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ABSTRACT

In this paper we consider an inverse problem that corresponds to an
abstract integrodifferential equation. First, we prove a local existence and
uniqueness theorem. We also show that every continuous solution can be
locally extended in a unique way. Finally, we give sufficient conditions for the
existence and a stability of the global solution.
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1_. INTRODUON

Let X,Y be two Banach spaces, and let A:D(A)C X--.X be a linear operator.

T > 0, F1, F2: [0, T] x X x Y-.X, L: X-.Y, v: [0, T]-.Y, and z X be given data.

Let

(1)

(2)

We consider the following problem: find (u, p): [0, T]--.X x Y such that
t

ut(t) = Au(t)+ Fl(t,u(t),p(t))+ /F2(s,u(s),p(t-s))ds, O < t S T,
0

u(O) =

(3) Lu(t) = v(t), 0 < t <_ T.
Such a problem has been considered previously by Prilepko, Orlovsldi in [6,7], Lorenzi, Sinestrari in

[4], and the author in [1].

The local existence and uniqueness result is obtained by Prilepko, Orlovskii for the ease

F2 = 0, and by Lorenzi, Sinestrari for the case Y is a subspace of L(X),FI(t,u,p) = pBz, and

F2(t, u, p)= pBu, where B is some given linear operator in X. The stability problem has been

studied by Lorenzi and Sinestrari in [5].

In [1] the author treats the case of Y = C[O,T]"(. >_ 1),Fl(t,u,(pl,...,p.)) = PiVi, Yi in
1

X(1 < i _< .) and F2 = 0. Then a global existence and uniqueness theorem is obtained.

XPeceived: January 1990; Pevised: October 1990.

Printed in the U.S.A. (C) 1991 The Society of Applied Mathematics, Modeling and Simulation 117



118 M. CHOULLI

The present work is concerned with a generalization of those results.

(H)

Throughout this paper we assume:

A is a closed linear operator with a dense domain generating a strongly continuous semi-

group eAt. Without loss of generality, we suppose that eAt is equibounded:

eat II - M, t >_ 0 for some M >_ 1.

(H2)
()
()
(H,)

D(A),
e L(X, Y),
C1([0, T]: Y), and v(0) = Lx.

and AFt are continuous in [0, T] x D(A) x Y.

For each r > 0, there exist positive continuous real valued functions gl, i(r, ), = 0,1 such that

(Hh, 2) II rt(t, ul, p) II D(A) <-- g,0(r, t),
(Hh, 3) IIF(t,u,Pl)--r(t, u2,P2) llD(A) <--g,l(r,t)(llu--u211D(A)+ IlPl--P2ilY),
for each (ui, Pi) E ((u, p) 6 D(A) x Y, }1 u ][ D(A) + I[ P I] y

_
r}, i = 1, 2, and t fi [0, T].

(H6,1) /F2 and A/F2 are continuous in [O,T]xD(A)Y.
0 0

For each r > 0, there exist positive continuous real valued functions g2, i(r, ), i = 0,1, such that

!1 / F2(s, u(s), p(t- s))ds [I D(A) <-- / g2.o(r,s)ds’
0 0

t

I! f (F2(s, Ul(8), ll(t s)) F2(8 tt2(s), p2(t s)))ds II DCA)
0 t

< / g2,1(r,s)( II ux(s)-- -2(s) II D(A) + Ii px(s)- p2(s)II r)ds,
0

for each (ui, Pi) e {(u, p) C([0, T]: D(A) x Y), sup II (s) II D(A) + II p(s) II r) -< }, i = t, 2, and
0<s<t

t E [0,T].
There exist continuous function H:[0,T] x Y x Y--,Y with the following properties. For each r > 0

there exist positive continuous real valued functions C(r, ) such that

(H7, t) II Hx(t, ux, Px) Hx(t, 2, P2)II r <_ c(r, t)( II "x 2 II D<a) + II Pl P2 II r), for each

K:p-.Hx(t,v(t),p) has an inverse (t,-) continuous map t--.(t,w), and there exist positive

continuous real valued function k, such that
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(H?, 3)
[I dk(t, wl)-(t, w2) ]l y,t e [O,T],w e Y,i = 1,2.

LFl(t,u,p) = Hl(t, Lu, p),(u,p) e D(A)xY, and t { [0,T].

EX!STENCE THE LOCAL SOLUTION

In this section we prove that the local solution of our inverse problem is obtained by a fixed

point theorem. Let

0 < < T
a(t)’

#d(ro, t,) = M(1 + k(t)II II )(#, (o,) + (-),(o,))+ (t)II II #, (o, ),
i = 0,1, and let TO 6 [0, T] be such that

O<_s<_t<_T,

TO sup go(to, t,s) < , and TO sup g1(ro, t,s) = 7 < 1.
O<tT OtT

Let Z(To) = C([0, To]: D(A) x Y) equipped with the norm

= P (11 ()II OCA) + II P()II r)-II (, P) II ZCTo) o <_, < TO
Then, we define the mapping

: Z(To)-.Z(To): (u, p)-*(U, P),

where
t

U(t) = eAtz + / eA(t ")Fl(S, u(s), p(s))ds
0

Proposition I. There exists a unique (uo, Po) in B(ro, To) satisfying (Uo, Po) = (Uo, Po),
where B(ro, To) denotes the closed ball of Z(To) with the center 0 and radius ro.
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Proof. We claim that s a strict contraction from B(ro, To) nto itself. Hence, according

to the fixed point theorem, there is a unique (Uo, Po) in B(ro, To) such that (Uo, Po) (Uo, Po)"
Let (ui, pi) in B(ro, To),(Ui, Pi) -- $(ui, pi),i = 1,2, and t in [0,To].
We have then

II Ul() [I D(A) <-- [[ z II D(A) q" 1]/[ / II FI($, .(8), p(8)) I[ D(A)d8

+ e/ II f=(,"(), P("- ))d II O(A)d".
0 0

Using (H5) d (H6) we obt

"Ul(t) 11D(A) M llzl[ D(A) + M/gl,o(ro, s)ds + Mf f gz, o(ro,=)d=ds
0 0 0

t

_< M II II D(A) + MJ (x,o(o, ) + (t )2,o(o, s))d,
0

From (H7,2) we deduce

II PI(t) !1 r <- II (t, o)II r / u(t)II ’(t)- LeAtAz
t t

/ LF2(s u(s), p(t s))ds / LeA(t -")AFI(S, u(s), p(t- s))ds
0 0

Hence

Thus

8

/ LeA(t- ")A f Fz(r, u(o’), p(s- ))drds)[I Y"
0 0

t

II Px(t)II r -< II (t, o)II v+ (t)II ’(t)- Zata= II + II Z II (t) J e=,o(o,,)d
t 0

+ n II z; !1 (t) / (gx,o(ro, s) + (t- s)g2,o(ro, s))ds.
0

II ux(t) I! o(A) + II Px(t)II r <- II II (A) + II @(t, 0)II r + (t)II v’(t)-- eatA II
t

+ !1Z II (t) f 2,o(o,)d
t 0

+ M(1 + II L il (t)) / (gx,o(o, s) + (t- s)g2,o(ro, s))ds
0

t

<_ a(t) + / g(ro, t, s)ds.
0



This implies that

II (u,P)II ZTo) <_ o.
On the other hand, in the same way as above, it is easily seen that

II u(t)- u()II D<) + II e()- e()II
t

<_ f(,’o,t,,)( II ,,(..,)-u(,)II c.,".) + II P.(,)-P(,)II
0

It follows that

II (ux, ex)- (u2, P2)II ZCT0) <-- 3’ II (, p)- (2, P2)!1 ZCTo).

Our claim is proven.

Proposition .
(,) = (,).

(u,p) is a solution of the inverse problem (1)-(3) in [0,T] iff

Proof. It is well known that the solution of Cauchy problem (I) and (2) is given by

u(t) = U(t). Therefore, it suffices to show

t

Lu(t) = v(t) iff pCt) = @(t, v’(t) / LF2(s, u(s), p(t ,))ds LAu(t))

for each t in [0, T].
0

First, we differentiate Lu(t) = v(t) to obtain

= L{Au(t) q- Fl(t u(t), p(t)) + / F2(s u(s), p(t- s))ds} =Lu’(t) 11(),

Hence
0

Hx(t, v(t), p(t)) = LF(t, uCt), p(t))

Using (//7,2) we get

= vt(t) / LFz(s, u(s), p(t s))ds LAu(t).
0

t

p(t) = @(t, v’(t) f LF2(s u(s), p(t s))ds LAu(t)).
0

Conversely, this last equality implies that
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t

0

v’(t)- L{u’(t)- Fl(t, u(t), p($))}

= (0 ,,’() + z(, ,,(),

Thus

d(V(;)) = HI(; v(:), p(;)) HI(:, Lt(:),

Integrating and using the fact that v(0) = Lu(O) = Lz, we obtain

But, (HT, 1) leads to

where

t

(t) ,(t) = /((, ,(), V()) x(, Z,(), V()))d.
0

II ()- L.()II = fc(. )II (s)- L.(s)II yds.
0

o<t<T
p r( II v(t)!1 y + II p(t)II
o<t<

Hence, by using Gronwall’s inequality, it follows that

v(t)- Lu(t) = O, 0 <_ t <_ T.

Now, we combine propositions 1 and 2 to deduce the following local existence and

uniqueness theorem for the inverse problem (1)- (3).

Theorem I. Under the assumptions (H1)-(HT), there exist TO in [0,T] and (uo, Po) in

C([O, Tol:D(A) x Y) which is the uniqse solution of the inverse problem (1)-(3) in [0,T0].

Remark. Theorem 1 is still valued if we add to the right side of equality (1) a function

f: [0, T]--.X such that f and Af are continuous.

3= GLOBAL SOLUTION,

We begin this section by showing that any solution (Uo, Po) in C([O, To]:D(A) x Y) of the

inverse problem (1)-(3) in [0,To] can be uniquely extended to a solution in [0,To + T] for some

T > 0, whenever 0 < To < T.

If is in [0, min(To, T- To)], we consider the following inverse problem:
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where

u’(t) = Au(t) + KI($, u($), p($)) + / K2(s u(s), p(t s))ds + f(t), 0 <_, <_
u(O) = z = uo(To) 0

Lu(t) = w(t), 0 <_ t <_ T

Kl(t u(t), p(t)) = Fl(t + To, u(t), p(t)), 0 < t < T,

K2(s, u(s), p(t s)) = F2(s Uo(S), p(t- s)) + F2(s + To, u(s), po(t s)), 0 <_ t <_

To

f(t) = / F2(s Uo(S), po(t + TO s))ds, 0 < t < , and

t

w(t) = v(t + To) 0 _< t < ’.

Proposition 8. If (uo, Po) in C([O, To]:D(A)xY) denotes any solution of the inverse

problem (1)-(3) in [0,To] then there exist T in [O, min(To, T-To) and (u,p)in

C([O, To+TI]:D(A)xY such that (u,p)=(UoPo) in [0,To] and (u,p) satisfies (1)-(3) in

[0, TO + T].

Proof. It is not difficult to see that Kz, K2, w have the same properties as Fz, F2, and v,

and that f and Af are continuous. It follows from Theorem 1 that there exist T1 E ]0,] and

(Ul, Pl) e C([0, T]: D(A) x Y), which is the unique solution of the inverse problem (4) (6) given by

We have

p(0) = (To, w’(0)- LAud(O)- Lf(O))

To
P(TO, v’(To) LAu(To) ] LF2(s no(S), po(To s))ds

0

= p(To).
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One can easily check that

(-(),(0) = {
(Uo(t), po(t)), 0 _< t <_ To,

(l(t), pl(t)), TO < _< T,

belongs to C([0,To + T]:D(A)x Y). It remains to show that (u,p) is a solution of the inverse

problem (1)- (3) in [0,To + T]. Since u satisfies (4), we can deduce that

,,’( + %) = ,,C()

= AUl(t) + Fl(t + To, Ul(t), pl(t)) + f F2(s Uo(S), pl(t s))ds
0

t To
+ / F2(s + To, ul(s), po(t- s))ds + / F2(s, Uo(S), Po(t + TO

0 t t

= Au(t + To) + Fl(t + To, u(t + To), p(t + To) + / F2(s, u(s), p(t + To s))ds
0

+ To To
+ / F(,, (),( + To- ,))d + / F(,, (),( + To 8))d8
To

= A.( + To) + F( + To,( + To),( + To))

On the other hand

t+To

+ / F2(s, u(s), p(t + TO s))ds, 0 <_ t <_ T1.

0

Lu(t + To) = Lug(t) = w(t) = v(t + To) 0 <_ t <_ TI.
Therefore we may conclude that (u,p) is a solution of the inverse problem (1)-(3) in [0,T0 + T1].

Proposition . Let (u, p)E C([O, Tmaz[:D(A) x Y) be the maximal solution of the inverse

problem (1)-(3), where 0 < Tmaz <_ T. If

(7)
0 < < Tma

then Tma = T.

O<s<t

Clearly, from Proposition 2 (u,p) can be continuously extended to a solution in
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[0, Tma=]. If Tma= < T, then, following the previous proposition, the solution in [0, Tma. (n be

extended to a solution in [0, Tma + e], for some e > 0. This contradicts the maximality of Tmor..
Now, we will give a sufficient conditions to realize (7).

following comparison theorem.

For this purpose, we recall the

Theorem [2]. et I be a real interval, and let G:I x I x R +--,R + be continuous such

that G(t,s,r) is monotone nondecreasing in r .for each (t,s) in I I. I,et b in C(I), and IS, f i.

C(I) denote the mazimal solution of the integral equation

f(t) = b(t) + / G(t, s, f(a))ds, t >_ tO.

to
If g E C(I) is such thaZ

t

g(t) <_ b(t) + /G(t,s,g(s))ds, t >_ to,
to

Here, by a maximal solution we mean that any other solution h C(1) must satisfy

-</(t), t >- t0-

Before stating a global existence and uniqueness result for our inverse problem, we need to

modify some assumptions on F1, and F2.

Instead of (H5, 2) and (H6, 2) we suppose that there exist Gi(t r): [0, T] x R +--*R +

continuous and monotone nondecreasing in r for each t in [0, T], i = 1, 2, such that

(H5,2’) I[ Fl(t, u, p)l[ D(A) <-- GI(t, II. II D(A) + l[ P II

(H6, 2t) II / F2(s, u(s), p(t s))ds II D(A) <-- / G2(s, II D(A) + II p(s)II )d,.
0 0

Set

G(t,s,r) = M(1 + k(t)II Z II )(Gl(S,r)+(t-s)G2(s,r))+ k(t)il z II G2(s,r),0 <- s <_ t <_ T,i = 0, I.

Clearly, G(t, s, r) is monotone nondecreasing in r, 0 _< s <_ t _< T.

Theorem S. Assume that (HI)-(HT) are satisfied, where (H5,2) and (H6,2) are changed

by (H5,2t) and (H6,2t). If the nonlinear Volterra integral equation:
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(8)
t

r(t) = a(t) + /G(t,s, r(s))ds, 0 <_ t <_ T,
0

has a continuous maximal solution in [0,T], then the inverse problem (1)-(3) has a unique solution

i,, [0,T].

Proof. Let r denote the continuous maximal solution of the integral equation (8).
Proceeding in the manner of the proof of Proposition 1, we obtain

t

II .(t) II D(a) + II p(t) II r -< a(0 + J G(*, , II "(*) II oCa) + II p(*) II r)ds, 0 <_, <_ T.
0

Thus, the condition (7) is satisfied.

The uniqueness of the global solution is just a consequence of the fact that the unique local

solution allows a unique extension.

4 STAB,ITY tLESULT

First of all, we give the exact assumptions under which the stability result will hold.

We assume that (H1)-(//5,1),(HS, 1),(HT) are satisfied, and there exist

G(t, r):[0, T] x + --,R + continuous and monotone nondecreasing in r for each t in [0, T],i = 1,2,

such that

(a8,1) II El(t, Ul, P) Fl(t, u2, P2) !1D(A) <-- Gl(t, l[ Ul U2 II D(A) / II Px P i[ y), for each

(ui, Pi) in D(A) x Y, i = 1, 2, and 0 < t <_ T.

(H8, 2)
t

I! f (F2(s, Ul(S), Pl(t s)) F2(s u2(s), p2(t s)))ds I] D(A) <
0

t

/ a=(s, II "x(’) -"=(’)It D(A) / il t’x0’)- t,:(,)II rods
0

for each (ui, Pi) in C([0, T]: D(A)x Y),i = 1,2, and 0 t < T.

(v(t),H(t,v(t),p))-,(t,K(p)) has the following property:

there exist continuous : [0, T] x R + ---R +, such that

II (t,) (I)2(t w2)II r _< a(t)( II i/1()- V2(t)II r + il Wl W2 II r),
for each v in C([0, T]: Y), w e Y, i = 1, 2, and 0 _< t <_ T.



An Abstract Inverse Problem 127

Here, Oi(t, ) denotes the inverse of the mapping Ki: p--Hl(t vi(t), p)), (i = 1,2). We set

G(*, s, r) = M(1 + g(t)!1 II )(GI(S, r) + (f- S)2(S, r)) + g()II II (*,),

O<_,<_t<_T, i = 0,1.

Theorem $. Suppose that the assumptions Hsted below are satisfied for = = i, v = vi,

i= 1,2. Let (ui, Pi) in C([O,T]:D(A)xY) denote any solution o the inverse proMem (1)-(3)
coesponding to x = zi, v = vi, i = 1, 2, and

r0(t) = M(1 + g(t)II II )11 = =2 II OCA) + ()( II Z(*)-- 2()I! Z + (11 I(*)-- ;()II ’)"

If the mazimal continuous solution, given its ezistence, of the Volterra integral equation

(9)
t

re(t) = o(t)+ ] (t,,, r(,))a,, o _<, _< T,
0

satisfies the condition that there ezists a constant C > O, not depending on m, such that

(10) re(t) < Gro(t), 0 < t _< T,

then

(II) l! x(t) -2(0 II D(A) + II px(t)II _< Cro(t), 0 _< t _< T.

Proof. Let m denote the maximal solution of the integral equation (9), and let

(t) = II-z(t)-.2(t) II D(A) + II px(t)- p2(t)II r, 0 <_ t _< T.

It is easy to see that

t

r(t) < ro(t + /G(t,s,r(s))ds, 0 < t <_ T.
0

Using the comparison Theorem 2, we deduce that r(t) <_ re(t). Hence, (11) follows from (10).

Remark. We hve G(t,s,r)<_a(T,s,r). Then if G(T,s,r) takes

G(T, s, r) = G(s)r, the conclusion of Theorem 4.1 follows from Gronwall’s inequality.

the form
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