,)k()(X) = {A

_
X: nonempty, (w)compact, (convex)}.

A multifunction F:aP(X)is said to be measurable (see Wagner [131),
if for every xX, wd(x,F(w))=inf{[[x-z]l’zF(w)} is measurable.

When there is a a-field measure #(. ) on (,I]) and I is #-complete, then the

above definition of measurability is equivalent to saying that

GrF- {(w,x)e 9/ X: x e F(w)} e 5] B(X), with B(X) being the Sorel a-field

of X (graph measurability).

By SF we will denote the set of measurable selectors of F(. ) while by S
(1 _< p < cxz) the set of measurable selectors of F(. that belong in the Lebesgue-

Bochner space L’(X), i.e. SeF {f e L(X): f()e F(w)#-a.e.}. This set may be

empty. It is nonempty if and only if winf{ 1] z [[’z F(w)} L’+.
In particular this is the case if w F(w) = sup{ II z IIz e e L+

in which case we say that F(. ) is L’-iategrably bounded.

If Y’,Z are Hausdorff opological spaces and then we say

gha G(.)is lower semicontinuous (l.s.c.), if for all UC Z open, ghe seg

a- (U)- {y e Y: G(9) U # } is open in Y’.

the above definition is

y,---y we have
If furthermore Y,Z are metric spaces, then

equivalent to saying that for all

a() C i,a(,) {z e Z: z = i,z,,z, e a(,)}.

Also the multifunction F:Y2z\{o) is said to be upper semicontinuous

(u.s.c.) if and only if for every W _C Z open, the set F + (W)= {y e Y: F(y)C W}
is open in Y.

Finally we say that a multifunction G:Y--+2z\{@} is closed if and only if

the set GrG {(y, z) z G(y)} is closed in Y x Z.

2. EXISTENCE THEOIMS

Let T -[0, b], b > 0 and let X be a separable Banach space.

inclusion of Volterra type which we will be studying is the following"
t

e f e T
0

The integral
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where p(. ) e C(T, X).

By a solution of (,) we understand a function x(. ) e C(T, X) such that
t

x(t) e p(t) + f K(t, s)f(s)ds, t e T, with f e S(. ,(. )).
0

First we prove an existence result for the case where the orientor field

F(t, x) is convex valued. For that purpose we will need the following hypotheses
on the data of (,).

H(F): F: T x XP(X) is a multifunction such that"

tF(t,z) is measurable,
x--,F(t,z) is u.s.c, from X into X,
IF(t, x) < a(t)+ b(t)II x !1 a.e. with a(. ), b(. ) e LI+,
for any e > 0 and V _C X bounded, there exists I, _. T open such hag

#(I) _< e and c(F(J x V)) _< supt e r()c(V) for any J C_ T\I closed

and with r(. )e L+.
Remark: We can replace the sublinear growth condition H(F)(3) by

hypothesis of the form "for every B C_ X bounded there exists

sup e s lF(, z) <- as(t)"" In this case though the existence result is only local.

H(K): K:T x T(X)is continuous (we can have K defined only on A and set

K(t, s)- K(t, t), t <_ s).

Now we are ready for our first result"

where

Theorem 1: I_f hypotheses H(F) and H(K)

II I (t, II M,
then (*) admits a solution.

hold and M II II1 1

Proof: First we will establish an a priori bound for the solutions of (,).
So let x(. )e C(T, X) be such a solution. We have"

t

I[ x(t) [[ <_ [[ p II o + fM lF(s, x(s)) ds
0

for all t T and with II K(t,)II -< M for all (t,s) A (see hypothesis H(K)).



264 EVGENIOS P. AVGERINOS

Using hypothesis H(F)(3), we get;"

II (t)II _< II p II oo + f (Ma(s)+ Mb(s)II x()II )d, t e T.
0

Invoking Gronwall’s inequality, we get: M > 0

II (t)II _< M
for all t G T and all solutions x(. ) C(T,X) of (,).

Let F(t, x) = F(t, PMl
(x)), with PM( ) being the M-radial retraction.

We will consider the integral inclusion (,) with the orientor field F(t,x) replaced
by F(t,x). Note that because of hypothesis H(F)(1)the multifunction t--+F(t,x)
is also measurable. Also recalling that PMl(. ) is Lipschitz continuous and using

hypoghesis H(F)(2), we get: from heorem 7.a. (/_/), p. S7 of Klein-Thompson

[51, hag z_(t,z) is u.s.c, from X into X,o. Furthermore

[if(t, x) < a(t)+ b(t)M (t) a.e with (. ) e L _1___1_

Finally in hypothesis H(F)(4)we have

a(F(J x V)) a(F(J x PM(V)) <_ suPt e j(t)a(pM(V)).
But note that pMa(V) C_ conv[{O} t.j V] a(pM(V)) a[{0} tO V] _< a(V). So we

have a(F(J x V)) < supt e jrl(t)a(V) and so we have checked that F(t,x) satisfies

hypothesis H(F)(4).

Set
t

H = {y e C(T, X): y(t) = p(t)+ f If(t, s)g(s)ds, t e T, Ii g(t)II _< (t) a.e.}
o

Next let R: H---2g be defined by

R(z) {y e C(T,X): y(t) = p(t)+ f K(t,s)f(s)ds, t e T, f e S
0

First we will show that R(.) has nonempty values. Let {s,},> be simple

functions such that s,(t)-hx(t) a.e. in X.

Then for each n > 1, tF(t,s,(t))is measurable (since t--,F(t, x) is

measurable). So by Aumann’s selection theorem (see Wagner [13], theorem

5.10), we get f,’T--+X measurable such that f,(t)F(t,s(t)). Clearly

f,L(X). Note that because ff’(t,.)is u.s.c, from Z into Xo,
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U(t)=[.J F(t,s,(t))ePk(X)(see Klein-Thompson [5], theorem 7.4.2,

p. 90) and tU(t)is measurable. Hence tconoU(t)=_ U(t)is an integrably
bounded, P   (X)-va ued multifuncfion (Krein-Smulian gheorem). So from

Papageorgiou [8] (see proposition a.1), we get ghat Sb is w-compact in/.,(X).

So by passing to a subsequence, ifBut observe that {f,},> Su.
necessary, we may assume that f,-f in LI(X). Then from [9] (see theorem

3.1), we get that

f(t) eonvw-lim{f,(t)}, > C_ convw-limF(t,

C_ F(t,x(t)) a.e.

the last inclusion following from the upper semicontinuity of F(t,. ) from X into

X,, the fact gha s,()&z() a.e. in X and the fact that (.,.)is P,(X)-
valued So Sk =R(x) for all zC(T,X). Also since

F(.,x(.))

S’(.,(.)) Pc(L(X)) (see proposition 31. of [8]), we can easily check that

R(-) has closed, convex values in 2C(T’X)\{O}.
Next we will show that R(.) has a closed graph. To this end let

[x,,y,,] e GrR and assume that [x,, y,]-+[x, y] in C(T,X)x C(T,X). Then by
definition for every n >_ 1 we have

,(t) = p(t)+ It’(t, s)f,(s)ds, for e T and with f, e S(.,,(. .
0

Note that by the Krein-Smulian theorem (see for example Diestel-Uhl [4],
theorem II, p. 51), we have that Conv[J F(t,x,(t))e P(X)for all t e T. So
from proposition a.1 of [8] and by passigg to a subsequence if necessary, we may

assume tha in /.,(X). Then as above using theorem a.1 of [9] and the

properties of F(t,z), we get;

f(t) eOnvw-lim{f,(t)}, >

_
convw-limF(t,x,(t)) C__ F(t,x(t)), a.e.

Also f IV(t, s)f,(s)ds- tf K(t, s)f(s)ds in X.
we get: o o

Hence in the limit as

t

y(t) = p(t) + /K(t,s)f(s)ds, t e T
0
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with f Sk Therefore Ix y] GrR = R(. ) has a closed graph.f(.,x(.))"

Next by Lusin’s theorem, given e > 0 there exists I _C T open such that

A(I,) < e/2, y lT\I C and ]] CX l] < e/2M. Also from hypothesis H(F)(4)
(which as we have already checked earlier, is also valid for the orientor field

_(t,z)), given V a nonempy subset of H we can find I2__T open wih

A(I) < e/2 and

(F(J x )) < sup, e gy(S)() and 11 X2 Ill <-- e/2M
where J C_ L T\I closed, with I = I U I and 17 = {z(t): x e V, t e T}.

Note that because of hypothesis H(K) and since by the choice of Lrl[ L

continuous, the map (s,w) [1 K(t,s)[[ /(w)is continuous, hence uniformly

continuous on ([0, t] ffl L) x L. Thus given > 0 we can find 0 > 0 s.t.

for all s, r e [0, t] n L with Is- T <--0 and all w, z e L with w- z _< 0.

(i)

Let 0 to < t1 <... < tn = b be a subdivision of T into (n + 1)-parts such

that t t <_ 0 and let Li = [ti_ , ti]\I i = 1,2,...n.

Also let vi E Li and s E Li i- 1,2,..., n be such that

II c(t, v,)II z =p z, II K(t, s)II z
and rl(si)- sup, Lil](8). Their existence is guaranteed by hypothesis H(K)and
since r][ L is continuous. Then we have:

a[F(L, x V)] <_ (s,)a(V).

Also from the "Mean Value Theorem" for Bochner integrals (see Diestel-

Uhl, [4], corollary 8, p. 48), we have"

{ f g(t, )(, x())d:
Li

So we have

L i=l
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Using he subaddiiviy of he a(. ) measure of non-compactness, we ge

L

E (L,)II K(t,,,,)II .7(,)().

From (1) above we ge

{f g(t, )(,())d: V) _< f I! K(t, )II n()()d, / 8(L).
L L

Also recall from the initial choice of the sets I and I that

So finally we have"

L
b

f M(s)a(f)ds + 8(S) + e.

0

Since , 8 > 0 were arbitrary, we ge
b

a(n(v)(t)) < f M(s)a()ds a()M II 7 II1
0

Since H is bounded and equicontinuous, from Ambroseti’s theorem (see theorem
1.4.2 p. 20 of Lakshmikantham-Leela [6]) we have that

.(v) < a(v)

and supt e Ta(R(V)(t))= G(n(v)). Thus we get

(R(V)) < M Ii 7 II (V).

Since by hypothesis M II II1 < 1, we get that R(.) is G( )-condensing.
Apply theorem 4.1 of Tarafdar-Vyborny [12], to get x R(x). Then x C(T,X)
solves (,) with the orientor field F(t,x). Using the definition of F(t,x) and same

estimation as in the beginning of the proof, we get that

II x(t) Ii -< M1 := F(t,x(t)) = F(t,x(t)) = x(. ) e C(T,X) solves (,).
Q.E.D.
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We can have a variant of Theorem 1, where the orientor field is not

convex-valued. For this we will need the following hypothesis.

H(F)’: F: T x X+P(X) is a multifunction such that

(1 / (t, x)---,F(t, x) is graph measurable,
(2/ xF(t,x) is l.s.c.,

and the hypotheses H(F)(3)and (4)also hold.

Theorem 2: I_[ hypotheses H(F)’ and H(K) hold and M II I1 < x,
then (,) admits a solution.

Proof: As in the proof of Theorem 1, we can show that for every

solution x(.)eC(T,X)of (,), we have

F(t, x) = F(t, pM
l
(x)). This has the

properties as F(t, x) satisfies H(f)(4),
l(t, x) _< (t) a.e. with (. ) e LX+.

II x II C(T,X) -- MI" Then define

same measurability and continuity

(see the proof of Theorem 1) and

Let F: C(T, X)PI(L(X)) be defined by

r() = sF(.,x(.))"
Then from Papageorgiou [9] (see theorem 4.1) we get that F(.)is l.s.c.

Apply theorem 3 of Bressan-Colombo [2] to get: a continuous map

7: C(T, X)---+LI(X) such that 7(x)e F(x) for all x e C(T, X).

As in the proof of Theorem 1, let
t

H = {y e C(T, Z): y(t) p(t)+ f K(t, s)g(s)ds, t e T, II g(t)II < (t) a.e.}.
0

This is bounded and equicontinuous. Let R: HoH be defined by

R(x)(t) = p(t)+ f K(t,s)7(x)(s)ds.
0

Since 7(" )is continuous, we can easily check that R(-)is continuous too.

From the proof of Theorem 1, we know that it is G-condensing. So there exists

x- R(z). This is the desired solution of (.).
Q.E.D.
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