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1_. TRODUCTION

lecently, LEMOINE [3] derived for JACKSON networks of single server nodes a set of

"network flow equations" which as he claimed are a first step towards obtaining higher moments of

sojourn times for customers in networks of queues. These equations connect a customer’s residual

sojourn time distributions given the node he has just entered in his passage through the network.

Nothing is said in this expressions about the customer’s itinerary through the network.

It is the purpose of this paper to sketch how these network flow equations can be obtained

from "splitting formulas" for passage time distributions which are previously obtained, at the same

time generalizing LEMOINE’s result to the case of JACKSON networks with multiserver nodes.

THENOFLOW EQUATIONS

We consider a JACKSON network of nodes {1,...,J} =, node i being a multiserver with

mi _> 1 service channels and infinite waiting room under first-come-first-served (FCFS) discipline.

At node i J, customers arrive in a Poisson (Ai) stream, A >_ 0, and service times are

exponentially distributed with mean pi- 1.
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Upon leaving node i, a customer either jumps to node j with probability rii

_
0 or leaves

the network with probability rio

_
O. We assume the routing to be Markovian and the family of all

service and interarrival times to be independent and independent from routing.

{ i O, and R--(rij:i,= O, ..,J). We assume that the stochasticLet roi-- i= J

matrix R defines a finite state Markov chain Y = (Y(n):n N), which is absorbing at 0 for any

initial state in finite time with probability 1.

The network’s behavior over time can be described by a strong Markov process

X = (X(t):t

_
0 with state space NJ, describing the joint queue lengths at the nodes including

customers in service.

The coordinate processes of X are denoted by (Xi(t): t > O) = Xi, i = 1,...,J.

We assume X to be ergodic, which is guaranteed by the condition

o < miPi, = l,..., J,

(where (at,..., aj) = a is the unique solution of the traffic equation

a = (at,..., aj) + a. R

together with the requirement that all nodes are visited by customers.

distribution 7r of X is given as follows:

The unique steady state

kpi k < m i = 1,...,J.
Let ai(k)=

mi# k>_m

then

where G is the norming constant.

According to the celebrated theorem on arrival and departure time distribution

(SEVCIK/MITtLkNI [6] and LAVENBERG/REISER [1]), r is the distribution of the system seen

by an arriving or jumping customer in equilibrium if he himself is not counted.

For i E (1,...,J} let r be an arrival epoch of a test customer C in equilibrium at node i,

r + T the epoch of departure from the network for C, i.e., T is the total remaining time in the

network for the customer arriving at r at node i, where we do not distinguish between internal

(departing from some node, jumping to i) and external arrivals.
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For the case of single-server node networks, LEMOINE [3] derived a set of "network flow

equations" for the Laplace-Stieltjes transforms (LST)

i(e) = .. ] .(e)>_ O, i l,..., J,

which, as he proved, are equivalent to a set of equations, better suited for the evaluation of

moments. We derive a similar set of network flow equations" for multiserver queueing networks.

We state it here as:

Theorem. Let pi(w) denote the steady.state probability that at least m customers are

present at node i,i = 1,...,J.

Then for i = 1,...,Y and Re(O) >_ 0

Pi {1 pi(w)(1- miPi-ti= rio Pi + 0 miP ot + 0)} +_
( miP (Xi(rj )+l-mi)+. e+ riiE[# e’kmi#i+ (91

OTj]

with the convention that the test customer C is not counted in the population vector

X(’) (Xl(t),. .., Xj(t)), t >_ O.

Remark. (1) For the case m, = 1,i = 1,...,J this is formula (52) of LEMOINE [3].

(2) To obtain residual sojourn time moments the expressions of the theorem should be

differentiated and evaluated at = 0. But then the same problems arise as in LEMOINt*s [3]
procedure: There are too many unknowns in the set of equations obtained. Therefore further

equations have to be derived which are independent from the above. For a discussion a.nd an

example see LEMOINE [3].

Proof. For the test customer C, we set a condition to the distribution of his residual

sojourn time in the network on the sequence of nodes he will visit before eventually leaving the

network, i.e., on the possible behavior of Y = (Y(n):n e N) given P(Y(O)= i)= 1, and governed by

the matrix R which describes C’s future journey through the network until absorption. Let G be

the state space describing the possible behavior of Y, i.e.,

g E Cg(g(O),g(1),...) E {0,1,...,a}N
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with g(n) = O::,,g(n + k) = 0 Vk E N

and g(n) # 0 for only a finite number of steps.

We denote by

Gj = {g ( G:#(O) = j},j = 1,...,J.

-OTThe. h,(O)=e 1:
= _. Pr(Y=IY(O)=i e
G

-OTi ] the LST of the psage time distribution for customer traversing theand e [Y = g

prescribed path =(g(O)=i,g(1),...,g)) through a network with Markovian routg, where

= (g) = maz(k: n(k) # 0). So T = koVg(k),= where Vg(k) is C’s sojourn time at node g(k).

We now transform the network into a network with deterministic routing (see MELAMED

[4]) by introducing different customer types:

A customer entering the network at node i is of type g E G with probability

Pr(Y = a Y(0) = i)

and has itinerary ’ during his visit at the network.

Having obtained the network with deterministic routing, Lemma 2.1 and Theorem 2 in

SCHASSBERGER/DADUNA [5] can be applied. This provides (i) the joint distribution of C’s

sojourn time at node and the state of the network at C’s departure from node i proceeding to node

g(1), and (ii) a "splitting formula" which represents the total passage time through a path as a sum

of the sojourn time in i and the residual passage time through (g(1),g(2),...,g()) both

conditioned on the state of network in C’s departure epoch from node i.

Turning back to the network with random routing, i.e., deconditioning over all customer

types (but leaving C’s itinerary fixed) we obtain

e IY=g =
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Z[e O(Vg(1) "1" Vg(2 "t’...-I" Vg(, ))ly = g, (’ri’]" Vi) . ("l"’"ng(1) ’-F ].,...,j)]

where a + ---- maz(O, a) for a E R, and C’ is included in X(r + Vi).

Now (g(1),...,g(),0,0,...)E Go(l), and from the strong Markov property of X it follows:

(e) =

= E ri, o(1)" Pr(Y = (g(1),g(2),...,g(),0,0,...,)IY(O) = g(1))-
g fi G

( mil (ni+l--mi)+E ’,,,,i,,+e:
("t’ rig) E NJ

o(vo(t) +... + vg( )) Y = g,X(’rl + Vi) = (n,...,ng() + 1,...,n.t)] =

E P(Y = .q’ Y(O) = ./)-
o’G

g’ ((z) ,g(’ ),o,o,...).

E[e (vg(z) +... + Vo(, )) (Y(]O = 9(k),k >_ 1),X(ri+ Vi) = (n.,...,ne(t) + t,...,nj)]

j=o

( miP (ni+l-mi)+E
(n .j) NJ

E[e-OTjIx(rj) = (nl,...,nj-l- 1,...,nS)].

Remarks.(3) In an analogous manner as we obtained here from the =splitting formula" of

SCHASSBEIGEP/DADUNA [5] the aetwork flow equation" for networks with multiserver nodes,

and a single customer class, we can deal with random routing networks with different customer

types.

The case of a single server network with different customer types can be derived from

DADUNA [1], where the splitting formula for a customer’s passage time through a fixed path in a
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network with random routing appears as equation (7) which leads directly to our Theorem or the

analog to LEMOINE’s [3] formula (52). For this case, LEMOINE’s first version of the "network

flow equation" (see (6) in LEMOINE [3]) follows directly from formula (5) in DADUNA [1].
(4) Network flow equations for mixed networks can be derived in exactly the same way

providing again formulas for recursive evaluation of residual conditional sojourn time moments for

external customers. In fact, the splitting formula in SCHASSBEIGER/DADUNA [5] is proved for

that case.
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