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ABSTKACr

The convexity of the expected number in an M/M/s queue with
respect to the arrival rate (or traffic intensity) is well known.
Grassmaan [1] proves this result directly by making use of a bound on
the probability that all servers are busy. Independently, Lee and Cohen
[2] derive this result by showing that the Erlang delay formula is a
convex function. In this note, we provide a third method of proof, which
exploits the relationship between the Erlang delay formula and the
Poisson probability distribution. Several interesting intermediate results
are also obtained.
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1. INTRODUCTION

Optimization of queueing systems is becoming an increasingly important topic in

several applied areas, such as flexible manufacturing and telecommunications. In optimization,

convexity is a desirable property, since a local minimum of a convex function is also a global

minimum. Thus, standard descent methods may be used to obtain the optimal solution.

Pertaining to queueing systems, the convexity properties of various performance

measures, such as average queue size and proportion of customers lost, have been studied with
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respect to the number of servers, service rate, traffic intensity and other variables. Certain

results have justified the use of efficient marginal allocation algorithms to solve for the optimal

allocation of limited resources. A partial list of relevant research includes Lee and Cohen [3],
Yao and Shanthikumar [5] and Shanthikumar and Yao [4].

Here we prove that tile average number of customers waiting in an M/M/s queue is a

convex function of tile arrival rate (or traffic intensity). This result is well known, having been

proven independently by Grassmann [1] and Lee and Cohen [2]. Grassmann’s method uses a

bound on the probability that all servers are busy to show that the second partial derivative is

positive. Lee and Cohen derive the result by proving first, that the Erlang delay formula is a

convex function. Their method uses inductiou to show that the numerator in the second

derivative is a polynomial whose coefficients are all positive. The purpose of this paper is to

highlight a completely different approach, which considers the functional relation between the

mean queue size and the Poisson probabilities with parameter equal to the ratio of arrival rate

to service rate. This permits a comparatively straightforward analysis of first and second order

derivatives. Also, in developing the main result, several intermediate results are obtained

which may be of interest.

2. CONVEXITY OF THE EXPECTED QUEUE LENGTII

All stochastic processes located in the paper will be considered on the probability space

(f, , P).

Consider an M/M/s queue with arrival rate A, service rate and s servers. The traffic

intensity is defined usual by the ratio,

For equilibrium conditions to be attained, it is well known that p must be less than one. Let

us further define

z = A//t = sp.

Then z (0,s). The expected queue length is given by

:C(s,)

where

C(,z) = -,(s_})
k=l
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is the Erlang delay formula. The expected nutnber in the system,

L-

We now state the main result.

Theorem 1" Lq and L are convex functions of x in the interval (O,s).

Proof: Since L = Lq + x, we only need to show that Lq is convex with respect to

x. Taking the first partial derivative, we obtain

---C)(s- ) +OLq ( C + or .r,C

Oz s : "
Since OC/Ox > O, it follows that Lq and L are monotonically increasing functions of x in the

interval (0, s).

The second partial derivative is given by

90C x02Cc92Lq -0-"+ Ox2
Oz’2 (s )

2(C +

Thus, to show convexity it is sufficient to demonstrate that

(s -’02C .)_..C_C > O.":r-z+-Oz (A)

To proceed, we first introduce the functions

fh(z)=e -zzh
:h! h = O, 1,

Note that fit has the form of a Poisson probability with parameter x. The following recursive

relations are obtained"

f;t-" fh-l-" fh,

f)’t fh- 2 2fh- + fh,

h = 0, 1,...,

where f_ 2 = f- = 0, and the and denote O/Oz and 02/Oz2 respectively. The Erlang loss

formula can be rewritten as a function of Poisson probabilities as follows:

C(s,=) = f"
--1)!" S-Zl(s_h)fh"

h =0
.We note some useful properties below:

0__ (s--h)fh = fit <0;Ox
h=O

(1)
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a+ (+- h)yh = f+_ > 0;
0

After some straightforward steps, it is reaxtily seen that proving relation (A) is exactly

equivalent to showing that the following inequality is true.

[(- )(u"o- V’u)+ ’2(u’o- o’u)]v
2v’(u’o- v’u)( x) >_ o, (B)

where u = fs and v = (s- h)fh.
h=O

The proof of relation (B) consists of verifying the following components:

(i) (,- )u" + 2u’ > 0,

(ii) [- v"uv + 2(v’)2u] > 0,

(iii) v’u > 0,

(iv) -o’u’> O.

Inequality (iii) follows immediately from property (1), while inequality (iv) follows by

applying properties (1) and (3). Noting that u’ = fs-l-fs, and u" = fs-2fs- + fs-’2, we

obtain

fs-,] )2 2z s](, .),," +.2,,’ = s(-., )(s- )[(s- +

for s >_ 2. (For s = 1, the right-hand side becomes z(1-z)f0, which is clearly >0.)

Furthermore, the function, (s z)2 + 2z s, is convex in z, with minimum value of (s 1) at

z* = s- 1. We conclude that inequality (i) is true.

Finally, to show that inequality (ii) holds, we must prove equivalently that

(c)

Using a change on index, the left-hand side may be rewritten as

sx...,-
(s-h)fh =e -2x 2(s-1) (2s 1)x/

fs-I Z.., (,--- l)l(g- (,-1))’"h=O =s-1

A lower bound for the right-hand side may be obtained by combining and deleting terms as

follows:

fh : e
h 0 = 0 h 0

xi+h
i!h!
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But clearly,

-2x

C - -(,- l)
i!(g- i)!

s-1

> (2s- - )Z i!(e it!i=e-(-)

2s-e-
(S

for g = s- l,s,...,’2(s- 1). It immediately follows that relation (C) is true.

We conclude that Lq and L are strictly convex functions of z E (0, s). Alternatively

stated, Lq and L are strictly convex functions of the arrival rate A in the interval (0,sp), or

traffic intensity p in the interval (0, 1).
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