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ABSTILkCT

In this paper we shall study the existence of the extremal
solutions of a nonlinear boundary value problem of a second order
differential equation with general Dirichlet/Neumann form boundary
conditions. The right hand side of the differential equation is assumed to
contain a deviating argument, and it is allowed to possess discontinuities
in all the variables. The proof is based on a generalized iteration
method.
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1. INTRODUCTION

Let R denote the set of all real numbers and R+ the set of all nonnegative reals.

Given a real interval I = [t0, tl], o < tl, consider the differential equation with a deviating

argument

Lx(t) = f(t,z(t),z((t)) a.e. on I, (1.1)

where 9 is a continuous real function on I, and f:I x R2R. Choosing an interval J = [s0,sl]
which contains both I and [I], and denoting Io = [So, t0] and I1 = [tl, S] we shall adjoin to

the Equation (1.1) the following boundary conditions:
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Bjx(t) = ajx(t)-(- 1)3bjx’(t) = aj(t), E Ij, j = 0,1,
where

(i) aj, bj gt +, aj + bj > 0, and cj LI(Ij), j = 0, 1.

The operator L:ACI(I)---LI(I) has the form

(ii) Lx = -x" + px’ + qx, where p, q L(I) and q is positive-valued.

A function x C(J) is said to be a lower solution of the BVP (1.1)- (1.2) if its first

derivative exists and is absolutely continuous on I, and if

Lx(t) < f(t, z(t), x((t)) a.e. on I, and Bjx(t) < aj(t), C Ij, j = 0, 1. (1.3)

x is called an upper solution of (1.1)-(1.2) if the reversed inequalities hold in (1.3).
equalities hold in (1.3), we say that x is a solution of (1.1)- (1.2).

If

In the case when f is zero function, the problem (1.1)-(1.2) has a unique solution

which we denote by z. In the special case when f is a function of alone, it can be shown that

the problem (1.1)-(1.2) has at most one solution in the class AC(I). The existence of the

solution is guaranteed by the above regularity and boundary conditions, and can be extended

via boundary conditions to a unique solution of (1.1)- (1.2) in the sense defined above.

The existence and uniqueness of the solution to problem (1.1)-(1.2) is discussed in

[1, 2] by using classical comparison and iteration methods, and assuming that f is a continuous

function in all its three arguments. Recently, the existence of extremal solutions to the BVP

(1.1)-(1.2) is studied in [3] in the special case without deviating arguments, but allowing

discontinuous nonlinearity for f, by using a generalized iteration method. In the present paper

we shall study the existence of the extremal solutions of the general problem (1.1)-(1.2)
between given lower and upper solutions via a generalized iteration method developed in [3, 4],
and a comparison method. The function f is required to be continuous only at the points

(tj, x,y), j = O, 1.

2. PRELIMINARIES

Let C + (J) denote the space of all nonnegative-valued functions of C(J). We assume

that the space C(J) is endowed with the norm 1[ [[ 0 and with the partial ordering < defined

by

II x II 0 max x(t) and x < y if and only if x(t) < y(t) for all t E J.
tEJ

If, a, b C(J), denote [a, b]- {x C(J) a <_ x <_ b}.

(2.1)
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We shall impose the following assumptions on the function f: I x 2---[R:

(f0) The BVP (1.1)-(1.2) has a lower solution a and an upper solution b such that

a<b.

(fl) f(., z(. ), y(- )) is measurable for all , y e [a, b].
(f2) There exists h E L(I) such that (,y)--f(t,z,y)/h(t): is nondecreasing in

e
(f3) f is continuous at (tj,,y) for all : e [a(tj),b(tj)] and y [a((tj)),b((tj))],

j=O, 1.

(f4) The functions f(., a(. ), a((. )) and f(., b(. ), b((. )) are Lebesgue integrable.

Consider now the BVP

(t) = g(t,y(t),y((t)) a.e. on I, Bj(t) aj(t), . I:i j 0,1,

where

= Lz + h(t): and g(t,z,y) = f(t,z,y) + h(t)z. (2.3)

If y [a, b], it follows from (fl), (f2) and (2.3) that g(., y(. ), y((. )) is measurable on

I, that both g(., a(-), a((. )) and g(., b(. ), b((. )) are Lebesgue integrable on I, and that

g(t,y(t),y((t)) <_ M(t) for a.a. t I,

where

M(t) = 2 g(t,a(t),a((t)) + g(t,b(t),b((t))l, t I. (2.4)

Hence, the equation
1

Fy(t) = /k(t,s)g(s,y(s),y((s)))ds, t I,

to
where k(t,s) is the Green’s function associated with the operator and the homogeneous

boundary conditions

ajFy(t:i 1)JbjFy(t:i O, j = O, 1,

defines a function Fy C(I) for each y e [a, b]. Since q + h q C + (R), it follows from the

maximum principle that k(t, s) is nonnegative on I x I.

Employing the Green’s function and superposition principle for ordinary linear

differential equations, one can show that the BVP (2.2) has for each y [a, b] a unique solution

which can be expressed in the form
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x(t) = Gy(t) = z(t) +

Fy(t)

b1
0,

tIj, bj#O,j=0,1

t E Ij, b1 = 0, j = 0, 1.

Lemma 2.1: The operator G, defined on [a,b] by (2.7), is nondecreasing and

satisfies a < Ga and Gb < b.

Proof: Let x,y [a,b], x < y be given. From the definition of g given by (2.3)
and from (f3) it follows that (u, v)g(t, u, v) is nondecreasing in [a(t),b(t)] x [a((t)),b((t)] for

a.a. t q I. Noticing also that k is nonnegative-valued, it follows from (2.5) that

t1

Fx(t) = / k(t,s)g(s,x(s),x((s)))ds

to
tl

< /k(t,s)g(s,y(s),y(o(s)))ds = Fy(t), t I.

to
This and (2.7) imply that Gx g Gy.

Since a, is by (fl) a lower solution of the BVP (1.1)- (1.2), it is also a lower solution

of the BVP (2.2) with y = a. By using this, the maximum principle (cf. [5]) and the definition

of G, it can be shown that a g Ga. Similarly, since b, as an upper solution of (1.1)- (1.2), is

also an upper solution of (2.2) with y b, it follows that Gb <_ b.

The proof of our main result will be based on the following lemma, which can be

proved by a generalized iteration method (cf. [3, 4]).

Lemma 2.2: Let [a,b] be a nonempty order interval in an ordered Banach space

X, and G: [a, b]--[a, b] a nondecreasing mapping. If each monotone sequence in Gin, b]
converges, then G has the least fixed point x. and the greatest fixed point x*. Moreover,

x, = min{y [a, bl Gy <_ y}, max{vy [a,b] y <_ Gy}. (2.s)

3. EXISTENCE OF THE EXTREMAL SOLUTIONS

We are now ready to prove the following result concerning the existence of the

extremal solutions of the BVP (1.1)- (1.2) in [a,b].
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Theorem 3.1: If the hypotheses (i), (ii) and (f0)-(f4) hold, then the B VP

(1.1)-(1.2) has the least and the greatest solution in the order interval [a,b].

Proof: Let a,b E C(J) be as in condition (f0). From Lemma 2.1 it follows that

(2.7) defines a nondecreasing mapping G: [a, b]--[a, b]. In view of (2.3), (2.5) and (2.7) we have

for each y E [a, b]

Gy(t)--Gy(T)I <_ z(t)- z(T) / w(t)w(T)l, y e [a,b], t," E J,

where

 o(t) =

1

f k(t,s)M(s)ds,

::vp(aj(tbi to})( Fa(tj) q-

O

t E Ij, bj O,j = O, 1

t E Ij, bj = O,j O, 1.

(3.2)

Let (Zn)= o = (GYn)= o be a monotone sequence in G[a, b]. Since G[a, b] g [a, b],
then (GYn(t))= o is for each t J a monotone sequence in [a(t),b(t)]. Thus

z(t)- lrnooGYn(t exist in [a(t),b(t)] for each t E J. (3.3)

From (3.1) it follows that the sequence (GYn)n=o is equicontinuous, whence the convergence

in (3.3) is uniform, in particular, the limit functions z of (Gy,)= o belongs to C(J).

The above proof shows that the hypotheses of Lemma 2.2 hold when X = C(J),
endowed with the norm and the partial ordering defined in (2.1), whence G has the least fixed

point z. and the greatest fixed point :*. In view of the definition of G, both these fixed points

are solutions of the BVP (2.2) with y = z. This and (2.3) imply that z. and z* are solutions

of the BVP (1.1)-(1.2)in [a,b].

If z E [a,b] is a solution of (1.1)-(1.2), then it satisfies the BVP (2.2) with y = z,

whence z is a fixed point of G. Since z. and z" are the least and the greatest fixed points of

G, then z. _< z < z*. Thus, z. and z* are the least and the greatest solutions of the BVP

(1.1)-(1.2) in [a,b].

The conditions (f0) and (f4) can be replaced by the following growth condition:

(f5) If(t,x,y) <_ H(t, Ix I, yl) for all t E I\Z and for all x,y E , where Z is a

null set in I, H:I xR2+R +, I-I(t,u,v) is nondecreasing in (u,v) for all t E I\Z,

and the BVP

Lx(t) = H(t,x(t),x((t)) a.e. on I, Bjz(t) = c/(t) I, t Ij, j = 0, 1 (3.4)
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has an upper solution in C + (J).

Prolmifion ;I.1: If f:I x R2---,R satisfies condition (fh), then condition (f0) holds for
a = w, b = w, where w C + () is an uer solution of (3.4). If conditions (fX)- (f3) hold

with these a,b, then the BVP (1.1)-(1.2) has the eztremal solutions in the order interval

Proof: Let w C+ (J)) be an upper solution of the BVP (3.4). From (t5) it

follows that

.p{ If(t,,y)l I1 _< w(t), lyl _< w(,(t))} _< H(t,w(t),w((t))) <_ Lw(t) for a.a. t E I.
(3.5)

This implies that

L(- w)(t) < f(t, -w(t), -w((t))) and f(t, w(t), w((t))) < Lw(t) a.e. on I.

Because

ajw(tj)- (- 1)’bjw’l(tj) >_ 1%(t) I, t I, j = 0,1,

it follows that

ajw(tj)- (- 1)Jbjw’(tj) > aj(t), and aj(- w)(tj)- (- 1)Jbj(- w)’(tj) < aj(t), EIj, j- O, 1.

Thus (f0) holds with a = -w and b = w. If conditions (fl)-(f3) hold with these a,b, it

follows from (3.5) and (fl) that also condition (f4) holds. Then the BVP (1.1)-(1.2) has by

Theorem 3.1, the extremal solutions in the order interval [-w, w].

The existence of the least and the greatest of all the solutions of the BVP (1.1)- (1.2)
is ensured if the condition (f0) is replaced by

(f6) f(t,z,Y) <- Pl(t) x + P2(t) Y for all t E I\Z and for all x,y E R, where Z

is a null set in I, Pi E LI+ (I), i= 1,2, and r(Q)< 1, where r(Q) is the spectral

radius of the operator Q: C(J)--,C(J), defined by

Qw(t) =

1

f k(t,s)(Pl(S)w(s) + P2(S)W((s)))ds
o
fa:i(

0

E Ij, b:i =/: O,j = O,1

E I:i, bj = 0, j = 0, 1.

It is easy to see that (3.6) defines a bounded, linear and nondecreasing operator
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Q: C(d)--,C(J). Thus the norm of Q has the following representations:

I! Q II = II Qv II 0 = II !1 o = max .Qe(t),
II o II 0 x e

where e denotes the constant function e(t)--_ 1. Each iterate Qn of Q is also bounded, linear

and nondecreasing, whence the spectral radius of Q can be given by

r(Q) = lira (maxlQne(t)) = inf rataIQne(t)).n.--*oo" E n N

In particular, r(Q) < 1 if and only if there exists n E N such that Qne(t) < 1 for each t E J.

Proposition 3.2: If f: I R2R satisfies condition (f6), then condition (f0) holds for
a w, b = w, where w 6’ + (J) is the solution o the BVP

Lw(t) = pl(t)w(t) + pz(t))w(o(t)) a.e. on I, BiT(t) = cj(t) l, t e I,/, j = 0, 1. (3.7)

If conditions (fl)-(f3) hold with these a, b, then the BVP (1.1)-(1.2) has the least and the

greatest solutions, and they belong to the order interval[-w, w].

Proof: Denoting by y the solution of (3.4) with H 0, the condition r(Q)< 1

ensures that the Neumann series

n0

converges in C+ (J) uniformly, and that the sum function w is the solution of the operator

equation

w = y + Qw. (3.9)

From the choice of y and from the definition of Q it follows that w is the solution of the BVP

(3.7). Thus condition (fh) holds with H(t,u,v)= pl(t)u + p2(t)v, which implies by Proposition

3.1 that (f0) holds with a=-w and b-w. Hence, if (fl)-(f3) hold, then the BVP

(1.1)- (1.2) has by Proposition 3.1 the extremal solutions in [--w, w].

If z is any solution of the BVP (1.1)-(1.2), it follows from (f6) that is a lower

solution (3.10). This implies by the maximum principle (cf. [5]) that r < w. Similarly, it can

be shown that : > -w. Thus the extremal solutions of (1.1)- (1.2) in [-w, w] are the least

and the greatest of all the solutions of (1.1)- (1.2).

Remark 3.1: Condition (fl) holds, for instance if f coincides a.e. to a Borel

measurable function in D = {(t,z,y) a(t) < z < b(t), a((t)) < y < b((t))}.

The above results can be extended naturally with the same techniques for problems
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involving several deviating arguments, i.e. where Equation (1.1) is replaced by

Lx(t) : f(t,x(t),x(l(t)),...,X(m(t)) a.e. on . (3.10)

4. AN EXAMPLE

Let Cj, j= 1,2,3, be nonempty well-ordered

Cj - (n + q- 1 j e N}. Define gj: R--,R, j 1, 2, 3, by

sets in [1/2,1), for instance

z, z G [O, minCj)U[1,c),
gj(z) = min{y Cj U {1}1 < y}, e [minCj, 1), (4.1)

I-g(-=),
It is easy to see that each gj is nondecreasing and discontinuous at each point of Cj.

Moreover, g(z) < 2lz for each z E R..

Choose I=[-1,1], and let PJeL7(I),
j = 1,2,3} <_ 0.74 and gj(t)--,O as t---,- 1 + or t--,1-.

j = 1, 2, 3, satisfy max{ess sup pj

Consider the boundary value problem

x"(t) = f(t,x(t),x(t- 1),x(t + 1)), a.e. on I, x(t) = 1, t [- 2, 1] U [1,2], (4.2)

where

f(t,x,y,z) = Pl(t)gl(x) q- p2(t)g2(y) q- P3(t)g3(z), e I, x,y,z . (4.3)

It is easy to show that the function f satisfies conditions (fl)- (f3). Moreover,

If(t,z,y,z)l _< 1.48(1:1 + Ivl / Izl), a.e. on I. (4.4)

Choosing J = [-2, 2], define an operator Q: C(J)C(J) by

1
1.48 f k(t,s)(w(s) + w(s 1) + w(s + 1))ds

Qw(t) =
O,

-1

where

tel,

tel-2,- 1] tJ [1,21,

(1 t)(1 + s)
2 -1 <_s<_t<_l,

k(t,$) = (1 d" t)(1 s)
2 -l<t<s<l.

(4.6)

It can be shown (cf. [2]) that r(Q)< 1. Thus f satisfies also the hypothesis (f6),
whence the BVP (4.2) has by Proposition 3.2 and Remark 3.1 the least and the greatest

solution, and that all the solutions of (4.2) belong to the order interval [-w, w], where w is the
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solution of the BVP

w"(t) = 1.48(w(t)+ w(t- 1)+ w(t + 1)), t I,

w(t) 1, t e [---2,-- 1]U[1,2],
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