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1. INTRODUCTION

Many evolutionary processes are subject to short term perturbations which act

instantaneously in the form of impulses. Thus impulsive differential equations provide a

natural description of observed evolutionary processes of several real world processes [1].

Control theory is an area of application-oriented mathematics which deals with basic

principles underlying the analysis and design of control systems [8]. A central problem in this

area is the optimal control problem, that is, the problem of controlling a system in some

"best" possible manner by minimizing some function of the trajectories.

In this paper, the problem of optimal controllability of a nonlinear impulsive control

system is studied, using the method of vector Lyapunov functions and the generalized

comparison principle [3, 4]. An example is provided to illustrate the results.
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2. MAIN PSULTS

We shall consider the following impulsive control system

t#t, k=l,2,...

=(to)

where 0 < t1 < t2... < tk <... and tkco as k-.-,oo, f E PC[R+ x Rnx Rm, Nn],

I} C[RnxRm, gtn] for every k, k = 1,2,..., and u = u(t) is a control vector. Let fl be the

control prescribed. Corresponding to any control function u = u(t), we shall denote a solution

of (2.1) by z(t) = z(t; to, zo, u), with z(to) = zo.

The following result deals with the optimal stabilization of (2.1).

Theorem 2.1: Assume that

(i)

(ii)

(iii)

0 < A < A are given,

V PC[+ xn,N+], V(t,z) is locally Lipschitzian in z, Q e [,+],
g PC[ + x x n x m, N], g(t, w, z, u) is quasimonolone nondecreasing in

w and k: N is nondecreasing for k = 1, 2,...,

Cm is a convez, compact set aa for u(t) , e syslem (2.1) admits

unique solutions for t o and for (t,z) + x S(A),

and
( !! = !1) _< Q(V(t,x)) <_ a( !1 = II ), a,b e %[R + ,R +]

II = + z(=)II < p ow, II = II < A, p > A.

(iv)

(v)

(vi)

(vii)

B[V,t,z,u,g] Vt(t,z)+VT(t,z)f(t,z, uO)+g(t,V(t,z),z,u) < O, t tk,

Ck[V, tk, z,k] = AV + Ck(V(tk, z(tk)) = 0, k = 1,2,..., where AV =

v(t ,=(t+ ))_ v(t,,=(t,)),
B[V, t, z, u, g] >_ 0 for any u e fl, t 7 tk,

a(A) < b(A) holds,

(viii) any solution w(t, to, Wo) of

w’ = g(t, w,z(t), u(t)),

ao- ,((t,)) k = 1, 2,..., (2.2)

w(to) = wo >_ o

ezists on [to, cO and satisfies
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and
Q(wo) < a(A) implies Q(w(t, to, Wo) < b(A), t >_ to

lim w( t; to, Wo) = O.

(2.3)

(2.4)

Then, lhe control system (2.1) is practically asymptotically stable and the inequality

g(s, V(s,z(s)),z(s), u(s))ds + E Ck(V(ti,,zz(tk))
k=l

tO k--1

< V(to, o) holds.

i.e. u E f assures optimal stabilization.

Proof: To prove this theorem, we have to show two things:

(1) the control u(t) f2 assures practical asymptotic stability,

(2) the relation (2.5) holds.

Let z(t)=z(t;to, Zo, U) be the solution of (2.1) corresponding to the control

u(t) ft. Then, setting re(t) = V(t,z(t)), wo = V(to, Zo) and using assumptions (i)-(v), (vii)
and (viii), we can prove that the system (2.1) is practically stable following the standard

arguments of [1, 5, 7]. Then, we also have

V(t,z(t)) < w(t;to, Wo) t > to.

Consequently, (2.4) implies that lira :(t) = 0, which proves practical asymptotic stability.

Now, to prove (2.5), let us suppose that another control u*(t) f2 also assures practical

asymptotic stability of (2.1). Then, the corresponding solution :*(t) also satisfies

1[ :*(t)[[ < A, >_ to, provided [1 zo [1 < A, and limt...oo:*(t) = 0. This implies that

tim V(t,z*(t)) O (2.7)

and we also have from (2.6)

Then, by (iv), we get

= o. (2.8)

g(s, V(s, zOz)),z(s), u(s))ds + E Ck(V(tk’zO(tk)) <- V(to’Zo)"
k=l

But by (2.7) antc (vi), we get

(2.9)
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+ >_ V(to,.o).
tO k=l

(2.10)

The inequalities (2.9) and (2.10) prove the desired relation (2.5) and the proof is complete.

Q.E.D.

The following simple example illustrates this result.

Example 2.1: Consider the following impulsive control system

= F(t,z)+ R(t,z)u

z(t+ = bz k = 1,2,..., (2.11)

=(to) = =o

where F E PC[R+ x R", R"], R(t,z) is an n x m matrix and u is a control.

We shall base the solution of the problem on the consideration of the function V(t,z)
given by

N
V(t,z) = E aiVi(t’z)’ ai = const > 0

where Vi(t v) are the components of Lyapunov’s vector function.

Suppose we have

Vt(t,z + vTx(t,z)F(t,z) =_ p(t, z) _< A’(t)V(t,z) (2.12)

where ,V(t) > O, t >_ to and I E CI[R + ,R + ].

Define, for t tk,

B[V,t,z,u] = p(t,z) + vTzR(t,z)u + w(t,z) + uTDu (2.13)

where D is an m x m non-singular matrix.

We shall find the control u = u(t) E fl from the condition of the minimum of B:

Thus we obtain

B/V, t,z, u] = 0 at u = u0-[V, t,x, u] 0 at u = uO.

RT(t,z)Vx(t,=) + 2Du 0

and it then follows that
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u(t) = -1/2D- xRT(t,x)V(t,x). (2.17)

To discuss the problem of minimization of f g(s,V(s,z(s)),z(s)),u(s,z(s)))ds, we obtain from
0

(2.13), (2.14) and (2.16) the relation

w( t, v) q- p( t, z) uOTDuo = 0

which yields

w(t,z) = p(t,z) + uTDu.

Thus

g(t, v, z, u) = p(t, z) uTDuo uTDu

<_ A’(t)V-uTBu uTDu, t tk.

For t = tk, we want

where cdk < e(tk)- )(tk + 1)

stabilization of (2.1).

V(t+,x(t < dtV(tl,z(tt)) (2.19)

,c > 1. Thus, u- -1/2D-11T(t,x)Vx(t,x) assures optimal
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