STRONG LAWS OF LARGE NUMBERS FOR ARRAYS OF ROWWISE CONDITIONALLY INDEPENDENT RANDOM ELEMENTS¹

RONALD FRANK PATTERSON

Georgia State University

Department of Mathematics and Computer Science

Atlanta, GA 30303 U.S.A.

ABOLGHASSEM BOZORGNIA

Mashhad University
Department of Statistics
Mashhad, IRAN

ROBERT LEE TAYLOR

University of Georgia
Department of Statistics
Athens, GA 30602 U.S.A.

ABSTRACT

Let $\{X_{nk}\}$ be an array of rowwise conditionally independent random elements in a separable Banach space of type $p, 1 \le p \le 2$.

Complete convergence of
$$n^{-1/r} \sum_{k=1}^{n} X_{nk}$$
 to 0, $0 < r < p \le 2$ is obtained

by using various conditions on the moments and conditional means. A Chung type strong law of large numbers is also obtained under suitable moment conditions on the conditional means.

Key words: Strong law of large numbers, type p, rowwise conditionally independent, complete convergence.

AMS (MOS) subject classifications: 60B12.

I. INTRODUCTION AND PRELIMINARIES

Let $(\mathfrak{S}, \|\cdot\|)$ be a real separable Banach space. Let (Ω, \mathcal{A}, P) denote a probability space. A random element (r.e.) X in \mathfrak{S} is a function from Ω into \mathfrak{S} which is \mathcal{A} -measurable with respect to the Borel subsets $B(\mathfrak{S})$. The rth absolute moment of a random element X is $E \|X\|^r$ where E is the expected value of the random variable $\|X\|^r$. The expected value of

¹Received: August, 1992. Revised: January, 1993.

a random element X is defined to be the Bochner integral (when $E \parallel X \parallel < \infty$) and is denoted by EX. The concepts of independence and identical distributions for real-valued random variables extend directly to S. A separable Banach space is said to be of (Rademacher) type $p, 1 \le p \le 2$, if there exist a constant C such that

$$E \| \sum_{k=1}^{n} X_{k} \|^{p} \le C \sum_{k=1}^{n} E \| X_{k} \|^{p}$$
(1.1)

for all independent random elements $X_1, ..., X_n$ with zero means and finite pth moments. The sequence of random elements $\{X_n\}$ is said to be conditionally independent if there exists a sub- σ -field ζ of $\mathcal A$ such that for each positive integer m

$$P\left[\bigcap_{i=1}^{m} [X_i \in B_i] \mid \zeta\right] = \prod_{i=1}^{m} P[X_i \in B_i \mid \zeta] \ a.s.$$

where $P[X_i \in B_i \mid \zeta]$ denotes the conditional probability of the random element X_i being in the Borel set B_i given the sub- σ -field ζ . Independent random elements are conditionally independent with respect to the trivial σ -field $\{\emptyset, \mathcal{A}\}$.

Throughout this paper $\{X_{nk}: 1 \le k \le n, n \ge 1\}$ will denote rowwise conditionally independent random elements in \mathcal{E} such that $EX_{nk} = 0$ for all n and k. The first major result of this paper shows that

$$\frac{1}{n^{1/n}} \sum_{k=1}^{n} X_{nk} \to 0 \text{ completely}$$
 (1.2)

where complete convergence is defined (as in Hsu and Robbins [5]) by

$$\sum_{n=1}^{\infty} P \left[\left\| \frac{1}{n^{1/r}} \sum_{k=1}^{n} X_{nk} \right\| > \epsilon \right] < \infty$$
 (1.3)

for each $\epsilon > 0$. The second major result is a Chung type strong law of large numbers (SLLN) which provides

$$\frac{1}{a_n} \sum_{k=1}^n X_{nk} \to 0 \quad a.s. \tag{1.4}$$

where $a_n < a_{n+1}$ and $\lim_{n \to \infty} a_n = \infty$. For comparisons with (1.2) and (1.4), a brief partial review of previous results will follow.

Erdös [4] showed that for an array of i.i.d. random variables $\{X_{nk}\}$, (1.2) holds if and only if $E \mid X_{11} \mid^{2r} < \infty$. Jain [8] obtained a uniform SLLN for sequences of i.i.d. r.e.'s in a separable Banach space of type 2 which would yield (1.2) with r=1 for an array of r.e.'s $\{X_{nk}\}$. Woyczynski [12] showed that

$$\frac{1}{n^{1/r}} \sum_{k=1}^{n} X_k \to 0 \text{ completely}$$
 (1.5)

for any sequence $\{X_n\}$ of independent r.e.'s in a Banach space of type $p, 1 \le r with <math>EX_n = 0$ for all n which is uniformly bounded by a random variable X satisfying $E \mid X \mid^r < \infty$. Recall that an array $\{X_{nk}\}$ of r.e.'s is said to be uniformly bounded by a random variable X if for all n and k and for every real number t > 0

$$P[\|X_{nk}\| > t] \le P[|X| > t]. \tag{1.6}$$

Hu, Moricz and Taylor [7] showed that Erdös' result could be obtained by replacing the i.i.d. condition by the uniformly bounded condition (1.6). Taylor and Hu [9] obtained complete convergence in type p spaces, 1 for uniformly bounded, rowwise independent r.e.'s. Bozorgnia, Patterson and Taylor [1] obtained a more general result by replacing the assumption of uniformly bounded random elements with moment conditions. One complete convergence result of this paper, given in Section 2, is obtained by assuming a condition on the conditional means and extends the result in Bozorgnia et. al [1].

If $\{X_n\}$ is a sequence of independent (but not necessarily identically distributed) r.v.'s, Chung's SLLN yield (1.4) for r.v.'s if $\Psi(t)$ is a positive, even, continuous function such that either

$$\Psi(t)\downarrow$$
 as $|t|\uparrow\infty$ (1.7)

and

$$\sum_{n=1}^{\infty} \frac{E\Psi(X_n)}{\Psi(a_n)} < \infty \tag{1.8}$$

where $\{a_n\}$ is a sequence of real numbers such that $a_n < a_{n+1}$ and $\lim_{n \to \infty} a_n = \infty$ hold, or

$$\frac{\Psi(t)}{\mid t \mid} \uparrow \text{ and } \frac{\Psi(t)}{\mid t \mid^2} \downarrow \text{ as } \mid t \mid \uparrow \infty$$
 (1.9)

 $EX_n = 0$ and (1.8) holds where \uparrow and \downarrow denote monotone increasing and monotone decreasing respectively.

Wu, Taylor and Hu [6] considered SLLN's for arrays of rowwise independent random variables, $\{X_{ni}: 1 \le i \le n, n \ge 1\}$. They obtained Chung type SLLN's under the more general conditions:

$$\frac{\Psi(\mid t\mid)}{\mid t\mid r} \uparrow \text{ and } \frac{\Psi(\mid t\mid)}{\mid t\mid r+1} \downarrow \text{ as } \mid t\mid \uparrow$$
 (1.10)

where $\Psi(t)$ is a positive, even function and r is a nonnegative integer,

$$EX_{ni} = 0, (1.11)$$

$$\sum_{n=1}^{\infty} \sum_{i=1}^{n} \frac{E(\Psi(X_{ni}))}{\Psi(a_n)} < \infty, \tag{1.12}$$

4

and

$$\sum_{n=1}^{\infty} \left[\sum_{i=1}^{n} E\left(\frac{X_{ni}}{a_n}\right)^2 \right]^{2k} < \infty$$
 (1.13)

where k is a positive integer and $\{a_n\}$ is a sequence of positive real numbers defined in (1.4). Combinations of Conditions (1.10), (1.11), (1.12) and (1.13) for different values of r will imply that

$$\frac{1}{a_n} \sum_{i=1}^n X_{ni} \rightarrow 0 \quad a.s. \tag{1.14}$$

Bozorgnia, Patterson and Taylor [2] obtained Banach space versions of Hu, Taylor and Wu's results using the modified conditions:

$$\frac{\Psi(\mid t\mid)}{\mid t\mid^{r}} \uparrow \text{ and } \frac{\Psi(\mid t\mid)}{\mid t\mid^{r+p-1}} \downarrow \text{ as } \mid t\mid \uparrow$$
 (1.15)

for some nonnegative integer r, where the separable Banach space is of type p, $1 \le p \le 2$,

$$EX_{ni} = 0, (1.16)$$

$$\sum_{n=1}^{\infty} \sum_{i=1}^{n} \frac{E(\Psi(\parallel X_{ni} \parallel))}{\Psi(a_n)} < \infty, \tag{1.17}$$

and

$$\sum_{n=1}^{\infty} \left[\sum_{i=1}^{n} E \left(\left\| \frac{X_{ni}}{a_n} \right\|^p \right) \right]^{pk} < \infty$$
 (1.18)

where k is a positive integer.

In Section 2 of this paper, SLLN's for arrays of rowwise conditionally independent r.e.'s are obtained for Banach spaces under conditions similar to those of Chung [3], Hu, Taylor and Wu [6] and Bozorgnia, Patterson and Taylor [2] with appropriate conditions on the conditional means. These new results address the question of possible exchangeability extensions in the affirmative, and in addition, provide a class of new results for conditionally independent random elements. A generic constant, C, will be used throughout the paper.

2. MAIN RESULTS

A lemma by Wozczynski [12], is crucially used in the proofs of the major results, Theorems 2.2 and 2.3, and is stated here for future reference.

Lemma 2.1: Let $1 \le p \le 2$ and $q \ge 1$. The following properties are equivalent:

- (i) The separable Banach space, S, is of type p.
- (ii) There exist a constant C such that for all independent r.e.'s $X_1, ..., X_n$ in S with

 $EX_{i} = 0$, and $E \| X_{i} \|^{q} < \infty$, i = 1, 2, ..., n

$$E \parallel \sum_{i=1}^{n} X_{i} \parallel^{q} \le CE \left(\sum_{i=1}^{n} \parallel X_{i} \parallel^{p} \right)^{q/p}.$$
 ///

The constant C depends only on the Banach space S and not on n. Moreover, throughout this section C will denote a generic constant which is not necessarily the same each time used but is always independent of n.

Theorem 2.2: Let $\{X_{nk}\}$ be an array of rowwise conditionally independent random elements in a separable Banach space of type $p, 1 \le p \le 2$. If

 $(i) \quad \sup_{1 \, \leq \, k \, \leq \, n} E \parallel X_{nk} \parallel^{\, \nu} = O(n^{\alpha}), \ \alpha \geq 0 \ \ \text{where} \ \nu \Big(\frac{1}{r} - \frac{1}{p} \Big) > \alpha + 1, \ 0 < r < p \leq 2$ and

(ii) for all $\eta > 0$,

$$\sum_{n=1}^{\infty} P\left(\left\| \frac{1}{n^{1/r}} - \sum_{k=1}^{n} E_{\zeta} X_{nk} \right\| > \eta \right) < \infty$$
 (2.1)

where E_{ζ} is the conditional expectation with respect to an appropriate σ -field that gives conditional independence, then

$$\frac{1}{n^{1/r}} \sum_{k=1}^{n} X_{nk} \to 0 \quad completely.$$

Proof: Let $\epsilon > 0$ be given. By Markov's inequality,

$$\sum_{n=1}^{\infty} P\left(\|\frac{1}{n^{1/r}} \sum_{k=1}^{n} X_{nk}\| > \epsilon\right) \leq \sum_{n=1}^{\infty} P\left(\|\frac{1}{n^{1/r}} \sum_{k=1}^{n} (X_{nk} - E_{\zeta} X_{nk})\| > \frac{\epsilon}{2}\right) + \sum_{n=1}^{\infty} P\left(\|\frac{1}{n^{1/r}} \sum_{k=1}^{n} E_{\zeta} X_{nk}\| > \frac{\epsilon}{2}\right)$$

$$\leq C \sum_{n=1}^{\infty} E E_{\zeta} \|\frac{1}{n^{1/r}} \sum_{k=1}^{n} (X_{nk} - E_{\zeta} X_{nk})\|^{\nu} + \sum_{n=1}^{\infty} P\left(\|\frac{1}{n^{1/r}} \sum_{k=1}^{n} E_{\zeta} X_{nk}\| > \frac{\epsilon}{2}\right). \tag{2.2}$$

By Lemma 2.1 and Hölder's inequality, the first term in (2.2) is bounded by

$$\begin{split} C\sum_{n=1}^{\infty} E\!\left(E_{\zeta} \, \| \, \frac{1}{n^{1/r}} \!\! \sum_{k=1}^{n} \left(X_{nk} - E_{\zeta} X_{nk}\right) \, \|^{\, \nu}\right) &\leq C\sum_{n=1}^{\infty} \frac{n^{\nu/p-1}}{n^{\nu/r}} E\left(\sum_{k=1}^{n} \| \, X_{nk} - E_{\zeta} X_{nk} \, \|^{\, \nu}\right) \\ &\leq C\sum_{n=1}^{\infty} \frac{n^{\nu/p-1}}{n^{\nu/r}} \cdot 2^{\nu} \!\! \sum_{k=1}^{n} E \, \| \, X_{nk} \, \|^{\, \nu} \\ &\leq C\sum_{n=1}^{\infty} \frac{n^{\nu/p} \cdot n^{\alpha}}{n^{\nu/r}} \end{split}$$

 $=C\sum_{n=0}^{\infty}n^{-\nu(\frac{1}{r}-\frac{1}{p})+\alpha}<\infty.$ The second term of (2.1) is finite by (ii)= 1Thus, the result follows. ///

Remark 1: Condition (ii) can be replaced by the condition $E \parallel E_{\zeta} X_{n1} \parallel^p = O(n^{-\beta})$, $\beta > \frac{2r-p}{r}$, if the r.e.'s are conditionally i.i.d. or rowwise infinitely exchangeable. If 0 < r < 1, and p/r > 2, then β can be nonpositive and the bound for each row can increase.

Remark 2: If the random elements are independent with zero means, then condition (ii) is identically zero when ζ is chosen to be the trivial σ -field, $\{\emptyset, \mathcal{A}\}$. Thus, Theorem 2.2 generalizes the results of Bozorgnia et. al [1].

Remark 3: Condition (i) implies condition (6.2.2) in Theorem 6.2.3 of Taylor, Daffer and Patterson [10]. Condition (6.2.2) was given as:

$$\sum_{n=1}^{\infty} \frac{E(\parallel X_{n1} \parallel^{pq})}{n^{q(p-1)}} < \infty.$$

Letting $\nu = pq$ and r = 1, it follows that the third inequality in the proof of Theorem 2.2 is majorized by

$$\begin{split} C\sum_{n=1}^{\infty} \frac{n \cdot n^{\nu/p-1}}{n^{\nu/r}} \cdot \sup_{1 \le k \le n} E \parallel X_{nk} \parallel^{\nu} &= C\sum_{n=1}^{\infty} \frac{n^{\nu/p}}{n^{\nu}} \cdot E \parallel X_{n1} \parallel^{\nu} \\ &\le C\sum_{n=1}^{\infty} \frac{n^q \cdot n^{\alpha}}{n^{pq}} \\ &= C\sum_{n=1}^{\infty} n^{-q(p-1)+\alpha} \end{split}$$

which is a substantial improvement of Theorem 6.2.3 of Taylor et. al [10]. Moreover, Condition (6.2.1) of Theorem 6.2.3 in Taylor et. al [10] implies Condition (ii) of Theorem 2.2 since for $\{X_{nk}\}$ rowwise infinitely exchangeable and r=1,

$$\begin{split} \sum_{n=1}^{\infty} P \left[\| \frac{1}{n} \sum_{k=1}^{n} E_{\zeta} X_{nk} \| > \eta^{1/\nu} \right] &\leq \sum_{n=1}^{\infty} P(\| E_{\zeta} X_{n1} \|^{\nu} > \eta) \\ &= \sum_{n=1}^{\infty} \int P_{\zeta}(\| E_{\zeta} X_{n1} \|^{\nu} > \eta) d\mu_{n}(P_{\zeta}) \\ &= \sum_{n=1}^{\infty} \mu_{n} \{ P_{\zeta} : \| E_{\zeta} X_{n1} \|^{\nu} > \eta \} < \infty, \end{split}$$

where μ_n denotes the mixing measure for the exchangeable sequence $\{X_{n1}, X_{n2}, \ldots\}$ and P_{ζ} denotes the conditional probability.

The next result is a Chung type SLLN for arrays of rowwise conditionally independent r.e.'s in a separable Banach space of type p, $1 \le p \le 2$. Let $\{a_n\}$ be a sequence of positive real

numbers such that $a_n < a_{n+1}$ and $\lim_{n \to \infty} a_n = \infty$. Let $\Psi(t)$ be the positive, even function defined in (1.15).

Theorem 2.3: Let $\{X_{ni}\}$ be an array of rowwise, conditionally independent random elements in a separable Banach space of type $p, 1 \le p \le 2$ such that $EX_{ni} = 0$ for all n and i. Let $\Psi(t)$ satisfy (1.15) for some $r \ge 2$. If $\{a_n\}$ is a sequence of positive real numbers such that $a_n < a_{n+1}$ and $\lim_{n \to \infty} a_n = \infty$ and if

$$\frac{1}{a_n} \sum_{i=1}^n E_{\zeta} X_{ni} \to 0 \quad completely, \tag{2.3}$$

and if for some positive integer k

$$\sum_{n=1}^{\infty} E\left(\sum_{i=1}^{n} E_{\zeta} \left\| \frac{X_{ni}}{a_{n}} \right\|^{p}\right)^{pk} < \infty, \tag{2.4}$$

then Condition (1.17) implies that

$$\frac{1}{a_n} \sum_{i=1}^n X_{ni} \rightarrow 0 \quad a.s.$$

Proof: Let $Y_{ni} = X_{ni}I_{[\parallel X_{ni}\parallel \leq a_n]}$ and $Z_{ni} = X_{ni}I_{[\parallel X_{ni}\parallel > a_n]}$. Using Markov's inequality and Condition (1.1.7), it follows that the two sequences

$$\left\{ \sum_{i=1}^{n} \left(\frac{X_{ni}}{a_n} \right) \right\} \text{ and } \left\{ \sum_{i=1}^{n} \left(\frac{Y_{ni}}{a_n} \right) \right\}$$

are equivalent. Conditions (1.15), (1.16) and (1.17) imply that

$$\sum_{n=1}^{\infty} \sum_{i=1}^{n} \| E\left(\frac{Y_{ni}}{a_n}\right) \| = \sum_{n=1}^{\infty} \sum_{i=1}^{n} \| E\left(\frac{Z_{ni}}{a_n}\right) \|$$

$$\leq \sum_{n=1}^{\infty} \sum_{i=1}^{n} \frac{E(\Psi(\|X_{ni}\|))}{\Psi(a_n)} < \infty.$$
(2.5)

Next,

$$\|\frac{1}{a_{n}} \sum_{i=1}^{n} (Y_{ni} - EY_{ni})\| \le \|\frac{1}{a_{n}} \sum_{i=1}^{n} (Y_{ni} - E_{\zeta}Y_{ni})\|$$

$$+ \|\frac{1}{a_{n}} \sum_{i=1}^{n} E_{\zeta}Y_{ni}\| + \|\frac{1}{a_{n}} \sum_{i=1}^{n} EY_{ni}\|.$$
(2.6)

The last term of (2.6) converges to 0 by (2.5). By Condition (2.3)

$$\|\frac{1}{a_n} \sum_{i=1}^n E_{\zeta} Y_{ni}\| \to 0$$
 completely

if and only if

$$\|\frac{1}{a_n} \sum_{i=1}^n E_{\zeta} Z_{ni}\| \to 0 \quad \text{completely.}$$
 (2.7)

But, (2.7) follows from (1.17) since

$$\begin{split} E \parallel \frac{1}{a_n} & \sum_{i=1}^n E_{\zeta} Z_{ni} \parallel \leq E \bigg(E_{\zeta} \parallel \sum_{i=1}^n \frac{Z_{ni}}{a_n} \parallel \bigg) \\ & \leq \sum_{i=1}^n E \parallel \frac{Z_{ni}}{a_n} \parallel \\ & \leq \sum_{i=1}^n \frac{E(\Psi(\parallel Z_{ni} \parallel))}{\Psi(a_n)} \\ & \leq \sum_{i=1}^n \frac{E(\Psi(\parallel X_{ni} \parallel))}{\Psi(a_n)}. \end{split}$$

Thus, it suffices to show that

$$\sum_{i=1}^{n} \frac{Y_{ni} - E_{\zeta} Y_{ni}}{a_n} \to 0 \quad a.s.$$
 (2.8)

Let $W_{ni} = \frac{Y_{ni}}{a_n} - \frac{E_{\zeta}Y_{ni}}{a_n}$ for all n and i. Then, $||W_{ni}|| \le 2$ and $E_{\zeta}W_{ni} = 0$. Now by Lemma 2.1,

$$E \| \sum_{i=1}^{n} W_{ni} \|^{pk(r+1)} = E \left(E_{\zeta} \| \sum_{i=1}^{n} W_{ni} \|^{pk(r+1)} \right)$$

$$\leq CE \left(E_{\zeta} \left(\sum_{i=1}^{n} \| W_{ni} \|^{p} \right)^{k(r+1)} \right)$$

$$= CE \sum_{i=1}^{\infty} {k(r+1) \choose s_{1}, \dots, s_{n}} E_{\zeta} \| W_{n1} \|^{ps_{1}} \dots E_{\zeta} \| W_{nn} \|^{ps_{n}}$$
(2.9)

where the sum $\sum_{i=1}^{\infty}$ is over all choices of nonnegative integers s_1, \ldots, s_n such that $\sum_{i=1}^{n} s_i = k(r+1)$. Now (2.9) can be shown to be summable with respect to n following the same steps as in the proof of Theorem 2.2 of Bozorngia et. al [2] for the case $s_i p \ge r+1$ for at least one s_i . The case $s_i p < r+1$ for all i is accomplished by using (2.4) instead of (1.18). Hence, the result follows.

Remark 4: Theorem 2.2 extends the random variable result in Hu, Taylor and Wu [6] for p=2 and the random element results in Bozorgnia, Patterson and Taylor [2] to the class of conditionally independent random variables and random elements. Again, if the r.e.'s are rowwise independent with zero means, then Condition (2.3) is equal to zero via the trivial σ -field, and (2.4) becomes (1.18) with the trivial σ -field.

ACKNOWLEDGEMENTS

The research by the first author was supported in part by the National Science Foundation under grant #DMS 8914503. The research for the first and second authors was

mainly completed while at the Department of Statistics, University of Georgia, Athens, GA.

REFERENCES

- [1] Bozorgnia, A., Patterson, R.F., and Taylor, R.L., On strong laws of large numbers for arrays of rowwise independent random elements, *Internat. J. Math. & Math. Sci.*, (to appear).
- [2] Bozorgnia, A., Patterson, R.F., and Taylor, R.L., Chung type strong laws for arrays of random elements and bootstrapping, *Statistics Technical Report* 92-8, University of Georgia, (1992).
- [3] Chung, K.L., Note on some strong laws of large numbers, Amer. J. Math 69, 189-192, (1947).
- [4] Erdös, P., On a theorem of Hsu and Robbins, Ann. Math. Statistics 20, 286-291, (1949).
- [5] Hsu, P.L. and Robbins, H., Complete convergence and the law of large numbers, *Proc. Nat. Sci. USA*, 33, 25-31, (1947).
- [6] Hu, T.C., Taylor, R.L. and Wu, J.S., On the strong law for arrays and for the bootstrap mean and variance, *Statistics Technical Report* 91-16, University of Georgia, (1991).
- [7] Hu, T.C., Moricz, F. and Taylor, R.L., Strong law of large numbers for arrays of rowwise independent random variables, Actua Math. Hung. 54, 153-162, (1986).
- [8] Jain, N.C., Tail probabilities for sums of independent Banach space random variables, Z. Wahr. V. Geb. 33, 155-166, (1975).
- [9] Taylor, R.L., and Hu, T.C., Strong laws of large numbers for arrays of rowwise independent random elements, *Internat. J. Math & Math. Sci.* 4, 805-814, (1987).
- [10] Taylor, R.L., Daffer, P. and Patterson, R.F., Limit Theorems for Sums of Exchangeable Random Variables, Rowman & Allanheld Publishers, Totowa N.J. 1985.
- [11] Woyczynski, W.A., Geometry and martingales in Banach spaces, Part II, Advances in Probability 4, Dekker, 267-517, (1978).
- [12] Woyczynski, W.A., On Marcinkiewicz-Zygmund laws of large numbers, *Prob. and Math. Stat.* 1, 117-131, (1980).